1
|
Sanvito F, Castellano A, Cloughesy TF, Wen PY, Ellingson BM. RANO 2.0 criteria: concepts applicable to the neuroradiologist's clinical practice. Curr Opin Oncol 2024; 36:536-544. [PMID: 39011735 PMCID: PMC11493521 DOI: 10.1097/cco.0000000000001077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
PURPOSE OF REVIEW The Response Assessment in Neuro-Oncology (RANO) 2.0 criteria aim at improving the standardization and reliability of treatment response assessment in clinical trials studying central nervous system (CNS) gliomas. This review presents the evidence supporting RANO 2.0 updates and discusses which concepts can be applicable to the clinical practice, particularly in the clinical radiographic reads. RECENT FINDINGS Updates in RANO 2.0 were supported by recent retrospective analyses of multicenter data from recent clinical trials. As proposed in RANO 2.0, in tumors receiving radiation therapy, the post-RT MRI scan should be used as a reference baseline for the following scans, as opposed to the pre-RT scan, and radiographic findings suggesting progression within three months after radiation therapy completion should be verified with confirmatory scans. Volumetric assessments should be considered, when available, especially for low-grade gliomas, and the evaluation of nonenhancing disease should have a marginal role in glioblastoma. However, the radiographic reads in the clinical setting also benefit from aspects that lie outside RANO 2.0 criteria, such as qualitative evaluations, patient-specific clinical considerations, and advanced imaging. SUMMARY While RANO 2.0 criteria are meant for the standardization of the response assessment in clinical trials, some concepts have the potential to improve patients' management in the clinical practice.
Collapse
Affiliation(s)
- Francesco Sanvito
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California Los Angeles, Los Angeles, CA, USA
| | - Antonella Castellano
- Neuroradiology Unit and CERMAC, IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, Milan, Italy
| | - Timothy F Cloughesy
- UCLA Brain Tumor Program, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Patrick Y Wen
- Center For Neuro-Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Benjamin M Ellingson
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
2
|
Fang Z, Shu T, Luo P, Shao Y, Lin L, Tu Z, Zhu X, Wu L. The peritumoral edema index and related mechanisms influence the prognosis of GBM patients. Front Oncol 2024; 14:1417208. [PMID: 39534094 PMCID: PMC11554619 DOI: 10.3389/fonc.2024.1417208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024] Open
Abstract
Background Peritumoral brain edema (PTBE) represents a characteristic phenotype of intracranial gliomas. However, there is a lack of consensus regarding the prognosis and mechanism of PTBE. In this study, clinical imaging data, along with publicly available imaging data, were utilized to assess the prognosis of PTBE in glioblastoma (GBM) patients, and the associated mechanisms were preliminarily analyzed. Methods We investigated relevant imaging features, including edema, in GBM patients using ITK-SNAP imaging segmentation software. Risk factors affecting progression-free survival (PFS) and overall survival (OS) were assessed using a Cox proportional hazard regression model. In addition, the impact of PTBE on PFS and OS was analyzed in clinical GBM patients using the Kaplan-Meier survival analysis method, and the results further validated by combining data from The Cancer Imaging Archive (TCIA) and The Cancer Genome Atlas (TCGA). Finally, functional enrichment analysis based on TCIA and TCGA datasets identified several pathways potentially involved in the mechanism of edema formation. Results This study included a total of 32 clinical GBM patients and 132 GBM patients from public databases. Univariate and multivariate analyses indicated that age and edema index (EI) are independent risk factors for PFS, but not for OS. Kaplan-Meier curves revealed consistent survival analysis results between IE groups among both clinical patients and TCIA and TCGA patients, suggesting a significant effect of PTBE on PFS but not on OS. Furthermore, functional enrichment analysis predicted the involvement of several pathways related mainly to cellular bioenergetics and vasculogenic processes in the mechanism of PTBE formation. While these novel results warrant confirmation in a larger patient cohort, they support good prognostic value for PTBE assessment in GBM. Conclusions Our results indicate that a low EI positively impacts disease control in GBM patients, but this does not entirely translate into an improvement in OS. Multiple genes, signaling pathways, and biological processes may contribute to the formation of peritumoral edema in GBM through cytotoxic and vascular mechanisms.
Collapse
Affiliation(s)
- Zhansheng Fang
- Department of Neurosurgery, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang University, Nanchang, China
- Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang University, Nanchang, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
| | - Ting Shu
- Department of Medical Imaging Center, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Pengxiang Luo
- Department of Neurosurgery, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang University, Nanchang, China
- Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang University, Nanchang, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
| | - Yiqing Shao
- Department of Neurosurgery, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang University, Nanchang, China
- Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang University, Nanchang, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
| | - Li Lin
- Department of Neurosurgery, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang University, Nanchang, China
- Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang University, Nanchang, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
| | - Zewei Tu
- Department of Neurosurgery, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang University, Nanchang, China
- Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang University, Nanchang, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
| | - Xingen Zhu
- Department of Neurosurgery, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang University, Nanchang, China
- Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang University, Nanchang, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
| | - Lei Wu
- Department of Neurosurgery, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang University, Nanchang, China
- Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang University, Nanchang, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
| |
Collapse
|
3
|
Hoebel KV, Bridge CP, Kim A, Gerstner ER, Ly IK, Deng F, DeSalvo MN, Dietrich J, Huang R, Huang SY, Pomerantz SR, Vagvala S, Rosen BR, Kalpathy-Cramer J. Not without Context-A Multiple Methods Study on Evaluation and Correction of Automated Brain Tumor Segmentations by Experts. Acad Radiol 2024; 31:1572-1582. [PMID: 37951777 DOI: 10.1016/j.acra.2023.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 11/14/2023]
Abstract
RATIONALE AND OBJECTIVES Brain tumor segmentations are integral to the clinical management of patients with glioblastoma, the deadliest primary brain tumor in adults. The manual delineation of tumors is time-consuming and highly provider-dependent. These two problems must be addressed by introducing automated, deep-learning-based segmentation tools. This study aimed to identify criteria experts use to evaluate the quality of automatically generated segmentations and their thought processes as they correct them. MATERIALS AND METHODS Multiple methods were used to develop a detailed understanding of the complex factors that shape experts' perception of segmentation quality and their thought processes in correcting proposed segmentations. Data from a questionnaire and semistructured interview with neuro-oncologists and neuroradiologists were collected between August and December 2021 and analyzed using a combined deductive and inductive approach. RESULTS Brain tumors are highly complex and ambiguous segmentation targets. Therefore, physicians rely heavily on the given context related to the patient and clinical context in evaluating the quality and need to correct brain tumor segmentation. Most importantly, the intended clinical application determines the segmentation quality criteria and editing decisions. Physicians' personal beliefs and preferences about the capabilities of AI algorithms and whether questionable areas should not be included are additional criteria influencing the perception of segmentation quality and appearance of an edited segmentation. CONCLUSION Our findings on experts' perceptions of segmentation quality will allow the design of improved frameworks for expert-centered evaluation of brain tumor segmentation models. In particular, the knowledge presented here can inspire the development of brain tumor-specific metrics for segmentation model training and evaluation.
Collapse
Affiliation(s)
- Katharina V Hoebel
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts; Harvard-MIT Program in Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Christopher P Bridge
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts; Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts
| | - Albert Kim
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts; Stephen E. and Catherine Pappas Center for Neuro-Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Elizabeth R Gerstner
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts; Stephen E. and Catherine Pappas Center for Neuro-Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Ina K Ly
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts; Stephen E. and Catherine Pappas Center for Neuro-Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Francis Deng
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Massachusetts
| | - Matthew N DeSalvo
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jorg Dietrich
- Department of Neurology, Division of Neuro-Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Raymond Huang
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Susie Y Huang
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts
| | - Stuart R Pomerantz
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts
| | - Saivenkat Vagvala
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Bruce R Rosen
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts
| | - Jayashree Kalpathy-Cramer
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts; Department of Ophthalmology, University of Colorado Anschutz Medical Campus, 1675 Aurora Court, Mail Stop F731, Aurora, CO.
| |
Collapse
|
4
|
Sanvito F, Kaufmann TJ, Cloughesy TF, Wen PY, Ellingson BM. Standardized brain tumor imaging protocols for clinical trials: current recommendations and tips for integration. FRONTIERS IN RADIOLOGY 2023; 3:1267615. [PMID: 38152383 PMCID: PMC10751345 DOI: 10.3389/fradi.2023.1267615] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/24/2023] [Indexed: 12/29/2023]
Abstract
Standardized MRI acquisition protocols are crucial for reducing the measurement and interpretation variability associated with response assessment in brain tumor clinical trials. The main challenge is that standardized protocols should ensure high image quality while maximizing the number of institutions meeting the acquisition requirements. In recent years, extensive effort has been made by consensus groups to propose different "ideal" and "minimum requirements" brain tumor imaging protocols (BTIPs) for gliomas, brain metastases (BM), and primary central nervous system lymphomas (PCSNL). In clinical practice, BTIPs for clinical trials can be easily integrated with additional MRI sequences that may be desired for clinical patient management at individual sites. In this review, we summarize the general concepts behind the choice and timing of sequences included in the current recommended BTIPs, we provide a comparative overview, and discuss tips and caveats to integrate additional clinical or research sequences while preserving the recommended BTIPs. Finally, we also reflect on potential future directions for brain tumor imaging in clinical trials.
Collapse
Affiliation(s)
- Francesco Sanvito
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | | | - Timothy F. Cloughesy
- UCLA Neuro-Oncology Program, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Patrick Y. Wen
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women’s Cancer Center, Harvard Medical School, Boston, MA, United States
| | - Benjamin M. Ellingson
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
5
|
Helland RH, Ferles A, Pedersen A, Kommers I, Ardon H, Barkhof F, Bello L, Berger MS, Dunås T, Nibali MC, Furtner J, Hervey-Jumper S, Idema AJS, Kiesel B, Tewari RN, Mandonnet E, Müller DMJ, Robe PA, Rossi M, Sagberg LM, Sciortino T, Aalders T, Wagemakers M, Widhalm G, Witte MG, Zwinderman AH, Majewska PL, Jakola AS, Solheim O, Hamer PCDW, Reinertsen I, Eijgelaar RS, Bouget D. Segmentation of glioblastomas in early post-operative multi-modal MRI with deep neural networks. Sci Rep 2023; 13:18897. [PMID: 37919325 PMCID: PMC10622432 DOI: 10.1038/s41598-023-45456-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/19/2023] [Indexed: 11/04/2023] Open
Abstract
Extent of resection after surgery is one of the main prognostic factors for patients diagnosed with glioblastoma. To achieve this, accurate segmentation and classification of residual tumor from post-operative MR images is essential. The current standard method for estimating it is subject to high inter- and intra-rater variability, and an automated method for segmentation of residual tumor in early post-operative MRI could lead to a more accurate estimation of extent of resection. In this study, two state-of-the-art neural network architectures for pre-operative segmentation were trained for the task. The models were extensively validated on a multicenter dataset with nearly 1000 patients, from 12 hospitals in Europe and the United States. The best performance achieved was a 61% Dice score, and the best classification performance was about 80% balanced accuracy, with a demonstrated ability to generalize across hospitals. In addition, the segmentation performance of the best models was on par with human expert raters. The predicted segmentations can be used to accurately classify the patients into those with residual tumor, and those with gross total resection.
Collapse
Affiliation(s)
- Ragnhild Holden Helland
- Department of Health Research, SINTEF Digital, 7465, Trondheim, Norway.
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, NO-7491, Trondheim, Norway.
| | - Alexandros Ferles
- Cancer Center Amsterdam, Brain Tumor Center, Amsterdam University Medical Centers, 1081 HV, Amsterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Vrije Universiteit, 1081 HV, Amsterdam, The Netherlands
| | - André Pedersen
- Department of Health Research, SINTEF Digital, 7465, Trondheim, Norway
| | - Ivar Kommers
- Cancer Center Amsterdam, Brain Tumor Center, Amsterdam University Medical Centers, 1081 HV, Amsterdam, The Netherlands
- Department of Neurosurgery, Amsterdam University Medical Centers, Vrije Universiteit, 1081 HV, Amsterdam, The Netherlands
| | - Hilko Ardon
- Department of Neurosurgery, Twee Steden Hospital, 5042 AD, Tilburg, The Netherlands
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Vrije Universiteit, 1081 HV, Amsterdam, The Netherlands
- Institutes of Neurology and Healthcare Engineering, University College London, London, WC1E 6BT, UK
| | - Lorenzo Bello
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-oncology, Humanitas Research Hospital, Università Degli Studi di Milano, 20122, Milan, Italy
| | - Mitchel S Berger
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Tora Dunås
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 405 30, Gothenburg, Sweden
| | | | - Julia Furtner
- Department of Biomedical Imaging and Image-guided Therapy, Medical University Vienna, 1090, Vienna, Austria
- Research Center for Medical Image Analysis and Artificial Intelligence (MIAAI), Faculty of Medicine and Dentistry, Danube Private University, 3500, Krems, Austria
| | - Shawn Hervey-Jumper
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Albert J S Idema
- Department of Neurosurgery, Northwest Clinics, 1815 JD, Alkmaar, The Netherlands
| | - Barbara Kiesel
- Department of Neurosurgery, Medical University Vienna, 1090, Vienna, Austria
| | - Rishi Nandoe Tewari
- Department of Neurosurgery, Haaglanden Medical Center, 2512 VA, The Hague, The Netherlands
| | - Emmanuel Mandonnet
- Department of Neurological Surgery, Hôpital Lariboisière, 75010, Paris, France
| | - Domenique M J Müller
- Cancer Center Amsterdam, Brain Tumor Center, Amsterdam University Medical Centers, 1081 HV, Amsterdam, The Netherlands
- Department of Neurosurgery, Amsterdam University Medical Centers, Vrije Universiteit, 1081 HV, Amsterdam, The Netherlands
| | - Pierre A Robe
- Department of Neurology and Neurosurgery, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| | - Marco Rossi
- Department of Medical Biotechnology and Translational Medicine, Università Degli Studi di Milano, 20122, Milan, Italy
| | - Lisa M Sagberg
- Department of Neurosurgery, St. Olavs hospital, Trondheim University Hospital, 7030, Trondheim, Norway
- Department of Public Health and Nursing, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | | | - Tom Aalders
- Department of Neurosurgery, Isala, 8025 AB, Zwolle, The Netherlands
| | - Michiel Wagemakers
- Department of Neurosurgery, University Medical Center Groningen, University of Groningen, 9713 GZ, Groningen, The Netherlands
| | - Georg Widhalm
- Department of Neurosurgery, Medical University Vienna, 1090, Vienna, Austria
| | - Marnix G Witte
- Department of Radiation Oncology, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands
| | - Aeilko H Zwinderman
- Department of Clinical Epidemiology and Biostatistics, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Paulina L Majewska
- Department of Neurology and Neurosurgery, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Asgeir S Jakola
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 405 30, Gothenburg, Sweden
- Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ole Solheim
- Department of Neurology and Neurosurgery, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Philip C De Witt Hamer
- Cancer Center Amsterdam, Brain Tumor Center, Amsterdam University Medical Centers, 1081 HV, Amsterdam, The Netherlands
- Department of Neurosurgery, Amsterdam University Medical Centers, Vrije Universiteit, 1081 HV, Amsterdam, The Netherlands
| | - Ingerid Reinertsen
- Department of Health Research, SINTEF Digital, 7465, Trondheim, Norway
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, NO-7491, Trondheim, Norway
| | - Roelant S Eijgelaar
- Cancer Center Amsterdam, Brain Tumor Center, Amsterdam University Medical Centers, 1081 HV, Amsterdam, The Netherlands
- Department of Neurosurgery, Amsterdam University Medical Centers, Vrije Universiteit, 1081 HV, Amsterdam, The Netherlands
| | - David Bouget
- Department of Health Research, SINTEF Digital, 7465, Trondheim, Norway
| |
Collapse
|
6
|
Strack C, Pomykala KL, Schlemmer HP, Egger J, Kleesiek J. "A net for everyone": fully personalized and unsupervised neural networks trained with longitudinal data from a single patient. BMC Med Imaging 2023; 23:174. [PMID: 37907876 PMCID: PMC10619304 DOI: 10.1186/s12880-023-01128-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 10/16/2023] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND With the rise in importance of personalized medicine and deep learning, we combine the two to create personalized neural networks. The aim of the study is to show a proof of concept that data from just one patient can be used to train deep neural networks to detect tumor progression in longitudinal datasets. METHODS Two datasets with 64 scans from 32 patients with glioblastoma multiforme (GBM) were evaluated in this study. The contrast-enhanced T1w sequences of brain magnetic resonance imaging (MRI) images were used. We trained a neural network for each patient using just two scans from different timepoints to map the difference between the images. The change in tumor volume can be calculated with this map. The neural networks were a form of a Wasserstein-GAN (generative adversarial network), an unsupervised learning architecture. The combination of data augmentation and the network architecture allowed us to skip the co-registration of the images. Furthermore, no additional training data, pre-training of the networks or any (manual) annotations are necessary. RESULTS The model achieved an AUC-score of 0.87 for tumor change. We also introduced a modified RANO criteria, for which an accuracy of 66% can be achieved. CONCLUSIONS We show a novel approach to deep learning in using data from just one patient to train deep neural networks to monitor tumor change. Using two different datasets to evaluate the results shows the potential to generalize the method.
Collapse
Affiliation(s)
- Christian Strack
- Institute for AI in Medicine (IKIM), University Hospital Essen (AöR), Girardetstraße 2, 45131, Essen, Germany.
- Division of Radiology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.
- Medical Faculty Heidelberg, Heidelberg University, 69120, Heidelberg, Germany.
| | - Kelsey L Pomykala
- Institute for AI in Medicine (IKIM), University Hospital Essen (AöR), Girardetstraße 2, 45131, Essen, Germany
| | - Heinz-Peter Schlemmer
- Division of Radiology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- German Cancer Consortium (DKTK), Partner Site Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Jan Egger
- Institute for AI in Medicine (IKIM), University Hospital Essen (AöR), Girardetstraße 2, 45131, Essen, Germany
- Cancer Research Center Cologne Essen (CCCE), University Medicine Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Jens Kleesiek
- Institute for AI in Medicine (IKIM), University Hospital Essen (AöR), Girardetstraße 2, 45131, Essen, Germany
- German Cancer Consortium (DKTK), Partner Site Essen, Hufelandstraße 55, 45147, Essen, Germany
- Cancer Research Center Cologne Essen (CCCE), University Medicine Essen, Hufelandstraße 55, 45147, Essen, Germany
- Department of Physics, TU Dortmund University, Otto-Hahn-Straße 4, D-44227, Dortmund, Germany
| |
Collapse
|
7
|
Bianconi A, Rossi LF, Bonada M, Zeppa P, Nico E, De Marco R, Lacroce P, Cofano F, Bruno F, Morana G, Melcarne A, Ruda R, Mainardi L, Fiaschi P, Garbossa D, Morra L. Deep learning-based algorithm for postoperative glioblastoma MRI segmentation: a promising new tool for tumor burden assessment. Brain Inform 2023; 10:26. [PMID: 37801128 PMCID: PMC10558414 DOI: 10.1186/s40708-023-00207-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 09/16/2023] [Indexed: 10/07/2023] Open
Abstract
OBJECTIVE Clinical and surgical decisions for glioblastoma patients depend on a tumor imaging-based evaluation. Artificial Intelligence (AI) can be applied to magnetic resonance imaging (MRI) assessment to support clinical practice, surgery planning and prognostic predictions. In a real-world context, the current obstacles for AI are low-quality imaging and postoperative reliability. The aim of this study is to train an automatic algorithm for glioblastoma segmentation on a clinical MRI dataset and to obtain reliable results both pre- and post-operatively. METHODS The dataset used for this study comprises 237 (71 preoperative and 166 postoperative) MRIs from 71 patients affected by a histologically confirmed Grade IV Glioma. The implemented U-Net architecture was trained by transfer learning to perform the segmentation task on postoperative MRIs. The training was carried out first on BraTS2021 dataset for preoperative segmentation. Performance is evaluated using DICE score (DS) and Hausdorff 95% (H95). RESULTS In preoperative scenario, overall DS is 91.09 (± 0.60) and H95 is 8.35 (± 1.12), considering tumor core, enhancing tumor and whole tumor (ET and edema). In postoperative context, overall DS is 72.31 (± 2.88) and H95 is 23.43 (± 7.24), considering resection cavity (RC), gross tumor volume (GTV) and whole tumor (WT). Remarkably, the RC segmentation obtained a mean DS of 63.52 (± 8.90) in postoperative MRIs. CONCLUSIONS The performances achieved by the algorithm are consistent with previous literature for both pre-operative and post-operative glioblastoma's MRI evaluation. Through the proposed algorithm, it is possible to reduce the impact of low-quality images and missing sequences.
Collapse
Affiliation(s)
- Andrea Bianconi
- Neurosurgery, Department of Neuroscience, University of Turin, via Cherasco 15, 10126, Turin, Italy.
| | | | - Marta Bonada
- Neurosurgery, Department of Neuroscience, University of Turin, via Cherasco 15, 10126, Turin, Italy
| | - Pietro Zeppa
- Neurosurgery, Department of Neuroscience, University of Turin, via Cherasco 15, 10126, Turin, Italy
| | - Elsa Nico
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Raffaele De Marco
- Neurosurgery, Department of Neuroscience, University of Turin, via Cherasco 15, 10126, Turin, Italy
| | | | - Fabio Cofano
- Neurosurgery, Department of Neuroscience, University of Turin, via Cherasco 15, 10126, Turin, Italy
| | - Francesco Bruno
- Neurooncology, Department of Neuroscience, University of Turin, Turin, Italy
| | - Giovanni Morana
- Neuroradiology, Department of Neuroscience, University of Turin, Turin, Italy
| | - Antonio Melcarne
- Neurosurgery, Department of Neuroscience, University of Turin, via Cherasco 15, 10126, Turin, Italy
| | - Roberta Ruda
- Neurooncology, Department of Neuroscience, University of Turin, Turin, Italy
| | - Luca Mainardi
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
| | - Pietro Fiaschi
- IRCCS Ospedale Policlinico S. Martino, Genoa, Italy
- Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze Materno-Infantili, Univeristy of Genoa, Genoa, Italy
| | - Diego Garbossa
- Neurosurgery, Department of Neuroscience, University of Turin, via Cherasco 15, 10126, Turin, Italy
| | - Lia Morra
- Dipartimento di Automatica e Informatica, Politecnico di Torino, Turin, Italy
| |
Collapse
|
8
|
Ramakrishnan D, von Reppert M, Krycia M, Sala M, Mueller S, Aneja S, Nabavizadeh A, Galldiks N, Lohmann P, Raji C, Ikuta I, Memon F, Weinberg BD, Aboian MS. Evolution and implementation of radiographic response criteria in neuro-oncology. Neurooncol Adv 2023; 5:vdad118. [PMID: 37860269 PMCID: PMC10584081 DOI: 10.1093/noajnl/vdad118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023] Open
Abstract
Radiographic response assessment in neuro-oncology is critical in clinical practice and trials. Conventional criteria, such as the MacDonald and response assessment in neuro-oncology (RANO) criteria, rely on bidimensional (2D) measurements of a single tumor cross-section. Although RANO criteria are established for response assessment in clinical trials, there is a critical need to address the complexity of brain tumor treatment response with multiple new approaches being proposed. These include volumetric analysis of tumor compartments, structured MRI reporting systems like the Brain Tumor Reporting and Data System, and standardized approaches to advanced imaging techniques to distinguish tumor response from treatment effects. In this review, we discuss the strengths and limitations of different neuro-oncology response criteria and summarize current research findings on the role of novel response methods in neuro-oncology clinical trials and practice.
Collapse
Affiliation(s)
- Divya Ramakrishnan
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| | - Marc von Reppert
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| | - Mark Krycia
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| | - Matthew Sala
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
- Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Sabine Mueller
- Department of Neurology, Neurosurgery, and Pediatrics, University of California San Francisco, San Francisco, California, USA
| | - Sanjay Aneja
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| | - Ali Nabavizadeh
- Department of Radiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Norbert Galldiks
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Institute of Neuroscience and Medicine (INM-3), Research Center Juelich, Juelich, Germany
- Center for Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Cologne, Germany
| | - Philipp Lohmann
- Institute of Neuroscience and Medicine (INM-4), Research Center Juelich, Juelich, Germany
| | - Cyrus Raji
- Department of Radiology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Ichiro Ikuta
- Department of Radiology, Mayo Clinic, Phoenix, Arizona, USA
| | - Fatima Memon
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| | - Brent D Weinberg
- Department of Radiology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Mariam S Aboian
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
9
|
Bouget D, Pedersen A, Jakola AS, Kavouridis V, Emblem KE, Eijgelaar RS, Kommers I, Ardon H, Barkhof F, Bello L, Berger MS, Conti Nibali M, Furtner J, Hervey-Jumper S, Idema AJS, Kiesel B, Kloet A, Mandonnet E, Müller DMJ, Robe PA, Rossi M, Sciortino T, Van den Brink WA, Wagemakers M, Widhalm G, Witte MG, Zwinderman AH, De Witt Hamer PC, Solheim O, Reinertsen I. Preoperative Brain Tumor Imaging: Models and Software for Segmentation and Standardized Reporting. Front Neurol 2022; 13:932219. [PMID: 35968292 PMCID: PMC9364874 DOI: 10.3389/fneur.2022.932219] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/23/2022] [Indexed: 11/23/2022] Open
Abstract
For patients suffering from brain tumor, prognosis estimation and treatment decisions are made by a multidisciplinary team based on a set of preoperative MR scans. Currently, the lack of standardized and automatic methods for tumor detection and generation of clinical reports, incorporating a wide range of tumor characteristics, represents a major hurdle. In this study, we investigate the most occurring brain tumor types: glioblastomas, lower grade gliomas, meningiomas, and metastases, through four cohorts of up to 4,000 patients. Tumor segmentation models were trained using the AGU-Net architecture with different preprocessing steps and protocols. Segmentation performances were assessed in-depth using a wide-range of voxel and patient-wise metrics covering volume, distance, and probabilistic aspects. Finally, two software solutions have been developed, enabling an easy use of the trained models and standardized generation of clinical reports: Raidionics and Raidionics-Slicer. Segmentation performances were quite homogeneous across the four different brain tumor types, with an average true positive Dice ranging between 80 and 90%, patient-wise recall between 88 and 98%, and patient-wise precision around 95%. In conjunction to Dice, the identified most relevant other metrics were the relative absolute volume difference, the variation of information, and the Hausdorff, Mahalanobis, and object average symmetric surface distances. With our Raidionics software, running on a desktop computer with CPU support, tumor segmentation can be performed in 16-54 s depending on the dimensions of the MRI volume. For the generation of a standardized clinical report, including the tumor segmentation and features computation, 5-15 min are necessary. All trained models have been made open-access together with the source code for both software solutions and validation metrics computation. In the future, a method to convert results from a set of metrics into a final single score would be highly desirable for easier ranking across trained models. In addition, an automatic classification of the brain tumor type would be necessary to replace manual user input. Finally, the inclusion of post-operative segmentation in both software solutions will be key for generating complete post-operative standardized clinical reports.
Collapse
Affiliation(s)
- David Bouget
- Department of Health Research, SINTEF Digital, Trondheim, Norway
| | - André Pedersen
- Department of Health Research, SINTEF Digital, Trondheim, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Clinic of Surgery, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Asgeir S. Jakola
- Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Vasileios Kavouridis
- Department of Neurosurgery, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Kyrre E. Emblem
- Division of Radiology and Nuclear Medicine, Department of Physics and Computational Radiology, Oslo University Hospital, Oslo, Norway
| | - Roelant S. Eijgelaar
- Department of Neurosurgery, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, Netherlands
- Cancer Center Amsterdam, Brain Tumor Center, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Ivar Kommers
- Department of Neurosurgery, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, Netherlands
- Cancer Center Amsterdam, Brain Tumor Center, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Hilko Ardon
- Department of Neurosurgery, Twee Steden Hospital, Tilburg, Netherlands
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, Netherlands
- Institutes of Neurology and Healthcare Engineering, University College London, London, United Kingdom
| | - Lorenzo Bello
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Humanitas Research Hospital, Università degli Studi di Milano, Milan, Italy
| | - Mitchel S. Berger
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Marco Conti Nibali
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Humanitas Research Hospital, Università degli Studi di Milano, Milan, Italy
| | - Julia Furtner
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University Vienna, Wien, Austria
| | - Shawn Hervey-Jumper
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | | | - Barbara Kiesel
- Department of Neurosurgery, Medical University Vienna, Wien, Austria
| | - Alfred Kloet
- Department of Neurosurgery, Haaglanden Medical Center, The Hague, Netherlands
| | | | - Domenique M. J. Müller
- Department of Neurosurgery, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, Netherlands
- Cancer Center Amsterdam, Brain Tumor Center, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Pierre A. Robe
- Department of Neurology and Neurosurgery, University Medical Center Utrecht, Utrecht, Netherlands
| | - Marco Rossi
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Humanitas Research Hospital, Università degli Studi di Milano, Milan, Italy
| | - Tommaso Sciortino
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Humanitas Research Hospital, Università degli Studi di Milano, Milan, Italy
| | | | - Michiel Wagemakers
- Department of Neurosurgery, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Georg Widhalm
- Department of Neurosurgery, Medical University Vienna, Wien, Austria
| | - Marnix G. Witte
- Department of Radiation Oncology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Aeilko H. Zwinderman
- Department of Clinical Epidemiology and Biostatistics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Philip C. De Witt Hamer
- Department of Neurosurgery, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, Netherlands
- Cancer Center Amsterdam, Brain Tumor Center, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Ole Solheim
- Department of Neurosurgery, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ingerid Reinertsen
- Department of Health Research, SINTEF Digital, Trondheim, Norway
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
10
|
Le Fèvre C, Sun R, Cebula H, Thiery A, Antoni D, Schott R, Proust F, Constans JM, Noël G. Ellipsoid calculations versus manual tumor delineations for glioblastoma tumor volume evaluation. Sci Rep 2022; 12:10502. [PMID: 35732848 PMCID: PMC9217851 DOI: 10.1038/s41598-022-13739-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 05/27/2022] [Indexed: 11/09/2022] Open
Abstract
In glioblastoma, the response to treatment assessment is essentially based on the 2D tumor size evolution but remains disputable. Volumetric approaches were evaluated for a more accurate estimation of tumor size. This study included 57 patients and compared two volume measurement methods to determine the size of different glioblastoma regions of interest: the contrast-enhancing area, the necrotic area, the gross target volume and the volume of the edema area. The two methods, the ellipsoid formula (the calculated method) and the manual delineation (the measured method) showed a high correlation to determine glioblastoma volume and a high agreement to classify patients assessment response to treatment according to RANO criteria. This study revealed that calculated and measured methods could be used in clinical practice to estimate glioblastoma volume size and to evaluate tumor size evolution.
Collapse
Affiliation(s)
- Clara Le Fèvre
- Department of Radiotherapy, ICANS, Institut Cancérologie Strasbourg Europe, 17 Rue Albert Calmette, 67200, Strasbourg Cedex, France.
| | - Roger Sun
- Department of Radiotherapy, Institut Gustave Roussy, Paris-Saclay University, Villejuif, France
| | - Hélène Cebula
- Department of Neurosurgery, Hôpital d'Hautepierre, 1, Avenue Molière, 67200, Strasbourg, France
| | - Alicia Thiery
- Department of Public Health, ICANS, Institut Cancérologie Strasbourg Europe, 17 Rue Albert Calmette, 67200, Strasbourg Cedex, France.
| | - Delphine Antoni
- Department of Radiotherapy, ICANS, Institut Cancérologie Strasbourg Europe, 17 Rue Albert Calmette, 67200, Strasbourg Cedex, France
| | - Roland Schott
- Department of Medical Oncology, ICANS, Institut Cancérologie Strasbourg Europe, 17 Rue Albert Calmette, 67200, Strasbourg Cedex, France
| | - François Proust
- Department of Neurosurgery, Hôpital d'Hautepierre, 1, Avenue Molière, 67200, Strasbourg, France
| | - Jean-Marc Constans
- Department of Radiology, Centre Hospitalier Universitaire d' Amiens, 1 Rond-Point du Professeur Christian Cabrol, 80054, Amiens Cedex 1, France
| | - Georges Noël
- Department of Radiotherapy, ICANS, Institut Cancérologie Strasbourg Europe, 17 Rue Albert Calmette, 67200, Strasbourg Cedex, France
| |
Collapse
|
11
|
Gahrmann R, Smits M, Vernhout RM, Taal W, Kapsas G, de Groot JC, Hanse M, Vos M, Beerepoot LV, Buter J, Flach ZH, van der Holt B, van den Bent M. The impact of different volumetric thresholds to determine progressive disease in patients with recurrent glioblastoma treated with bevacizumab. Neurooncol Adv 2022; 4:vdac032. [PMID: 35419519 PMCID: PMC9000300 DOI: 10.1093/noajnl/vdac032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background The optimal volumetric threshold for determining progressive disease (PD) in recurrent glioblastoma is yet to be determined. We investigated a range of thresholds in association with overall survival (OS). Methods First recurrent glioblastoma patients treated with bevacizumab and/or lomustine were included from the phase II BELOB and phase III EORTC26101 trials. Enhancing and nonenhancing tumor volumes were measured at baseline, first (6 weeks), and second (12 weeks) follow-up. Hazard ratios (HRs) for the appearance of new lesions and several thresholds for tumor volume increase were calculated using cox regression analysis. Results were corrected in a multivariate analysis for well-established prognostic factors. Results At first and second follow-up, 138 and 94 patients respectively, were deemed eligible for analysis of enhancing volumes, while 89 patients were included in the analysis of nonenhancing volumes at first follow-up. New lesions were associated with a significantly worse OS (3.2 versus 11.2 months, HR = 7.03, P < .001). At first follow-up a threshold of enhancing volume increase of ≥20% provided the highest HR (5.55, p = .001. At second follow-up, any increase in enhancing volume (≥0%) provided the highest HR (9.00, p < .001). When measuring nonenhancing volume at first follow-up, only 6 additional patients were scored as PD with the highest HR of ≥25% increase in volume (HR=3.25, p = .008). Conclusion Early appearing new lesions were associated with poor OS. Lowering the volumetric threshold for PD at both first and second follow-up improved survival prediction. However, the additional number of patients categorized as PD by lowering the threshold was very low. The per-RANO added change in nonenhancing volumes to the analyses was of limited value.
Collapse
Affiliation(s)
- Renske Gahrmann
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Marion Smits
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - René Michel Vernhout
- Clinical Trial Center, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The Netherlands
| | - Walter Taal
- The Brain Tumor Center at Erasmus MC Cancer Institute Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Giorgios Kapsas
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Jan Cees de Groot
- Department of Radiology, University Medical Center Groningen, Groningen, The Netherlands
| | - Monique Hanse
- Department of Neurology, Catharina Hospital Eindhoven, The Netherlands
| | - Maaike Vos
- Department of Neurology, Medical Center Haaglanden, The Hague, The Netherlands
| | | | - Jan Buter
- Department of Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | | | - Bronno van der Holt
- Clinical Trial Center, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The Netherlands
| | - Martin van den Bent
- The Brain Tumor Center at Erasmus MC Cancer Institute Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
12
|
Wong AMC, Siow TY, Wei KC, Chen PY, Toh CH, Castillo M. Prediction of Malignant Transformation of WHO II Astrocytoma Using Mathematical Models Incorporating Apparent Diffusion Coefficient and Contrast Enhancement. Front Oncol 2021; 11:744827. [PMID: 34660309 PMCID: PMC8511697 DOI: 10.3389/fonc.2021.744827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/14/2021] [Indexed: 11/30/2022] Open
Abstract
Using only increasing contrast enhancement as a marker of malignant transformation (MT) in gliomas has low specificity and may affect interpretation of clinical outcomes. Therefore we developed a mathematical model to predict MT of low-grade gliomas (LGGs) by considering areas of reduced apparent diffusion coefficient (ADC) with increased contrast enhancement. Patients with contrast-enhancing LGGs who had contemporaneous ADC and histopathology were retrospectively analyzed. Multiple clinical factors and imaging factors (contrast-enhancement size, whole-tumor size, and ADC) were assessed for association with MT. Patients were split into training and validation groups for the development of a predictive model using logistic regression which was assessed with receiver operating characteristic analysis. Among 132 patients, (median age 46.5 years), 106 patients (64 MT) were assigned to the training group and 26 (20 MT) to the validation group. The predictive model comprised age (P = 0.110), radiotherapy (P = 0.168), contrast-enhancement size (P = 0.015), and ADC (P < 0.001). The predictive model (area-under-the-curve [AUC] 0.87) outperformed ADC (AUC 0.85) and contrast-enhancement size (AUC 0.67). The model had an accuracy of 84% for the training group and 85% respectively for the validation group. Our model incorporating ADC and contrast-enhancement size predicted MT in contrast-enhancing LGGs.
Collapse
Affiliation(s)
- Alex Mun-Ching Wong
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Keelung, Keelong, Taiwan.,College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Tiing Yee Siow
- College of Medicine, Chang Gung University, Tao-Yuan, Taiwan.,Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Tao-Yuan, Taiwan
| | - Kuo-Chen Wei
- College of Medicine, Chang Gung University, Tao-Yuan, Taiwan.,Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Pin-Yuan Chen
- College of Medicine, Chang Gung University, Tao-Yuan, Taiwan.,Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Tao-Yuan, Taiwan
| | - Cheng Hong Toh
- College of Medicine, Chang Gung University, Tao-Yuan, Taiwan.,Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Tao-Yuan, Taiwan
| | - Mauricio Castillo
- Department of Radiology, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| |
Collapse
|
13
|
Bouget D, Pedersen A, Hosainey SAM, Solheim O, Reinertsen I. Meningioma Segmentation in T1-Weighted MRI Leveraging Global Context and Attention Mechanisms. FRONTIERS IN RADIOLOGY 2021; 1:711514. [PMID: 37492175 PMCID: PMC10365121 DOI: 10.3389/fradi.2021.711514] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/16/2021] [Indexed: 07/27/2023]
Abstract
Purpose: Meningiomas are the most common type of primary brain tumor, accounting for ~30% of all brain tumors. A substantial number of these tumors are never surgically removed but rather monitored over time. Automatic and precise meningioma segmentation is, therefore, beneficial to enable reliable growth estimation and patient-specific treatment planning. Methods: In this study, we propose the inclusion of attention mechanisms on top of a U-Net architecture used as backbone: (i) Attention-gated U-Net (AGUNet) and (ii) Dual Attention U-Net (DAUNet), using a three-dimensional (3D) magnetic resonance imaging (MRI) volume as input. Attention has the potential to leverage the global context and identify features' relationships across the entire volume. To limit spatial resolution degradation and loss of detail inherent to encoder-decoder architectures, we studied the impact of multi-scale input and deep supervision components. The proposed architectures are trainable end-to-end and each concept can be seamlessly disabled for ablation studies. Results: The validation studies were performed using a five-fold cross-validation over 600 T1-weighted MRI volumes from St. Olavs Hospital, Trondheim University Hospital, Norway. Models were evaluated based on segmentation, detection, and speed performances, and results are reported patient-wise after averaging across all folds. For the best-performing architecture, an average Dice score of 81.6% was reached for an F1-score of 95.6%. With an almost perfect precision of 98%, meningiomas smaller than 3 ml were occasionally missed hence reaching an overall recall of 93%. Conclusion: Leveraging global context from a 3D MRI volume provided the best performances, even if the native volume resolution could not be processed directly due to current GPU memory limitations. Overall, near-perfect detection was achieved for meningiomas larger than 3 ml, which is relevant for clinical use. In the future, the use of multi-scale designs and refinement networks should be further investigated. A larger number of cases with meningiomas below 3 ml might also be needed to improve the performance for the smallest tumors.
Collapse
Affiliation(s)
- David Bouget
- Department of Health Research, SINTEF Digital, Trondheim, Norway
| | - André Pedersen
- Department of Health Research, SINTEF Digital, Trondheim, Norway
| | | | - Ole Solheim
- Department of Neurosurgery, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| | | |
Collapse
|
14
|
Bouget D, Eijgelaar RS, Pedersen A, Kommers I, Ardon H, Barkhof F, Bello L, Berger MS, Nibali MC, Furtner J, Fyllingen EH, Hervey-Jumper S, Idema AJS, Kiesel B, Kloet A, Mandonnet E, Müller DMJ, Robe PA, Rossi M, Sagberg LM, Sciortino T, Van den Brink WA, Wagemakers M, Widhalm G, Witte MG, Zwinderman AH, Reinertsen I, De Witt Hamer PC, Solheim O. Glioblastoma Surgery Imaging-Reporting and Data System: Validation and Performance of the Automated Segmentation Task. Cancers (Basel) 2021; 13:4674. [PMID: 34572900 PMCID: PMC8465753 DOI: 10.3390/cancers13184674] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/03/2021] [Accepted: 09/13/2021] [Indexed: 11/17/2022] Open
Abstract
For patients with presumed glioblastoma, essential tumor characteristics are determined from preoperative MR images to optimize the treatment strategy. This procedure is time-consuming and subjective, if performed by crude eyeballing or manually. The standardized GSI-RADS aims to provide neurosurgeons with automatic tumor segmentations to extract tumor features rapidly and objectively. In this study, we improved automatic tumor segmentation and compared the agreement with manual raters, describe the technical details of the different components of GSI-RADS, and determined their speed. Two recent neural network architectures were considered for the segmentation task: nnU-Net and AGU-Net. Two preprocessing schemes were introduced to investigate the tradeoff between performance and processing speed. A summarized description of the tumor feature extraction and standardized reporting process is included. The trained architectures for automatic segmentation and the code for computing the standardized report are distributed as open-source and as open-access software. Validation studies were performed on a dataset of 1594 gadolinium-enhanced T1-weighted MRI volumes from 13 hospitals and 293 T1-weighted MRI volumes from the BraTS challenge. The glioblastoma tumor core segmentation reached a Dice score slightly below 90%, a patientwise F1-score close to 99%, and a 95th percentile Hausdorff distance slightly below 4.0 mm on average with either architecture and the heavy preprocessing scheme. A patient MRI volume can be segmented in less than one minute, and a standardized report can be generated in up to five minutes. The proposed GSI-RADS software showed robust performance on a large collection of MRI volumes from various hospitals and generated results within a reasonable runtime.
Collapse
Affiliation(s)
- David Bouget
- Department of Health Research, SINTEF Digital, NO-7465 Trondheim, Norway; (A.P.); (I.R.)
| | - Roelant S. Eijgelaar
- Department of Neurosurgery, Amsterdam University Medical Centers, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands; (R.S.E.); (I.K.); (D.M.J.M.); (P.C.D.W.H.)
- Cancer Center Amsterdam, Brain Tumor Center, Amsterdam University Medical Centers, 1081 HV Amsterdam, The Netherlands
| | - André Pedersen
- Department of Health Research, SINTEF Digital, NO-7465 Trondheim, Norway; (A.P.); (I.R.)
| | - Ivar Kommers
- Department of Neurosurgery, Amsterdam University Medical Centers, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands; (R.S.E.); (I.K.); (D.M.J.M.); (P.C.D.W.H.)
- Cancer Center Amsterdam, Brain Tumor Center, Amsterdam University Medical Centers, 1081 HV Amsterdam, The Netherlands
| | - Hilko Ardon
- Department of Neurosurgery, Twee Steden Hospital, 5042 AD Tilburg, The Netherlands;
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands;
- Institutes of Neurology and Healthcare Engineering, University College London, London WC1E 6BT, UK
| | - Lorenzo Bello
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Humanitas Research Hospital, Università Degli Studi di Milano, 20122 Milano, Italy; (L.B.); (M.C.N.); (M.R.); (T.S.)
| | - Mitchel S. Berger
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA; (M.S.B.); (S.H.-J.)
| | - Marco Conti Nibali
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Humanitas Research Hospital, Università Degli Studi di Milano, 20122 Milano, Italy; (L.B.); (M.C.N.); (M.R.); (T.S.)
| | - Julia Furtner
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University Vienna, 1090 Wien, Austria;
| | - Even Hovig Fyllingen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway;
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, NO-7030 Trondheim, Norway
| | - Shawn Hervey-Jumper
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA; (M.S.B.); (S.H.-J.)
| | - Albert J. S. Idema
- Department of Neurosurgery, Northwest Clinics, 1815 JD Alkmaar, The Netherlands;
| | - Barbara Kiesel
- Department of Neurosurgery, Medical University Vienna, 1090 Wien, Austria; (B.K.); (G.W.)
| | - Alfred Kloet
- Department of Neurosurgery, Haaglanden Medical Center, 2512 VA The Hague, The Netherlands;
| | - Emmanuel Mandonnet
- Department of Neurological Surgery, Hôpital Lariboisière, 75010 Paris, France;
| | - Domenique M. J. Müller
- Department of Neurosurgery, Amsterdam University Medical Centers, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands; (R.S.E.); (I.K.); (D.M.J.M.); (P.C.D.W.H.)
- Cancer Center Amsterdam, Brain Tumor Center, Amsterdam University Medical Centers, 1081 HV Amsterdam, The Netherlands
| | - Pierre A. Robe
- Department of Neurology and Neurosurgery, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands;
| | - Marco Rossi
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Humanitas Research Hospital, Università Degli Studi di Milano, 20122 Milano, Italy; (L.B.); (M.C.N.); (M.R.); (T.S.)
| | - Lisa M. Sagberg
- Department of Neurosurgery, St. Olavs Hospital, Trondheim University Hospital, NO-7030 Trondheim, Norway;
| | - Tommaso Sciortino
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Humanitas Research Hospital, Università Degli Studi di Milano, 20122 Milano, Italy; (L.B.); (M.C.N.); (M.R.); (T.S.)
| | | | - Michiel Wagemakers
- Department of Neurosurgery, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands;
| | - Georg Widhalm
- Department of Neurosurgery, Medical University Vienna, 1090 Wien, Austria; (B.K.); (G.W.)
| | - Marnix G. Witte
- Department of Radiation Oncology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands;
| | - Aeilko H. Zwinderman
- Department of Clinical Epidemiology and Biostatistics, Amsterdam University Medical Centers, 1105 AZ Amsterdam, The Netherlands; (A.H.Z.); (O.S.)
| | - Ingerid Reinertsen
- Department of Health Research, SINTEF Digital, NO-7465 Trondheim, Norway; (A.P.); (I.R.)
- Department of Neurosurgery, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands;
| | - Philip C. De Witt Hamer
- Department of Neurosurgery, Amsterdam University Medical Centers, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands; (R.S.E.); (I.K.); (D.M.J.M.); (P.C.D.W.H.)
- Cancer Center Amsterdam, Brain Tumor Center, Amsterdam University Medical Centers, 1081 HV Amsterdam, The Netherlands
| | - Ole Solheim
- Department of Clinical Epidemiology and Biostatistics, Amsterdam University Medical Centers, 1105 AZ Amsterdam, The Netherlands; (A.H.Z.); (O.S.)
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| |
Collapse
|
15
|
Auer TA, Della Seta M, Collettini F, Chapiro J, Zschaeck S, Ghadjar P, Badakhshi H, Florange J, Hamm B, Budach V, Kaul D. Quantitative volumetric assessment of baseline enhancing tumor volume as an imaging biomarker predicts overall survival in patients with glioblastoma. Acta Radiol 2021; 62:1200-1207. [PMID: 32938221 DOI: 10.1177/0284185120953796] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is the commonest malignant primary brain tumor and still has one of the worst prognoses among cancers in general. There is a need for non-invasive methods to predict individual prognosis in patients with GBM. PURPOSE To evaluate quantitative volumetric tissue assessment of enhancing tumor volume on cranial magnetic resonance imaging (MRI) as an imaging biomarker for predicting overall survival (OS) in patients with GBM. MATERIAL AND METHODS MRI scans of 49 patients with histopathologically confirmed GBM were analyzed retrospectively. Baseline contrast-enhanced (CE) MRI sequences were transferred to a segmentation-based three-dimensional quantification tool, and the enhancing tumor component was analyzed. Based on a cut-off percentage of the enhancing tumor volume (PoETV) of >84.78%, samples were dichotomized, and the OS and intracranial progression-free survival (PFS) were evaluated. Univariable and multivariable analyses, including variables such as sex, Karnofsky Performance Status score, O6-methylguanine-DNA-methyltransferase status, age, and resection status, were performed using the Cox regression model. RESULTS The median OS and PFS were 16.9 and 7 months in the entire cohort, respectively. Patients with a CE tumor volume of >84.78% showed a significantly shortened OS (12.9 months) compared to those with a CE tumor volume of ≤84.78% (17.7 months) (hazard ratio [HR] 2.72; 95% confidence interval [CI] 1.22-6.03; P = 0.01). Multivariable analysis confirmed that PoETV had a significant prognostic role (HR 2.47; 95% CI 1.08-5.65; P = 0.03). CONCLUSION We observed a correlation between PoETV and OS. This imaging biomarker may help predict the OS of patients with GBM.
Collapse
Affiliation(s)
- Timo A Auer
- Department of Radiology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Marta Della Seta
- Department of Radiology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Federico Collettini
- Department of Radiology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Julius Chapiro
- Department of Radiology, Yale University, New Haven, CT, USA
| | - Sebastian Zschaeck
- Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Pirus Ghadjar
- Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Harun Badakhshi
- Department of Radiation Oncology, Ernst von Bergmann Medical Center, Potsdam, Germany
| | - Julian Florange
- Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Bernd Hamm
- Department of Radiology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Volker Budach
- Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - David Kaul
- Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
16
|
Spinal Meningiomas: Influence of Cord Compression and Radiological Features on Preoperative Functional Status and Outcome. Cancers (Basel) 2021; 13:cancers13164183. [PMID: 34439337 PMCID: PMC8393980 DOI: 10.3390/cancers13164183] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/12/2021] [Accepted: 08/14/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Patients affected by spinal meningioma globally exhibit an excellent postoperative functional outcome despite tumor size and severity of spinal cord compression. This work aims to analyze the impact of tumor size and other radiological findings on clinical functional preoperative status and postoperative outcome. In this multicentric retrospective study involving 90 adult patients, we found that spinal cord and tumor occupancy as well as cord compression and tumor volume are correlated with low preoperative functional status. Higher tumor occupancy and tumor-canal volume ratio corresponded to lower postoperative neurological recovery. Cord re-expansion did not show any correlation with postoperative outcome, while preoperative signs of cord myelopathy were predictors of worse postoperative outcome. These findings suggest that these radiological features should be taken into consideration during preoperative counselling. Abstract Background: Radiological parameters predicting the postoperative neurological outcome after resection of a spinal meningioma (SM) are poorly studied, with controversial results. Methods: Observational multicenter cohort (2011–2018) of adult patients undergoing surgery for resection of SM. Tumor-canal volume ratio (TCR), the areas related to the cord and tumor occupancy at maximum compression, the presence of dural tail, calcifications, signs of myelopathy, and postoperative cord expansion were compared with the modified McCormick scale (mMCS) preoperative and at follow-up. Results: In the cohort (n = 90 patients), cord and tumor occupancy as well as cord compression and tumor volume showed a correlation with preoperative mMCS (p < 0.05, R −0.23; p < 0.001, R 0.35; p < 0.005, R −0.29; p < 0.001, R 0.42). Cord occupancy had a strong correlation with cord compression (p < 0.001, R 0.72). Tumor occupancy and TCR were correlated with relative outcome at follow-up (p < 0.005 R 0.3; p < 0.005 R 0.29). No correlation was found between cord re-expansion and clinical outcome at follow-up. Finally, a correlation was shown between preoperative signs of cord myelopathy and mMCS (p < 0.05 R 0.21) at follow-up. Conclusions: Larger tumors showed lower preoperative functional status and a worse clinical outcome. Moreover, preoperative T2 cord signal changes are correlated with a poorer outcome.
Collapse
|
17
|
Kommers I, Bouget D, Pedersen A, Eijgelaar RS, Ardon H, Barkhof F, Bello L, Berger MS, Conti Nibali M, Furtner J, Fyllingen EH, Hervey-Jumper S, Idema AJS, Kiesel B, Kloet A, Mandonnet E, Müller DMJ, Robe PA, Rossi M, Sagberg LM, Sciortino T, van den Brink WA, Wagemakers M, Widhalm G, Witte MG, Zwinderman AH, Reinertsen I, Solheim O, De Witt Hamer PC. Glioblastoma Surgery Imaging-Reporting and Data System: Standardized Reporting of Tumor Volume, Location, and Resectability Based on Automated Segmentations. Cancers (Basel) 2021; 13:2854. [PMID: 34201021 PMCID: PMC8229389 DOI: 10.3390/cancers13122854] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 01/01/2023] Open
Abstract
Treatment decisions for patients with presumed glioblastoma are based on tumor characteristics available from a preoperative MR scan. Tumor characteristics, including volume, location, and resectability, are often estimated or manually delineated. This process is time consuming and subjective. Hence, comparison across cohorts, trials, or registries are subject to assessment bias. In this study, we propose a standardized Glioblastoma Surgery Imaging Reporting and Data System (GSI-RADS) based on an automated method of tumor segmentation that provides standard reports on tumor features that are potentially relevant for glioblastoma surgery. As clinical validation, we determine the agreement in extracted tumor features between the automated method and the current standard of manual segmentations from routine clinical MR scans before treatment. In an observational consecutive cohort of 1596 adult patients with a first time surgery of a glioblastoma from 13 institutions, we segmented gadolinium-enhanced tumor parts both by a human rater and by an automated algorithm. Tumor features were extracted from segmentations of both methods and compared to assess differences, concordance, and equivalence. The laterality, contralateral infiltration, and the laterality indices were in excellent agreement. The native and normalized tumor volumes had excellent agreement, consistency, and equivalence. Multifocality, but not the number of foci, had good agreement and equivalence. The location profiles of cortical and subcortical structures were in excellent agreement. The expected residual tumor volumes and resectability indices had excellent agreement, consistency, and equivalence. Tumor probability maps were in good agreement. In conclusion, automated segmentations are in excellent agreement with manual segmentations and practically equivalent regarding tumor features that are potentially relevant for neurosurgical purposes. Standard GSI-RADS reports can be generated by open access software.
Collapse
Affiliation(s)
- Ivar Kommers
- Department of Neurosurgery, Amsterdam University Medical Centers, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands; (I.K.); (R.S.E.); (D.M.J.M.)
- Cancer Center Amsterdam, Brain Tumor Center, Amsterdam University Medical Centers, 1081 HV Amsterdam, The Netherlands
| | - David Bouget
- Department of Health Research, SINTEF Digital, NO-7465 Trondheim, Norway; (D.B.); (A.P.); (I.R.)
| | - André Pedersen
- Department of Health Research, SINTEF Digital, NO-7465 Trondheim, Norway; (D.B.); (A.P.); (I.R.)
| | - Roelant S. Eijgelaar
- Department of Neurosurgery, Amsterdam University Medical Centers, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands; (I.K.); (R.S.E.); (D.M.J.M.)
- Cancer Center Amsterdam, Brain Tumor Center, Amsterdam University Medical Centers, 1081 HV Amsterdam, The Netherlands
| | - Hilko Ardon
- Department of Neurosurgery, Twee Steden Hospital, 5042 AD Tilburg, The Netherlands;
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands;
- Institutes of Neurology and Healthcare Engineering, University College London, London WC1E 6BT, UK
| | - Lorenzo Bello
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Humanitas Research Hospital, Università Degli Studi di Milano, 20122 Milano, Italy; (L.B.); (M.C.N.); (M.R.); (T.S.)
| | - Mitchel S. Berger
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA; (M.S.B.); (S.H.-J.)
| | - Marco Conti Nibali
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Humanitas Research Hospital, Università Degli Studi di Milano, 20122 Milano, Italy; (L.B.); (M.C.N.); (M.R.); (T.S.)
| | - Julia Furtner
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University Vienna, 1090 Wien, Austria;
| | - Even H. Fyllingen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway;
- Department of Radiology and Nuclear Medicine, St. Olav’s Hospital, Trondheim University Hospital, NO-7030 Trondheim, Norway
| | - Shawn Hervey-Jumper
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA; (M.S.B.); (S.H.-J.)
| | - Albert J. S. Idema
- Department of Neurosurgery, Northwest Clinics, 1815 JD Alkmaar, The Netherlands;
| | - Barbara Kiesel
- Department of Neurosurgery, Medical University Vienna, 1090 Wien, Austria; (B.K.); (G.W.)
| | - Alfred Kloet
- Department of Neurosurgery, Haaglanden Medical Center, 2512 VA The Hague, The Netherlands;
| | - Emmanuel Mandonnet
- Department of Neurological Surgery, Hôpital Lariboisière, 75010 Paris, France;
| | - Domenique M. J. Müller
- Department of Neurosurgery, Amsterdam University Medical Centers, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands; (I.K.); (R.S.E.); (D.M.J.M.)
- Cancer Center Amsterdam, Brain Tumor Center, Amsterdam University Medical Centers, 1081 HV Amsterdam, The Netherlands
| | - Pierre A. Robe
- Department of Neurology and Neurosurgery, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands;
| | - Marco Rossi
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Humanitas Research Hospital, Università Degli Studi di Milano, 20122 Milano, Italy; (L.B.); (M.C.N.); (M.R.); (T.S.)
| | - Lisa M. Sagberg
- Department of Neurosurgery, St. Olav’s Hospital, Trondheim University Hospital, NO-7030 Trondheim, Norway;
| | - Tommaso Sciortino
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Humanitas Research Hospital, Università Degli Studi di Milano, 20122 Milano, Italy; (L.B.); (M.C.N.); (M.R.); (T.S.)
| | | | - Michiel Wagemakers
- Department of Neurosurgery, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands;
| | - Georg Widhalm
- Department of Neurosurgery, Medical University Vienna, 1090 Wien, Austria; (B.K.); (G.W.)
| | - Marnix G. Witte
- Department of Radiation Oncology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands;
| | - Aeilko H. Zwinderman
- Department of Clinical Epidemiology and Biostatistics, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Ingerid Reinertsen
- Department of Health Research, SINTEF Digital, NO-7465 Trondheim, Norway; (D.B.); (A.P.); (I.R.)
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway;
| | - Ole Solheim
- Department of Neurosurgery, St. Olav’s Hospital, Trondheim University Hospital, NO-7030 Trondheim, Norway;
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Philip C. De Witt Hamer
- Department of Neurosurgery, Amsterdam University Medical Centers, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands; (I.K.); (R.S.E.); (D.M.J.M.)
- Cancer Center Amsterdam, Brain Tumor Center, Amsterdam University Medical Centers, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
18
|
Bouget D, Pedersen A, Hosainey SAM, Vanel J, Solheim O, Reinertsen I. Fast meningioma segmentation in T1-weighted magnetic resonance imaging volumes using a lightweight 3D deep learning architecture. J Med Imaging (Bellingham) 2021; 8:024002. [PMID: 33778095 DOI: 10.1117/1.jmi.8.2.024002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/05/2021] [Indexed: 12/14/2022] Open
Abstract
Purpose: Automatic and consistent meningioma segmentation in T1-weighted magnetic resonance (MR) imaging volumes and corresponding volumetric assessment is of use for diagnosis, treatment planning, and tumor growth evaluation. We optimized the segmentation and processing speed performances using a large number of both surgically treated meningiomas and untreated meningiomas followed at the outpatient clinic. Approach: We studied two different three-dimensional (3D) neural network architectures: (i) a simple encoder-decoder similar to a 3D U-Net, and (ii) a lightweight multi-scale architecture [Pulmonary Lobe Segmentation Network (PLS-Net)]. In addition, we studied the impact of different training schemes. For the validation studies, we used 698 T1-weighted MR volumes from St. Olav University Hospital, Trondheim, Norway. The models were evaluated in terms of detection accuracy, segmentation accuracy, and training/inference speed. Results: While both architectures reached a similar Dice score of 70% on average, the PLS-Net was more accurate with an F 1 -score of up to 88%. The highest accuracy was achieved for the largest meningiomas. Speed-wise, the PLS-Net architecture tended to converge in about 50 h while 130 h were necessary for U-Net. Inference with PLS-Net takes less than a second on GPU and about 15 s on CPU. Conclusions: Overall, with the use of mixed precision training, it was possible to train competitive segmentation models in a relatively short amount of time using the lightweight PLS-Net architecture. In the future, the focus should be brought toward the segmentation of small meningiomas ( < 2 ml ) to improve clinical relevance for automatic and early diagnosis and speed of growth estimates.
Collapse
Affiliation(s)
- David Bouget
- SINTEF, Medical Technology Department, Trondheim, Norway
| | - André Pedersen
- SINTEF, Medical Technology Department, Trondheim, Norway
| | | | - Johanna Vanel
- SINTEF, Medical Technology Department, Trondheim, Norway
| | - Ole Solheim
- NTNU, Department of Neuromedicine and Movement Science, Trondheim, Norway.,St. Olavs Hospital, Department of Neurosurgery, Trondheim, Norway
| | | |
Collapse
|
19
|
van der Meulen M, Postma AA, Smits M, Bakunina K, Minnema MC, Seute T, Cull G, Enting RH, van der Poel M, Stevens WBC, Brandsma D, Beeker A, Doorduijn JK, Issa S, van den Bent MJ, Bromberg JEC. Extent of radiological response does not reflect survival in primary central nervous system lymphoma. Neurooncol Adv 2021; 3:vdab007. [PMID: 33615224 PMCID: PMC7883767 DOI: 10.1093/noajnl/vdab007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background In primary central nervous system lymphoma (PCNSL), small enhancing lesions can persist after treatment. It is unknown whether a difference in response category (complete response [CR], complete response unconfirmed [CRu], or partial response [PR]) reflects survival. We aimed to determine the value of a central radiology review on response assessment and whether the extent of response influenced progression-free and/or overall survival. Methods All patients in the HOVON 105/ALLG NHL 24 study with at least a baseline MRI and one MRI made for response evaluation available for central review were included. Tumor measurements were done by 2 independent central reviewers, disagreements were adjudicated by a third reviewer. Crude agreement and interobserver agreement (Cohen's kappa) were calculated. Differences in progression-free and overall survival between different categories of response at the end-of-protocol-treatment were assessed by the log-rank test in a landmark survival-analysis. Results Agreement between the central reviewers was 61.7% and between local and central response assessment was 63.0%. Cohen's kappa's, which corrects for expected agreement, were 0.44 and 0.46 (moderate), respectively. Progression agreement or not was 93.3% (kappa 0.87) between local and central response assessment. There were no significant differences in progression-free and overall survival between patients with CR, CRu, or PR at the end-of-protocol-treatment, according to both local and central response assessment. Conclusions Reliability of response assessment (CR/CRu/PR) is moderate even by central radiology review and these response categories do not reliably predict survival. Therefore, primary outcome in PCNSL studies should be survival rather than CR or CR/CRu-rate.
Collapse
Affiliation(s)
- Matthijs van der Meulen
- Department of Neuro-Oncology, Erasmus MC Cancer Institute, Brain Tumor Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Alida A Postma
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, School for Mental Health and Sciences, Maastricht, The Netherlands
| | - Marion Smits
- Department of Radiology and Nuclear Medicine, Erasmus MC Cancer Institute, Brain Tumor Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Katerina Bakunina
- Department of Hematology, HOVON Data Center, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Monique C Minnema
- Department of Hematology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Tatjana Seute
- Department of Neurology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Gavin Cull
- Haematology Department, Sir Charles Gairdner Hospital and PathWest Laboratory Medicine, Nedlands, Australia.,University of Western Australia, Crawley, Australia
| | - Roelien H Enting
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Wendy B C Stevens
- Department of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dieta Brandsma
- Department of Neuro-Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| | - Aart Beeker
- Department of Hematology, Spaarne Gasthuis, Haarlem, The Netherlands
| | - Jeanette K Doorduijn
- Department of Hematology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Samar Issa
- Department of Haematology, Middlemore Hospital, Auckland, New Zealand
| | - Martin J van den Bent
- Department of Neuro-Oncology, Erasmus MC Cancer Institute, Brain Tumor Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jacoline E C Bromberg
- Department of Neuro-Oncology, Erasmus MC Cancer Institute, Brain Tumor Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
20
|
Jakola AS, Sagberg LM, Gulati S, Solheim O. Advancements in predicting outcomes in patients with glioma: a surgical perspective. Expert Rev Anticancer Ther 2020; 20:167-177. [PMID: 32114857 DOI: 10.1080/14737140.2020.1735367] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Diffuse glioma is a challenging neurosurgical entity. Although surgery does not provide a cure, it may greatly influence survival, brain function, and quality of life. Surgical treatment is by nature highly personalized and outcome prediction is very complex. To engage and succeed in this balancing act it is important to make best use of the information available to the neurosurgeon.Areas covered: This narrative review provides an update on advancements in predicting outcomes in patients with glioma that are relevant to neurosurgeons.Expert opinion: The classical 'gut feeling' is notoriously unreliable and better prediction strategies for patients with glioma are warranted. There are numerous tools readily available for the neurosurgeon in predicting tumor biology and survival. Predicting extent of resection, functional outcome, and quality of life remains difficult. Although machine-learning approaches are currently not readily available in daily clinical practice, there are several ongoing efforts with the use of big data sets that are likely to create new prediction models and refine the existing models.
Collapse
Affiliation(s)
- Asgeir Store Jakola
- Department of Clinical Neuroscience, Institute of Physiology and Neuroscience, Sahlgrenska Academy, Gothenburg, Sweden.,Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, Sweden.,Department of Neuromedicine and Movement Science, NTNU, Trondheim, Norway
| | - Lisa Millgård Sagberg
- Department of Neurosurgery, St.Olavs Hospital, Trondheim, Norway.,Department of Public Health and Nursing, NTNU, Trondheim, Norway
| | - Sasha Gulati
- Department of Neuromedicine and Movement Science, NTNU, Trondheim, Norway.,Department of Neurosurgery, St.Olavs Hospital, Trondheim, Norway
| | - Ole Solheim
- Department of Neuromedicine and Movement Science, NTNU, Trondheim, Norway.,Department of Neurosurgery, St.Olavs Hospital, Trondheim, Norway
| |
Collapse
|