1
|
Zhang G, Zhao S, Zhao Z, Jia C, Zhang Y, Xue J, Liu Y, Yang W. Synthesis and Evaluation of 18F-Labeled Phenylpiperazine-like Dopamine D3 Receptor Radioligands for Positron Emission Tomography Imaging. ACS Chem Neurosci 2024; 15:3459-3472. [PMID: 39276340 DOI: 10.1021/acschemneuro.4c00177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024] Open
Abstract
The dopamine D3 receptor (D3R) is important in the pathophysiology of various neuropsychiatric disorders, such as depression, bipolar disorder, schizophrenia, drug addiction, and Parkinson's disease. Positron emission tomography (PET) with innovative radioligands provides an opportunity to assess D3R in vivo and to elucidate D3R-related disease mechanisms. Herein, we present the synthesis of eight 18F-labeled phenylpiperazine-like D3R-selective radioligands possessing good radiochemical purity (>97%), in vitro stability (>95%), and befitting lipophilicity. Based on in vitro binding assays and static microPET studies, the phenylpiperazine-like radioligands [18F]FBPC01 and [18F]FBPC03 were chosen as lead radioligands targeting D3R. Molecular docking further elucidated their binding mechanism. Radiolabeling conditions were optimized and then applied to an automated radiolabeling process, affording products with high specific activity (>112 GBq/μmol). Dynamic rat PET study demonstrated the specific binding of [18F]FBPC01 and [18F]FBPC03 to D3R in the brain ventricles and the pituitary gland. Validated by dynamic PET data analysis, biodistribution study, and metabolism analysis, [18F]FBPC03 exhibited the highest PET signal-to-noise ratio, good D3R-specific binding in the brain ventricles and pituitary gland of rats with few off-target binding, negligible defluorination, and stable brain metabolism, which indicated that [18F]FBPC03 was a promising D3R radioligand.
Collapse
Affiliation(s)
- Ge Zhang
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 10049, China
| | - Shilun Zhao
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 10049, China
| | - Zuoquan Zhao
- Theranostics and Translational Research Center, Institute of Clinical Medicine, Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Chenhao Jia
- Theranostics and Translational Research Center, Institute of Clinical Medicine, Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Yuxuan Zhang
- Jinan Laboratory of Applied Nuclear Science, Jinan 251401, China
| | - Jingquan Xue
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- Jinan Laboratory of Applied Nuclear Science, Jinan 251401, China
| | - Yu Liu
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 10049, China
- Jinan Laboratory of Applied Nuclear Science, Jinan 251401, China
| | - Wenjiang Yang
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- Jinan Laboratory of Applied Nuclear Science, Jinan 251401, China
| |
Collapse
|
2
|
Hausrat TJ, Vogl C, Neef J, Schweizer M, Yee BK, Strenzke N, Kneussel M. Monoallelic loss of the F-actin-binding protein radixin facilitates startle reactivity and pre-pulse inhibition in mice. Front Cell Dev Biol 2022; 10:987691. [DOI: 10.3389/fcell.2022.987691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/11/2022] [Indexed: 11/29/2022] Open
Abstract
Hearing impairment is one of the most common disorders with a global burden and increasing prevalence in an ever-aging population. Previous research has largely focused on peripheral sensory perception, while the brain circuits of auditory processing and integration remain poorly understood. Mutations in the rdx gene, encoding the F-actin binding protein radixin (Rdx), can induce hearing loss in human patients and homozygous depletion of Rdx causes deafness in mice. However, the precise physiological function of Rdx in hearing and auditory information processing is still ill-defined. Here, we investigated consequences of rdx monoallelic loss in the mouse. Unlike the homozygous (−/−) rdx knockout, which is characterized by the degeneration of actin-based stereocilia and subsequent hearing loss, our analysis of heterozygous (+/−) mutants has revealed a different phenotype. Specifically, monoallelic loss of rdx potentiated the startle reflex in response to acoustic stimulation of increasing intensities, suggesting a gain of function relative to wildtype littermates. The monoallelic loss of the rdx gene also facilitated pre-pulse inhibition of the acoustic startle reflex induced by weak auditory pre-pulse stimuli, indicating a modification to the circuit underlying sensorimotor gating of auditory input. However, the auditory brainstem response (ABR)-based hearing thresholds revealed a mild impairment in peripheral sound perception in rdx (+/-) mice, suggesting minor aberration of stereocilia structural integrity. Taken together, our data suggest a critical role of Rdx in the top-down processing and/or integration of auditory signals, and therefore a novel perspective to uncover further Rdx-mediated mechanisms in central auditory information processing.
Collapse
|
3
|
Evolutionary conservation and functional impact of dopamine D2 receptor. Neurosci Lett 2020; 733:135081. [DOI: 10.1016/j.neulet.2020.135081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 05/18/2020] [Accepted: 05/21/2020] [Indexed: 11/19/2022]
|
4
|
Eom TY, Han SB, Kim J, Blundon JA, Wang YD, Yu J, Anderson K, Kaminski DB, Sakurada SM, Pruett-Miller SM, Horner L, Wagner B, Robinson CG, Eicholtz M, Rose DC, Zakharenko SS. Schizophrenia-related microdeletion causes defective ciliary motility and brain ventricle enlargement via microRNA-dependent mechanisms in mice. Nat Commun 2020; 11:912. [PMID: 32060266 PMCID: PMC7021727 DOI: 10.1038/s41467-020-14628-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 01/22/2020] [Indexed: 01/11/2023] Open
Abstract
Progressive ventricular enlargement, a key feature of several neurologic and psychiatric diseases, is mediated by unknown mechanisms. Here, using murine models of 22q11-deletion syndrome (22q11DS), which is associated with schizophrenia in humans, we found progressive enlargement of lateral and third ventricles and deceleration of ciliary beating on ependymal cells lining the ventricular walls. The cilia-beating deficit observed in brain slices and in vivo is caused by elevated levels of dopamine receptors (Drd1), which are expressed in motile cilia. Haploinsufficiency of the microRNA-processing gene Dgcr8 results in Drd1 elevation, which is brought about by a reduction in Drd1-targeting microRNAs miR-382-3p and miR-674-3p. Replenishing either microRNA in 22q11DS mice normalizes ciliary beating and ventricular size. Knocking down the microRNAs or deleting their seed sites on Drd1 mimicked the cilia-beating and ventricular deficits. These results suggest that the Dgcr8-miR-382-3p/miR-674-3p-Drd1 mechanism contributes to deceleration of ciliary motility and age-dependent ventricular enlargement in 22q11DS.
Collapse
Affiliation(s)
- Tae-Yeon Eom
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Seung Baek Han
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jieun Kim
- Center for In Vivo Imaging and Therapeutics, Cellular Imaging Shared Resource, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jay A Blundon
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Yong-Dong Wang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jing Yu
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Kara Anderson
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Damian B Kaminski
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Sadie Miki Sakurada
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Shondra M Pruett-Miller
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Linda Horner
- Cellular Imaging Shared Resource, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Ben Wagner
- Cellular Imaging Shared Resource, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Camenzind G Robinson
- Cellular Imaging Shared Resource, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Matthew Eicholtz
- Electrical and Electronics Systems Research Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Department of Computer Science, Florida Southern College, Lakeland, FL, 33801, USA
| | - Derek C Rose
- Electrical and Electronics Systems Research Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Stanislav S Zakharenko
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
5
|
Liu M, Ren L, Zhong X, Ding Y, Liu T, Liu Z, Yang X, Cui L, Yang L, Fan Y, Liu Y, Zhang Y. D2-Like Receptors Mediate Dopamine-Inhibited Insulin Secretion via Ion Channels in Rat Pancreatic β-Cells. Front Endocrinol (Lausanne) 2020; 11:152. [PMID: 32318020 PMCID: PMC7154177 DOI: 10.3389/fendo.2020.00152] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 03/04/2020] [Indexed: 11/25/2022] Open
Abstract
Dopamine (DA) has a vital role in the central nervous system and also modulates lipid and glucose metabolism. The present study aimed to investigate the effect of dopamine on insulin secretion and the underlying mechanisms in rat pancreatic β-cells. Data from the radioimmunoassay indicated that dopamine inhibited insulin secretion in a glucose- and dose-dependent manner. This inhibitory effect of dopamine was mediated mainly by D2-like receptors, but not D1-like receptors. Whole-cell patch-clamp recordings showed that dopamine decreased voltage-dependent Ca2+ channel currents, which could be reversed by inhibition of the D2-like receptor. Dopamine increased voltage-dependent potassium (KV) channel currents and shortened action potential duration, which was antagonized by inhibition of D2-like receptors. Further experiments showed that D2-like receptor activation by quinpirole increased KV channel currents. In addition, using calcium imaging techniques, we found that dopamine reduced intracellular Ca2+ concentration, which was also reversed by D2-like receptor antagonists. Similarly, quinpirole was found to decrease intracellular Ca2+ levels. Taken together, these findings demonstrate that dopamine inhibits insulin secretion mainly by acting on D2-like receptors, inhibiting Ca2+ channels, and activating Kv channels. This process results in shortened action potential duration and decreased intracellular Ca2+ levels in β-cells. This work offers new insights into a glucose-dependent mechanism whereby dopamine regulates insulin secretion.
Collapse
Affiliation(s)
- Mengmeng Liu
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Lele Ren
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Xiangqin Zhong
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Yaqin Ding
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Tao Liu
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Zhihong Liu
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Xiaohua Yang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Lijuan Cui
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Lijun Yang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Yanying Fan
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Yunfeng Liu
- Department of Endocrinology, The First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, China
- *Correspondence: Yunfeng Liu
| | - Yi Zhang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
- Yi Zhang
| |
Collapse
|
6
|
Graham MD, Gardner Gregory J, Hussain D, Brake WG, Pfaus JG. Ovarian steroids alter dopamine receptor populations in the medial preoptic area of female rats: implications for sexual motivation, desire, and behaviour. Eur J Neurosci 2016; 42:3138-48. [PMID: 26536143 DOI: 10.1111/ejn.13121] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Revised: 10/19/2015] [Accepted: 10/29/2015] [Indexed: 12/01/2022]
Abstract
Dopamine (DA) transmission in the medial preoptic area (mPOA) plays a critical role in the control of appetitive sexual behaviour in the female rat. We have shown previously that a DA D1 receptor (D1R)-mediated excitatory state appears to occur in females primed with estradiol benzoate (EB) and progesterone (P), whereas a DA D2 receptor (D2R)-mediated inhibitory state appears to occur in females primed only with EB. The present experiment employed three techniques to better understand what changes occur to DA receptors (DARs) in the mPOA under different hormonal profiles. Ovariectomized females were randomly assigned to one of three steroid treatment groups: EB + P (10 and 500 μg, respectively), EB + Oil, or the control (Oil + Oil), with hormone injections administered at 48 and 4 h prior to euthanizing. First, the number of neurons in the mPOA that contained D1R or D2R was assessed using immunohistochemistry. Second, the mPOA and two control areas (the prelimbic cortex and caudate putamen) were analysed for DAR protein levels using western blot, and DAR functional binding levels using autoradiography. Ovarian steroid hormones affected the two DAR subtypes in opposite ways in the mPOA. All three techniques supported previous behavioural findings that females primed with EB have a lower D1R : D2R ratio, and thus a D2R-mediated system, and females primed with EB + P have a higher D1R : D2R ratio, and thus a D1R-mediated system. This provides strong evidence for a DA-driven pathway of female sexual motivation, desire, and behaviour that is modified by different hormone priming regimens.
Collapse
Affiliation(s)
- M Dean Graham
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, 7141 Sherbrooke W., Montréal, QC, Canada, H4B 1R6
| | - James Gardner Gregory
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, 7141 Sherbrooke W., Montréal, QC, Canada, H4B 1R6
| | - Dema Hussain
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, 7141 Sherbrooke W., Montréal, QC, Canada, H4B 1R6
| | - Wayne G Brake
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, 7141 Sherbrooke W., Montréal, QC, Canada, H4B 1R6
| | - James G Pfaus
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, 7141 Sherbrooke W., Montréal, QC, Canada, H4B 1R6
| |
Collapse
|
7
|
Nebel N, Maschauer S, Kuwert T, Hocke C, Prante O. In Vitro and In Vivo Characterization of Selected Fluorine-18 Labeled Radioligands for PET Imaging of the Dopamine D3 Receptor. Molecules 2016; 21:molecules21091144. [PMID: 27589704 PMCID: PMC6272905 DOI: 10.3390/molecules21091144] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 08/25/2016] [Accepted: 08/26/2016] [Indexed: 02/07/2023] Open
Abstract
Cerebral dopamine D3 receptors seem to play a key role in the control of drug-seeking behavior. The imaging of their regional density with positron emission tomography (PET) could thus help in the exploration of the molecular basis of drug addiction. A fluorine-18 labeled D3 subtype selective radioligand would be beneficial for this purpose; however, as yet, there is no such tracer available. The three candidates [18F]1, [18F]2a and [18F]2b were chosen for in vitro and in vivo characterization as radioligands suitable for selective PET imaging of the D3 receptor. Their evaluation included the analysis of radiometabolites and the assessment of non-specific binding by in vitro rat brain autoradiography. While [18F]1 and [18F]2a revealed high non-specific uptake in in vitro rat brain autoradiography, the D3 receptor density was successfully determined on rat brain sections (n = 4) with the candidate [18F]2b offering a Bmax of 20.38 ± 2.67 pmol/g for the islands of Calleja, 19.54 ± 1.85 pmol/g for the nucleus accumbens and 16.58 ± 1.63 pmol/g for the caudate putamen. In PET imaging studies, the carboxamide 1 revealed low signal/background ratios in the rat brain and relatively low uptake in the pituitary gland, while the azocarboxamides [18F]2a and [18F]2b showed binding that was blockable by the D3 receptor ligand BP897 in the ventricular system and the pituitary gland in PET imaging studies in living rats.
Collapse
Affiliation(s)
- Natascha Nebel
- Molecular Imaging and Radiochemistry, Department of Nuclear Medicine, Friedrich Alexander University (FAU), Erlangen 91054, Germany.
| | - Simone Maschauer
- Molecular Imaging and Radiochemistry, Department of Nuclear Medicine, Friedrich Alexander University (FAU), Erlangen 91054, Germany.
| | - Torsten Kuwert
- Molecular Imaging and Radiochemistry, Department of Nuclear Medicine, Friedrich Alexander University (FAU), Erlangen 91054, Germany.
| | - Carsten Hocke
- Molecular Imaging and Radiochemistry, Department of Nuclear Medicine, Friedrich Alexander University (FAU), Erlangen 91054, Germany.
| | - Olaf Prante
- Molecular Imaging and Radiochemistry, Department of Nuclear Medicine, Friedrich Alexander University (FAU), Erlangen 91054, Germany.
| |
Collapse
|
8
|
Jiménez AJ, Domínguez-Pinos MD, Guerra MM, Fernández-Llebrez P, Pérez-Fígares JM. Structure and function of the ependymal barrier and diseases associated with ependyma disruption. Tissue Barriers 2014; 2:e28426. [PMID: 25045600 PMCID: PMC4091052 DOI: 10.4161/tisb.28426] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 03/03/2014] [Accepted: 03/03/2014] [Indexed: 12/20/2022] Open
Abstract
The neuroepithelium is a germinal epithelium containing progenitor cells that produce almost all of the central nervous system cells, including the ependyma. The neuroepithelium and ependyma constitute barriers containing polarized cells covering the embryonic or mature brain ventricles, respectively; therefore, they separate the cerebrospinal fluid that fills cavities from the developing or mature brain parenchyma. As barriers, the neuroepithelium and ependyma play key roles in the central nervous system development processes and physiology. These roles depend on mechanisms related to cell polarity, sensory primary cilia, motile cilia, tight junctions, adherens junctions and gap junctions, machinery for endocytosis and molecule secretion, and water channels. Here, the role of both barriers related to the development of diseases, such as neural tube defects, ciliary dyskinesia, and hydrocephalus, is reviewed.
Collapse
Affiliation(s)
- Antonio J Jiménez
- Department of Cell Biology, Genetics, and Physiology; University of Malaga; Malaga, Spain
| | | | - María M Guerra
- Institute of Anatomy, Histology, and Pathology; Austral University of Chile; Valdivia, Chile
| | | | | |
Collapse
|
9
|
Hocke C, Cumming P, Maschauer S, Kuwert T, Gmeiner P, Prante O. Biodistribution studies of two 18F-labeled pyridinylphenyl amides as subtype selective radioligands for the dopamine D3 receptor. Nucl Med Biol 2013; 41:223-8. [PMID: 24480780 DOI: 10.1016/j.nucmedbio.2013.12.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 12/03/2013] [Accepted: 12/12/2013] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Dopamine D3 receptors are implicated in various neuropsychiatric diseases, drug abuse and alcoholism, but specific agents for D3 molecular imaging are lacking. We evaluated two in vitro selective fluorine-18-labeled radioligand candidates ([(18)F]5 and [(18)F]6) for positron emission tomography (PET) imaging of D3 receptor availability in the brain. METHODS Biodistribution was evaluated in Sprague-Dawley rats using ex vivo autoradiography and small-animal PET. Protein binding studies were conducted in human plasma and cerebrospinal fluid. RESULTS [(18)F]5 showed rapid blood-brain barrier penetration and fast washout after intravenous injection, whereas the rat brain penetration of [(18)F]6 was lower. The total distribution volume (VT) of [(18)F]5 was 20-26 mL g(-1) throughout brain. Co-injection with the D3 antagonist BP897 resulted in globally increased cerebral washout of [(18)F]5 and [(18)F]6, but SUV analysis and parametric mapping of binding potential (BPND) relative to the cerebellum did not reveal specific binding of either ligand in D3-rich brain regions, i.e. the ventral striatum. However, there was substantial displaceable binding of [(18)F]5, and to a lesser extent [(18)F]6, in the pituitary. CONCLUSION These radioligands reveal dopamine D3 receptors in the pituitary, but are not suitable for PET imaging of in brain, possibly due to low specific signal relative to the globally high VT.
Collapse
Affiliation(s)
- Carsten Hocke
- Molecular Imaging and Radiochemistry, Nuclear Medicine Clinic, Friedrich-Alexander University, Schwabachanlage 6, D-91054 Erlangen, Germany.
| | - Paul Cumming
- Molecular Imaging and Radiochemistry, Nuclear Medicine Clinic, Friedrich-Alexander University, Schwabachanlage 6, D-91054 Erlangen, Germany
| | - Simone Maschauer
- Molecular Imaging and Radiochemistry, Nuclear Medicine Clinic, Friedrich-Alexander University, Schwabachanlage 6, D-91054 Erlangen, Germany
| | - Torsten Kuwert
- Molecular Imaging and Radiochemistry, Nuclear Medicine Clinic, Friedrich-Alexander University, Schwabachanlage 6, D-91054 Erlangen, Germany
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich-Alexander University, Schuhstrasse 19, D-91052 Erlangen, Germany
| | - Olaf Prante
- Molecular Imaging and Radiochemistry, Nuclear Medicine Clinic, Friedrich-Alexander University, Schwabachanlage 6, D-91054 Erlangen, Germany
| |
Collapse
|
10
|
Colucci M, Cervio M, Faniglione M, De Angelis S, Pajoro M, Levandis G, Tassorelli C, Blandini F, Feletti F, De Giorgio R, Dellabianca A, Tonini S, Tonini M. Intestinal dysmotility and enteric neurochemical changes in a Parkinson's disease rat model. Auton Neurosci 2012; 169:77-86. [PMID: 22608184 DOI: 10.1016/j.autneu.2012.04.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Revised: 04/20/2012] [Accepted: 04/24/2012] [Indexed: 01/28/2023]
Abstract
Gastrointestinal disorders, constipation in particular, are the most common non-motor dysfunctions affecting Parkinson's disease (PD) patients. We have previously reported that rats bearing unilateral nigrostriatal lesion caused by 6-hydroxydopamine (6-OHDA) stereotaxic injection develop severe constipation together with a region-specific decrease of neuronal nitric oxide synthase (nNOS) in enteric neurons of the lower intestinal tract. Here, we extend these observations on other enteric neuronal subpopulations, investigating also the propulsive activity of isolated colonic specimens. Four weeks post 6-OHDA injection, lesioned rats showed a significant increase of vasoactive intestinal polypeptide (VIP) concomitant with the reduced expression of nNOS in the myenteric plexus of distal ileum and proximal colon; in particular VIP increased in a subpopulation of neurons actively expressing nNOS. On the other hand, choline acetyltransferase (ChAT) was not modified in any of the intestinal segments analyzed. Interestingly, we found a reduced expression of dopamine receptor type 2 (D2R) in proximal (-66.8%) and distal (-54.5%) colon, together with reduced peristalsis efficiency (decrease in intraluminal pressure and frequency of peristaltic events) in the 6-OHDA-lesioned rats. The selective depletion of dopaminergic nigrostriatal neurons is associated with changes in the expression of enteric inhibitory neurotransmitters, as well as of the D2R in intestinal specific regions. Moreover, 6-OHDA-lesioned rats demonstrated altered colon propulsive activity referable to the D2R decrease. Our findings unveil subtle mechanisms underlying the enteric neurochemical plasticity events evoked by disruption of the normal brain-gut cross-talk, giving a peculiar point of view on the pathophysiology of the severe constipation that frequently affects PD patients.
Collapse
Affiliation(s)
- Mario Colucci
- Department of Legal Medicine, Forensic Sciences and Pharmaco-Toxicology, University of Pavia, Pavia, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Czarnecka J, Roszek K, Jabłoński A, Smoliński DJ, Komoszyński M. Some aspects of purinergic signaling in the ventricular system of porcine brain. Acta Vet Scand 2011; 53:54. [PMID: 21995888 PMCID: PMC3213016 DOI: 10.1186/1751-0147-53-54] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Accepted: 10/13/2011] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Numerous signaling pathways function in the brain ventricular system, including the most important - GABAergic, glutaminergic and dopaminergic signaling. Purinergic signalization system - comprising nucleotide receptors, nucleotidases, ATP and adenosine and their degradation products - are also present in the brain. However, the precise role of nucleotide signalling pathway in the ventricular system has been not elucidated so far. The aim of our research was the identification of all three elements of purinergic signaling pathway in the porcine brain ventricular system. RESULTS Besides nucleotide receptors on the ependymocytes surface, we studied purines and pyrimidines in the CSF, including mechanisms of nucleotide signaling in the swine model (Sus scrofa domestica). The results indicate presence of G proteins coupled P2Y receptors on ependymocytes and also P2X receptors engaged in fast signal transmission. Additionally we found in CSF nucleotides and adenosine in the concentration sufficient to P receptors activation. These extracellular nucleotides are metabolised by adenylate kinase and nucleotidases from at least two families: NTPDases and NPPases. A low activity of these nucleotide metabolising enzymes maintains nucleotides concentration in ventricular system in micromolar range. ATP is degraded into adenosine and inosine. CONCLUSIONS Our results confirm the thesis about cross-talking between brain and ventricular system functioning in physiological as well as pathological conditions. The close interaction of brain and ventricular system may elicit changes in qualitative and quantitative composition of purines and pyrimidines in CSF. These changes can be dependent on the physiological state of brain, including pathological processes in CNS.
Collapse
|
12
|
Miles ED, Xue Y, Strickland JR, Boling JA, Matthews JC. Ergopeptines bromocriptine and ergovaline and the dopamine type-2 receptor inhibitor domperidone inhibit bovine equilibrative nucleoside transporter 1-like activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:9691-9699. [PMID: 21790119 DOI: 10.1021/jf201713m] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Neotyphodium coenophialum-infected tall fescue contains ergopeptines. Except for interactions with biogenic amine receptors (e.g., dopamine type-2 receptor, D2R), little is known about how ergopeptines affect animal metabolism. The effect of ergopeptines on bovine nucleoside transporters (NT) was evaluated using Madin-Darby bovine kidney (MDBK) cells. Equilibrative NT1 (ENT1)-like activity accounted for 94% of total NT activity. Inhibitory competition (IC(50)) experiments found that this activity was inhibited by both bromocriptine (a synthetic model ergopeptine and D2R agonist) and ergovaline (a predominant ergopeptine of tall fescue). Kinetic inhibition analysis indicated that bromocriptine inhibited ENT1-like activity through a competitive and noncompetitive mechanism. Domperidone (a D2R antagonist) inhibited ENT1 activity more in the presence than in the absence of bromocriptine and displayed an IC(50) value lower than that of bromocriptine or ergovaline, suggesting that inhibition was not through D2R-mediated events. These novel mechanistic findings imply that cattle consuming endophyte-infected tall fescue have reduced ENT1 activity and, thus, impaired nucleoside metabolism.
Collapse
Affiliation(s)
- Edwena D Miles
- Department of Animal and Food Sciences, University of Kentucky, Lexington, Kentucky 40546, United States
| | | | | | | | | |
Collapse
|
13
|
Katow H, Suyemitsu T, Ooka S, Yaguchi J, Jin-Nai T, Kuwahara I, Katow T, Yaguchi S, Abe H. Development of a dopaminergic system in sea urchin embryos and larvae. ACTA ACUST UNITED AC 2010; 213:2808-19. [PMID: 20675551 DOI: 10.1242/jeb.042150] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The mechanisms that regulate the organized swimming movements of sea urchin blastulae are largely unknown. Using immunohistochemistry, we found that dopamine (DA) and the Hemicentrotus pulcherrimus homolog of the dopamine receptor D1 (Hp-DRD1) were strongly co-localized in 1-2 microm diameter granules (DA/DRD1 granules). Furthermore, these granules were arranged across the entire surface of blastulae as they developed locomotory cilia before hatching, and remained evident until metamorphosis. DA/DRD1 granules were associated with the basal bodies of cilia, and were densely packed in the ciliary band by the eight-arm pluteus stage. The transcription of Hp-DRD1 was detected from the unfertilized egg stage throughout the period of larval development. Treatment with S-(-)-carbidopa, an inhibitor of aromatic-l-amino acid decarboxylase, for 20-24 h (i) from soon after insemination until the 20 h post-fertilization (20 hpf) early gastrula stage and (ii) from the 24 hpf prism larva stage until the 48 hpf pluteus stage, inhibited the formation of DA granules and decreased the swimming activity of blastulae and larvae in a dose-dependent manner. Exogenous DA rescued these deprivations. The formation of DRD1 granules was not affected. However, in 48 hpf plutei, the serotonergic nervous system (5HT-NS) developed normally. Morpholino antisense oligonucleotides directed against Hp-DRD1 inhibited the formation of DRD1 granules and the swimming of larvae, but did not disturb the formation of DA granules. Thus, the formation of DRD1 granules and DA granules occurs chronologically closely but mechanically independently and the swimming of blastulae is regulated by the dopaminergic system. In plutei, the 5HT-NS closely surrounded the ciliary bands, suggesting the functional collaboration with the dopaminergic system in larvae.
Collapse
Affiliation(s)
- Hideki Katow
- Research Center for Marine Biology, Tohoku University, Asamushi, Aomori, Aomori, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Höfling SB, Maschauer S, Hübner H, Gmeiner P, Wester HJ, Prante O, Heinrich MR. Synthesis, biological evaluation and radiolabelling by 18F-fluoroarylation of a dopamine D3-selective ligand as prospective imaging probe for PET. Bioorg Med Chem Lett 2010; 20:6933-7. [PMID: 21030255 DOI: 10.1016/j.bmcl.2010.09.142] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 09/27/2010] [Accepted: 09/28/2010] [Indexed: 12/28/2022]
Abstract
Radical (18)F-fluoroarylation with fluorine-18-labelled arenediazonium chlorides has been successfully applied to the radiochemical synthesis of the dopamine D(3)-selective ligand SH 317 ([(18)F]8). SH 317 has been evaluated as a new PET ligand candidate by in vivo experiments.
Collapse
Affiliation(s)
- S B Höfling
- Department für Chemie und Pharmazie, Pharmazeutische Chemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | | | | | | | |
Collapse
|
15
|
Del Bigio MR. Ependymal cells: biology and pathology. Acta Neuropathol 2010; 119:55-73. [PMID: 20024659 DOI: 10.1007/s00401-009-0624-y] [Citation(s) in RCA: 255] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 12/03/2009] [Accepted: 12/04/2009] [Indexed: 11/28/2022]
Abstract
The literature was reviewed to summarize the current understanding of the role of ciliated ependymal cells in the mammalian brain. Previous reviews were summarized. Publications from the past 10 years highlight interactions between ependymal cells and the subventricular zone and the possible role of restricted ependymal populations in neurogenesis. Ependymal cells provide trophic support and possibly metabolic support for progenitor cells. Channel proteins such as aquaporins may be important for determining water fluxes at the ventricle wall. The junctional and anchoring proteins are now fairly well understood, as are proteins related to cilia function. Defects in ependymal adhesion and cilia function can cause hydrocephalus through several different mechanisms, one possibility being loss of patency of the cerebral aqueduct. Ependymal cells are susceptible to infection by a wide range of common viruses; while they may act as a line of first defense, they eventually succumb to repeated attacks in long-lived organisms. Ciliated ependymal cells are almost certainly important during brain development. However, the widespread absence of ependymal cells from the adult human lateral ventricles suggests that they may have only regionally restricted value in the mature brain of large size.
Collapse
Affiliation(s)
- Marc R Del Bigio
- Department of Pathology, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
16
|
Yanes O, Woo HK, Northen TR, Oppenheimer SR, Shriver L, Apon J, Estrada MN, Potchoiba MJ, Steenwyk R, Manchester M, Siuzdak G. Nanostructure initiator mass spectrometry: tissue imaging and direct biofluid analysis. Anal Chem 2009; 81:2969-75. [PMID: 19301920 PMCID: PMC2676195 DOI: 10.1021/ac802576q] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nanostructure initiator mass spectrometry (NIMS) is a recently introduced matrix-free desorption/ionization platform that requires minimal sample preparation. Its application to xenobiotics and endogenous metabolites in tissues is demonstrated, where clozapine and N-desmethylclozapine were observed from mouse and rat brain sections. It has also been applied to direct biofluid analysis where ketamine and norketamine were observed from plasma and urine. Detection of xenobiotics from biofluids was made even more effective using a novel NIMS on-surface extraction method taking advantage of the hydrophobic nature of the initiator. Linear response and limit of detection were also evaluated for xenobiotics such as methamphetamine, codeine, alprazolam, and morphine, revealing that NIMS can be used for quantitative analysis. Overall, our results demonstrate the capacity of NIMS to perform sensitive, simple, and rapid analyses from highly complex biological tissues and fluids.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Gary Siuzdak
- To whom correspondence should be addressed. E-mail: .
| |
Collapse
|