1
|
Kast RE, Kast AP, Arnhold J, Capanni F, Sanabria LNM, Bader N, Vieira BM, Alfieri A, Karpel-Massler G, da Silva EB. Noninvasive Ultra Low Intensity Light Photodynamic Treatment of Glioblastoma with Drug Augmentation: LoGlo PDT Regimen. Brain Sci 2024; 14:1164. [PMID: 39766363 PMCID: PMC11674893 DOI: 10.3390/brainsci14121164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/11/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
This paper presents the basis for LoGlo PDT, a new treatment for glioblastoma. Glioblastoma is currently treated with maximal safe resection, temozolomide, and ionizing irradiation. Mortality in 2024 remains over 80% within several years from diagnosis. Oral 5-aminolevulinic acid (5-ALA) is an FDA/EMA approved drug that is selectively taken up by malignant cells, including by glioblastoma. In photodynamic treatment of glioblastoma, intense intraoperative light causes glioblastoma tissue that has taken up 5-ALA to generate cytotoxic reactive oxygen species. The requirement for intense light flux has restricted photodynamic treatment to a single one-hour intraoperative session. We analyze here published data showing that external light, illuminating the entire intact scalp, can attain low μW/cm2 flux several cm into intact brain that would be sufficient to mediate 5-ALA photodynamic treatment of glioblastoma if the light and 5-ALA are delivered continuously over 24 h. At the core of LoGlo PDT regimen is the dataset showing that, for a given fluence, as the duration of PDT light delivery goes down, light intensity (flux) delivered must go up to achieve the same glioblastoma cell cytotoxicity as would a weaker light (lower flux) delivered over a longer time. Thus, a repetitive, noninvasive PDT of glioblastoma using an external light source may be possible. We analyze 5-ALA cellular physiology to show that three non-oncology drugs, ciprofloxacin, deferiprone, and telmisartan, can be repurposed to increase light energy capture after 5-ALA, thereby increasing photodynamic treatment's glioblastoma cell cytotoxicity. The LoGlo PDT approach uses both drug augmentation and prolonged ultra-low noninvasive transcranial light delivery for a repetitive, noninvasive 5-ALA photodynamic treatment of glioblastoma.
Collapse
Affiliation(s)
- Richard E. Kast
- IIAIGC Study Center, 11 Arlington Ct, Burlington, VT 05408, USA;
| | - Anton P. Kast
- IIAIGC Study Center, 11 Arlington Ct, Burlington, VT 05408, USA;
| | - Jürgen Arnhold
- Institute for Medical Physics and Biophysics, University of Leipzig, Härtelstrasse 16-18, 04107 Leipzig, Germany;
| | - Felix Capanni
- Biomechatronics Research Group, Ulm University of Applied Sciences, Albert Einstein Allee 55, 89081 Ulm, Germany; (F.C.); (N.B.)
| | | | - Nicolas Bader
- Biomechatronics Research Group, Ulm University of Applied Sciences, Albert Einstein Allee 55, 89081 Ulm, Germany; (F.C.); (N.B.)
| | - Bruno Marques Vieira
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro, Rio de Janeiro 20230-024, Brazil;
| | - Alex Alfieri
- Department of Neurosurgery, Cantonal Hospital of Winterthur, 8400 Winterthur, Switzerland;
| | | | - Erasmo Barros da Silva
- Neurosurgery Department—Neuro-Oncology, Instituto de Neurologia de Curitiba, Rua Jeremias Maciel Perretto, 300-Campo Comprido, Curitiba 81210-310, Brazil;
| |
Collapse
|
2
|
Ma R, Livermore LJ, Taylor L, Laycock J, Williams S, Ansorge O, Vallance C, Plaha P. Endoscopic 5-Aminolevulinic Acid-Induced Fluorescence-Guided Intraparenchymal Brain Tumor Resection-Can the Endoscope Detect More Fluorescence Than the Microscope? World Neurosurg 2024; 185:e1268-e1279. [PMID: 38514030 DOI: 10.1016/j.wneu.2024.03.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 03/23/2024]
Abstract
OBJECTIVES Using a laboratory-based optical setup, we show that 5-aminolevulinic acid (5ALA) fluorescence is better detected using the endoscope than the microscope. Furthermore, we present our case series of fully endoscopic 5ALA-guided resection of intraparenchymal tumors. METHODS A Zeiss Pentero microscope was compared with the Karl Storz Hopkins endoscope. The spectra and intensity of each blue light source were measured. Quantitative fluorescence detection thresholds were measured using a spectrometer. Subjective fluorescence detection thresholds were measured by 6 blinded neuro-oncology surgeons. Clinical data were prospectively collected for all consecutive cases of fully endoscopic 5ALA-guided resection of intraparenchymal tumors between 2012 and 2023. RESULTS The intensity of blue light on the sample was greater for the endoscope than the microscope at working distances less than 20 mm. The quantitative fluorescence detection thresholds were lower for the endoscope than the microscope at both 30-/10-mm working distances. Fluorescence detection threshold was 0.65%-0.80% relative 4-dicyanomethylene-2-methyl-6-p-dimethylaminostyryl-4H-pyranthe concentration (3.20 × 10-7 to 3.94 × 10-7mol/dm-3) for the microscope, 0.40%-0.55% relative concentrations (1.97 × 10-7 to 2.71 × 10-7mol/dm-3) for the endoscope at 30 mm, and 0.15%-0.30% relative concentrations (7.40 × 10-8 to 1.48 × 10-7mol/dm-3) for the endoscope at 10 mm. In total, 49 5ALA endoscope-assisted brain tumor resections were carried out on 45 patients (mean age = 41 years, male = 28). Greater than 95% resection was achieved in 80% of cases and gross total resection in 42%. Gross total resection was achieved in 100% of tumors in noneloquent locations. There was 1 new neurologic deficit. CONCLUSIONS The endoscope provides enhanced visualization/detection of 5ALA-induced fluorescence compared with the microscope. 5ALA endoscopic-assisted resection of intraparenchymal tumors is safe and feasible.
Collapse
Affiliation(s)
- Ruichong Ma
- Department of Neurosurgery, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom; Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom.
| | - Laurent J Livermore
- Department of Neurosurgery, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom; Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Louis Taylor
- Department of Neurosurgery, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Jake Laycock
- Department of Neurosurgery, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Sarah Williams
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Olaf Ansorge
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Claire Vallance
- Deptment of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Puneet Plaha
- Department of Neurosurgery, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom; Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|