1
|
Varghese SM, Patel S, Nandan A, Jose A, Ghosh S, Sah RK, Menon B, K V A, Chakravarty S. Unraveling the Role of the Blood-Brain Barrier in the Pathophysiology of Depression: Recent Advances and Future Perspectives. Mol Neurobiol 2024; 61:10398-10447. [PMID: 38730081 DOI: 10.1007/s12035-024-04205-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 04/19/2024] [Indexed: 05/12/2024]
Abstract
Depression is a highly prevalent psychological disorder characterized by persistent dysphoria, psychomotor retardation, insomnia, anhedonia, suicidal ideation, and a remarkable decrease in overall well-being. Despite the prevalence of accessible antidepressant therapies, many individuals do not achieve substantial improvement. Understanding the multifactorial pathophysiology and the heterogeneous nature of the disorder could lead the way toward better outcomes. Recent findings have elucidated the substantial impact of compromised blood-brain barrier (BBB) integrity on the manifestation of depression. BBB functions as an indispensable defense mechanism, tightly overseeing the transport of molecules from the periphery to preserve the integrity of the brain parenchyma. The dysfunction of the BBB has been implicated in a multitude of neurological disorders, and its disruption and consequent brain alterations could potentially serve as important factors in the pathogenesis and progression of depression. In this review, we extensively examine the pathophysiological relevance of the BBB and delve into the specific modifications of its components that underlie the complexities of depression. A particular focus has been placed on examining the effects of peripheral inflammation on the BBB in depression and elucidating the intricate interactions between the gut, BBB, and brain. Furthermore, this review encompasses significant updates on the assessment of BBB integrity and permeability, providing a comprehensive overview of the topic. Finally, we outline the therapeutic relevance and strategies based on BBB in depression, including COVID-19-associated BBB disruption and neuropsychiatric implications. Understanding the comprehensive pathogenic cascade of depression is crucial for shaping the trajectory of future research endeavors.
Collapse
Affiliation(s)
- Shamili Mariya Varghese
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682 041, India
| | - Shashikant Patel
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad, Telangana, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Amritasree Nandan
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682 041, India
| | - Anju Jose
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682 041, India
| | - Soumya Ghosh
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad, Telangana, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ranjay Kumar Sah
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682 041, India
| | - Bindu Menon
- Department of Psychiatry, Amrita School of Medicine, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682 041, India
| | - Athira K V
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682 041, India.
| | - Sumana Chakravarty
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad, Telangana, 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
2
|
Wu Y, Lu Y, Kong L, Xie Y, Liu W, Yang A, Xin K, Yan X, Wu L, Liu Y, Zhu Q, Cao Y, Zhou Y, Jiang X, Tang Y, Wu F. Gender differences in plasma S100B levels of patients with major depressive disorder. BMC Psychiatry 2024; 24:387. [PMID: 38783266 PMCID: PMC11112965 DOI: 10.1186/s12888-024-05852-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Low concentrations of S100B have neurotrophic effects and can promote nerve growth and repair, which plays an essential role in the pathophysiological and histopathological alterations of major depressive disorder (MDD) during disease development. Studies have shown that plasma S100B levels are altered in patients with MDD. In this study, we investigated whether the plasma S100B levels in MDD differ between genders. METHODS We studied 235 healthy controls (HCs) (90 males and 145 females) and 185 MDD patients (65 males and 120 females). Plasma S100B levels were detected via multifactor assay. The Mahalanobis distance method was used to detect the outliers of plasma S100B levels in the HC and MDD groups. The Kolmogorov-Smirnov test was used to test the normality of six groups of S100B samples. The Mann-Whitney test and Scheirer-Ray-Hare test were used for the comparison of S100B between diagnoses and genders, and the presence of a relationship between plasma S100B levels and demographic details or clinical traits was assessed using Spearman correlation analysis. RESULTS All individuals in the HC group had plasma S100B levels that were significantly greater than those in the MDD group. In the MDD group, males presented significantly higher plasma S100B levels than females. In the male group, the plasma S100B levels in the HC group were significantly higher than those in the MDD group, while in the female group, no significant difference was found between the HC and MDD groups. In the male MDD subgroup, there was a positive correlation between plasma S100B levels and years of education. In the female MDD subgroup, there were negative correlations between plasma S100B levels and age and suicidal ideation. CONCLUSIONS In summary, plasma S100B levels vary with gender and are decreased in MDD patients, which may be related to pathological alterations in glial cells.
Collapse
Affiliation(s)
- Yifan Wu
- Department of Psychiatry, The First Hospital of China Medical University, 155 Nanjing North Street, 110001, Liaoning, P.R. China
| | - Yihui Lu
- Department of Psychiatry, The First Hospital of China Medical University, 155 Nanjing North Street, 110001, Liaoning, P.R. China
| | - Lingtao Kong
- Department of Psychiatry, The First Hospital of China Medical University, 155 Nanjing North Street, 110001, Liaoning, P.R. China
| | - Yu Xie
- Faculty of Public Health, China Medical University, 110001, Liaoning, P.R. China
| | - Wen Liu
- Department of Psychiatry, The First Hospital of China Medical University, 155 Nanjing North Street, 110001, Liaoning, P.R. China
| | - Anqi Yang
- Department of Psychiatry, The First Hospital of China Medical University, 155 Nanjing North Street, 110001, Liaoning, P.R. China
| | - Kaiqi Xin
- Department of Psychiatry, The First Hospital of China Medical University, 155 Nanjing North Street, 110001, Liaoning, P.R. China
| | - Xintong Yan
- Department of Psychiatry, The First Hospital of China Medical University, 155 Nanjing North Street, 110001, Liaoning, P.R. China
| | - Longhai Wu
- Department of Psychiatry, The First Hospital of China Medical University, 155 Nanjing North Street, 110001, Liaoning, P.R. China
| | - Yilin Liu
- Department of Psychiatry, The First Hospital of China Medical University, 155 Nanjing North Street, 110001, Liaoning, P.R. China
| | - Qianying Zhu
- Department of Psychiatry, The First Hospital of China Medical University, 155 Nanjing North Street, 110001, Liaoning, P.R. China
| | - Yang Cao
- Shenyang Mental Health Center, 110001, Liaoning, P.R. China
| | - Yifang Zhou
- Department of Psychiatry, The First Hospital of China Medical University, 155 Nanjing North Street, 110001, Liaoning, P.R. China
| | - Xiaowei Jiang
- Brain Function Research Section, Department of Radiology, The First Hospital of China Medical University, 110001, Liaoning, P.R. China
| | - Yanqing Tang
- Department of Psychiatry, The First Hospital of China Medical University, 155 Nanjing North Street, 110001, Liaoning, P.R. China
- Department of Geriatric Medicine, The First Hospital of China Medical University, 110001, Liaoning, P.R. China
| | - Feng Wu
- Department of Psychiatry, The First Hospital of China Medical University, 155 Nanjing North Street, 110001, Liaoning, P.R. China.
| |
Collapse
|
3
|
Kozlowski T, Bargiel W, Grabarczyk M, Skibinska M. Peripheral S100B Protein Levels in Five Major Psychiatric Disorders: A Systematic Review. Brain Sci 2023; 13:1334. [PMID: 37759935 PMCID: PMC10527471 DOI: 10.3390/brainsci13091334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/10/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Five major psychiatric disorders: schizophrenia, major depressive disorder, bipolar disorder, autistic spectrum disorder, and attention-deficit/hyperactivity disorder, show a shared genetic background and probably share common pathobiological mechanisms. S100B is a calcium-binding protein widely studied in psychiatric disorders as a potential biomarker. Our systematic review aimed to compare studies on peripheral S100B levels in five major psychiatric disorders with shared genetic backgrounds to reveal whether S100B alterations are disease-specific. EMBASE, Web of Science, and PubMed databases were searched for relevant studies published until the end of July 2023. This study was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-analysis Protocols (PRISMA) guidelines. Overall, 1215 publications were identified, of which 111 full-text articles were included in the systematic review. Study designs are very heterogeneous, performed mostly on small groups of participants at different stages of the disease (first-episode or chronic, drug-free or medicated, in the exacerbation of symptoms or in remission), and various clinical variables are analyzed. Published results are inconsistent; most reported elevated S100B levels across disorders included in the review. Alterations in S100B peripheral levels do not seem to be disease-specific.
Collapse
Affiliation(s)
- Tomasz Kozlowski
- Student’s Research Group “Biology of the Neuron”, Department of Psychiatric Genetics, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Weronika Bargiel
- Student’s Research Group “Biology of the Neuron”, Department of Psychiatric Genetics, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Maksymilian Grabarczyk
- Student’s Research Group “Biology of the Neuron”, Department of Psychiatric Genetics, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Maria Skibinska
- Protein Biomarkers Unit, Department of Psychiatric Genetics, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| |
Collapse
|
4
|
Davidson M, Rashidi N, Nurgali K, Apostolopoulos V. The Role of Tryptophan Metabolites in Neuropsychiatric Disorders. Int J Mol Sci 2022; 23:ijms23179968. [PMID: 36077360 PMCID: PMC9456464 DOI: 10.3390/ijms23179968] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/27/2022] [Accepted: 08/31/2022] [Indexed: 12/20/2022] Open
Abstract
In recent decades, neuropsychiatric disorders such as major depressive disorder, schizophrenia, bipolar, etc., have become a global health concern, causing various detrimental influences on patients. Tryptophan is an important amino acid that plays an indisputable role in several physiological processes, including neuronal function and immunity. Tryptophan’s metabolism process in the human body occurs using different pathways, including the kynurenine and serotonin pathways. Furthermore, other biologically active components, such as serotonin, melatonin, and niacin, are by-products of Tryptophan pathways. Current evidence suggests that a functional imbalance in the synthesis of Tryptophan metabolites causes the appearance of pathophysiologic mechanisms that leads to various neuropsychiatric diseases. This review summarizes the pharmacological influences of tryptophan and its metabolites on the development of neuropsychiatric disorders. In addition, tryptophan and its metabolites quantification following the neurotransmitters precursor are highlighted. Eventually, the efficiency of various biomarkers such as inflammatory, protein, electrophysiological, genetic, and proteomic biomarkers in the diagnosis/treatment of neuropsychiatric disorders was discussed to understand the biomarker application in the detection/treatment of various diseases.
Collapse
Affiliation(s)
- Majid Davidson
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3011, Australia
- Regenerative Medicine and Stem Cells Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
| | - Niloufar Rashidi
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3011, Australia
- Regenerative Medicine and Stem Cells Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3011, Australia
- Regenerative Medicine and Stem Cells Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
- Department of Medicine Western Health, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3011, Australia
- Immunology Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
- Correspondence:
| |
Collapse
|
5
|
Tural U, Irvin MK, Iosifescu DV. Correlation between S100B and severity of depression in MDD: A meta-analysis. World J Biol Psychiatry 2022; 23:456-463. [PMID: 34854356 DOI: 10.1080/15622975.2021.2013042] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Previous studies have demonstrated elevated levels of the S100B protein (located in glial cells) in major depressive disorder (MDD) as compared to healthy controls. However, studies reporting correlation between S100B levels and depression severity have been conflicting. METHODS We investigated, through systematic review and meta-analysis, whether the correlation between S100B levels and depression severity is significant in patients with MDD. Pearson correlation coefficients reported in the individual studies were converted to Fisher's Z scores, then pooled using the random effects model. Meta-regression was used to test modifiers of the effect size. RESULTS Sixteen studies including 658 patients with MDD met eligibility criteria. No publication bias was observed. There was a significant and positive correlation between serum S100B level and depression severity (r = 0.204, z = 2.297, p = 0.022). A meta-regression determined that onset age of MDD and percentage of female participants are significant modifiers of this correlation. A moderate, but non-significant heterogeneity was observed in serum studies (44%). CONCLUSION As many studies have reported significantly increased levels of S100B in MDD compared to controls, this meta-analysis supports the assumption that the increase in S100B correlates with the severity of MDD. Additional studies investigating the precise biological connection between S100B and MDD are indicated.
Collapse
Affiliation(s)
- Umit Tural
- Clinical Research Division, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Molly Kennedy Irvin
- Clinical Research Division, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Dan Vlad Iosifescu
- Clinical Research Division, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA.,Psychiatry Department, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
6
|
Plasma levels of S100B and neurofilament light chain protein in stress-related mental disorders. Sci Rep 2022; 12:8339. [PMID: 35585111 PMCID: PMC9117317 DOI: 10.1038/s41598-022-12287-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/09/2022] [Indexed: 11/29/2022] Open
Abstract
The pathophysiological changes underlying stress-related mental disorders remain unclear. However, research suggests that alterations in astrocytes and neurons may be involved. This study examined potential peripheral markers of such alterations, including S100B and neurofilament light chain (NF-L). We compared plasma levels of S100B and NF-L in patients with chronic stress-induced exhaustion disorder (SED), patients with major depressive disorder (MDD), and healthy controls. We also investigated whether levels of S100B and NF-L correlated with levels of astrocyte-derived extracellular vesicles (EVs that indicate astrocyte activation or apoptosis) and with symptom severity. Only women had measurable levels of S100B. Women with SED had higher plasma levels of S100B than women with MDD (P < 0.001) and healthy controls (P < 0.001). Self-rated symptoms of cognitive failures were positively correlated with levels of S100B (rs = 0.434, P = 0.005) as were depressive symptoms (rs = 0.319, P < 0.001). Plasma levels of astrocyte-derived EVs were correlated with levels of S100B (rs = 0.464, P < 0.001). Plasma levels of NF-L did not differ between the groups and were not correlated with symptom severity or EV levels. Thus, long-term stress without sufficient recovery and SED may be associated with raised plasma levels of S100B, which may be evidence of pathophysiological changes in astrocytes. The findings also support the hypothesis that plasma levels of S100B are associated with cognitive dysfunction.
Collapse
|
7
|
Doney E, Cadoret A, Dion‐Albert L, Lebel M, Menard C. Inflammation-driven brain and gut barrier dysfunction in stress and mood disorders. Eur J Neurosci 2022; 55:2851-2894. [PMID: 33876886 PMCID: PMC9290537 DOI: 10.1111/ejn.15239] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 03/18/2021] [Accepted: 04/12/2021] [Indexed: 02/06/2023]
Abstract
Regulation of emotions is generally associated exclusively with the brain. However, there is evidence that peripheral systems are also involved in mood, stress vulnerability vs. resilience, and emotion-related memory encoding. Prevalence of stress and mood disorders such as major depression, bipolar disorder, and post-traumatic stress disorder is increasing in our modern societies. Unfortunately, 30%-50% of individuals respond poorly to currently available treatments highlighting the need to further investigate emotion-related biology to gain mechanistic insights that could lead to innovative therapies. Here, we provide an overview of inflammation-related mechanisms involved in mood regulation and stress responses discovered using animal models. If clinical studies are available, we discuss translational value of these findings including limitations. Neuroimmune mechanisms of depression and maladaptive stress responses have been receiving increasing attention, and thus, the first part is centered on inflammation and dysregulation of brain and circulating cytokines in stress and mood disorders. Next, recent studies supporting a role for inflammation-driven leakiness of the blood-brain and gut barriers in emotion regulation and mood are highlighted. Stress-induced exacerbated inflammation fragilizes these barriers which become hyperpermeable through loss of integrity and altered biology. At the gut level, this could be associated with dysbiosis, an imbalance in microbial communities, and alteration of the gut-brain axis which is central to production of mood-related neurotransmitter serotonin. Novel therapeutic approaches such as anti-inflammatory drugs, the fast-acting antidepressant ketamine, and probiotics could directly act on the mechanisms described here improving mood disorder-associated symptomatology. Discovery of biomarkers has been a challenging quest in psychiatry, and we end by listing promising targets worth further investigation.
Collapse
Affiliation(s)
- Ellen Doney
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQCCanada
| | - Alice Cadoret
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQCCanada
| | - Laurence Dion‐Albert
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQCCanada
| | - Manon Lebel
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQCCanada
| | - Caroline Menard
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQCCanada
| |
Collapse
|
8
|
Gender differences in the association of depression trajectories with executive and memory functions: Evidence from the longitudinal study of the Survey of Health, Ageing and Retirement in Europe (2004-2017). J Psychiatr Res 2022; 149:177-184. [PMID: 35278782 DOI: 10.1016/j.jpsychires.2022.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/25/2022] [Accepted: 03/04/2022] [Indexed: 11/23/2022]
Abstract
Gender differences in depression trajectories and their effects on cognitive function are poorly understood. This article aims to identify depression trajectories in both genders and further explore the association of depression trajectories with executive and memory functions by gender. A total 3990 participants aged 50 years or older with repeated measurements from waves 1 to 7 (wave 3 excluded) of the Study of the Survey of Health, Ageing and Retirement in Europe (SHARE) were included. Group-based trajectory modeling (GBTM) was conducted to identify the optimal number of depression trajectories. Generalized estimating equation (GEE) models were used to examine the relation of depression trajectories to cognitive function after stratification by gender. Three distinct depression trajectories were identified in both genders, but the patterns of trajectories among genders were nonidentical. The trajectories of depression in males were characterized by non-low, moderate, persistent-depressive symptoms but with an unstable trend, while in females, they were characterized by non-low, moderate, persistent-depressive symptoms and with a worsening trend. The prevalence of persistent high depression in women (20.08%) was higher than that in men (3.13%). Moderate and persistent high depression trajectories were negatively associated with episodic memory (β = -0.53 and -0.72, respectively, p < 0.001) and verbal fluency in females (β = -0.96 and -1.47, p=0.01 and < 0.001, respectively). Older women had a greater frequency of developing depression than older men. Gender differences in depression trajectories existed. Moderate and persistent high depression trajectories exerted a negative effect on some domains of cognitive impairment only in females.
Collapse
|
9
|
Dion-Albert L, Bandeira Binder L, Daigle B, Hong-Minh A, Lebel M, Menard C. Sex differences in the blood-brain barrier: Implications for mental health. Front Neuroendocrinol 2022; 65:100989. [PMID: 35271863 DOI: 10.1016/j.yfrne.2022.100989] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/07/2022] [Accepted: 02/19/2022] [Indexed: 12/13/2022]
Abstract
Prevalence of mental disorders, including major depressive disorder (MDD), bipolar disorder (BD) and schizophrenia (SZ) are increasing at alarming rates in our societies. Growing evidence points toward major sex differences in these conditions, and high rates of treatment resistance support the need to consider novel biological mechanisms outside of neuronal function to gain mechanistic insights that could lead to innovative therapies. Blood-brain barrier alterations have been reported in MDD, BD and SZ. Here, we provide an overview of sex-specific immune, endocrine, vascular and transcriptional-mediated changes that could affect neurovascular integrity and possibly contribute to the pathogenesis of mental disorders. We also identify pitfalls in current literature and highlight promising vascular biomarkers. Better understanding of how these adaptations can contribute to mental health status is essential not only in the context of MDD, BD and SZ but also cardiovascular diseases and stroke which are associated with higher prevalence of these conditions.
Collapse
Affiliation(s)
- Laurence Dion-Albert
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Quebec City, Canada
| | - Luisa Bandeira Binder
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Quebec City, Canada
| | - Beatrice Daigle
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Quebec City, Canada
| | - Amandine Hong-Minh
- Smurfit Institute of Genetics, Trinity College Dublin, Lincoln Place Gate, Dublin 2, Ireland
| | - Manon Lebel
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Quebec City, Canada
| | - Caroline Menard
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Quebec City, Canada.
| |
Collapse
|
10
|
Rajewska-Rager A, Dmitrzak-Weglarz M, Kapelski P, Lepczynska N, Pawlak J, Twarowska-Hauser J, Skibinska M. Longitudinal assessment of S100B serum levels and clinical factors in youth patients with mood disorders. Sci Rep 2021; 11:11973. [PMID: 34099858 PMCID: PMC8184924 DOI: 10.1038/s41598-021-91577-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 05/25/2021] [Indexed: 11/25/2022] Open
Abstract
Mood disorders have been discussed as being in relation to glial pathology. S100B is a calcium-binding protein, and a marker of glial dysfunctions. Although alterations in the S100B expression may play a role in various central nervous system diseases, there are no studies on the potential role of S100B in mood disorders in adolescents and young adults . In a prospective two-year follow-up study, peripheral levels of S100B were investigated in 79 adolescent/young adult patients (aged 14–24 years), diagnosed with mood disorders and compared with 31 healthy control subjects. A comprehensive clinical interview was conducted which focused on clinical symptoms and diagnosis change. The diagnosis was established and verified at each control visit. Serum S100B concentrations were determined. We detected: lower S100B levels in medicated patients, compared with those who were drug-free, and healthy controls; higher S100B levels in a depressed group with a family history of affective disorder; correlations between age and medication status; sex-dependent differences in S100B levels; and lack a of correlation between the severity of depressive or hypo/manic symptoms. The results of our study indicate that S100B might be a trait-dependent rather than a state-dependent marker. Due to the lack of such studies in the youth population, further research should be performed. A relatively small sample size, a lack of exact age-matched control group, a high drop-out rate.
Collapse
Affiliation(s)
- Aleksandra Rajewska-Rager
- Department of Psychiatric Genetics, Chair of Psychiatry, Poznan University of Medical Sciences, Rokietnicka 8, 60-806, Poznan, Poland
| | - Monika Dmitrzak-Weglarz
- Department of Psychiatric Genetics, Chair of Psychiatry, Poznan University of Medical Sciences, Rokietnicka 8, 60-806, Poznan, Poland
| | - Pawel Kapelski
- Department of Psychiatric Genetics, Chair of Psychiatry, Poznan University of Medical Sciences, Rokietnicka 8, 60-806, Poznan, Poland
| | - Natalia Lepczynska
- Department of Child and Adolescent Psychiatry, Karol Jonscher Clinical Hospital, Poznan University of Medical Sciences, Szpitalna 27/33 St, 60-572, Poznań, Poland
| | - Joanna Pawlak
- Department of Psychiatric Genetics, Chair of Psychiatry, Poznan University of Medical Sciences, Rokietnicka 8, 60-806, Poznan, Poland
| | - Joanna Twarowska-Hauser
- Department of Psychiatric Genetics, Chair of Psychiatry, Poznan University of Medical Sciences, Rokietnicka 8, 60-806, Poznan, Poland
| | - Maria Skibinska
- Department of Psychiatric Genetics, Chair of Psychiatry, Poznan University of Medical Sciences, Rokietnicka 8, 60-806, Poznan, Poland.
| |
Collapse
|
11
|
Güleş E, Iosifescu DV, Tural Ü. Plasma Neuronal and Glial Markers and Anterior Cingulate Metabolite Levels in Major Depressive Disorder: A Pilot Study. Neuropsychobiology 2021; 79:214-221. [PMID: 32045918 DOI: 10.1159/000505782] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/05/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Neuroglial functions may be deteriorated in major depressive disorder (MDD). OBJECTIVE To evaluate the markers of glial and neuronal cell turnover and to explore their associations with brain metabolites. METHODS In 10 participants with MDD and 10 healthy controls (HC) we investigated neuronal and glial plasma markers (the neuron-specific enolase, NSE; and S100beta, S100B) and brain metabolites (N-acetyl aspartate, NAA; total choline, Cho; and total creatine, Cr). Blood was collected for NSE and S100B. NAA, Cho, and Cr metabolite levels were measured in the anterior cingulate cortex (ACC) with proton magnetic resonance spectroscopy (1H-MRS) at 3T. RESULTS NSE and S100B levels were significantly higher in MDD subjects than in HC. The Cr level was significantly higher in MDD subjects than in HC, but the NAA and Cho levels did not differ between groups. NAA/Cr and Cho/Cr ratios were significantly lower in patients with MDD versus HC. S100B was negatively correlated with the Cho levels. CONCLUSIONS These results provide supporting evidence of neuronal and glial distress in MDD. Neuronal viability appears decreased, whereas glial regenerative activity and energy metabolism in the ACC increase in acute major depressive episode. Since low concentrations of S100B have neuroplastic effects, these changes may indicate a possible compensatory mechanism.
Collapse
Affiliation(s)
- Emrah Güleş
- Psychiatry Department, Faculty of Medicine, Kocaeli University, Kocaeli, Turkey
| | - Dan Vlad Iosifescu
- Clinical Research Division, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York, USA.,Psychiatry Department, New York University School of Medicine, New York, New York, USA
| | - Ümit Tural
- Psychiatry Department, Faculty of Medicine, Kocaeli University, Kocaeli, Turkey, .,Clinical Research Division, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York, USA,
| |
Collapse
|
12
|
Carlier A, Boers K, Veerhuis R, Bouckaert F, Sienaert P, Eikelenboom P, Vandenbulcke M, Stek ML, van Exel E, Dols A, Rhebergen D. S100 calcium-binding protein B in older patients with depression treated with electroconvulsive therapy. Psychoneuroendocrinology 2019; 110:104414. [PMID: 31493698 DOI: 10.1016/j.psyneuen.2019.104414] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/19/2019] [Accepted: 08/19/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND Increasing evidence suggests that glial mediated disruption of neuroplasticity contributes to depression. S100 calcium-binding protein B (S100B) promotes neuronal protection in nanomolar concentrations. Studies on its possible role as a treatment outcome marker in affective disorders are limited. Recent evidence suggests a putative role for S100B as a state marker of illness activity as it is found elevated in episodes of major depression. AIM To investigate whether higher S100B is associated with favourable treatment outcome following electroconvulsive therapy (ECT) and to further explore whether S100B reflects a state marker of depression activity. METHODS Serum S100B samples, at baseline and post-ECT and clinical assessments including Montgomery Åsberg Rating scales were collected in 91 older depressed patients (mean age: 73.0 years), referred for ECT. Change in pre- and post-ECT S100B was compared between remitters and nonremitters. Logistic and Cox regression analyses were used to determine whether S100B was associated with remission of depression. RESULTS Patients with S100B levels in the intermediate tertile, that is, between 33 ng/L and 53 ng/L, had higher odds on remission, odds ratio: 5.5 (95%Confidence Interval (CI): 1.55-19.20, p = <0.01), and were more likely to remit from depression over time, hazard ratio: 1.96 (95%CI: 1.04-3.72, p = 0.04), compared with patients in the lowest tertile. There was no significant decrease in levels of S100B after ECT in both remitters and nonremitters. CONCLUSION Our findings demonstrate that patients with higher S100B levels at baseline were more likely to remit from depression suggesting an association between higher S100B and responsiveness to ECT. Next, S100B levels do not decrease after remission, suggesting S100B is not a state marker of depression. S100B is not capable of predicting treatment outcome by itself, further research may combine outcome markers.
Collapse
Affiliation(s)
- Angela Carlier
- GGZ inGeest Specialized Mental Health Care, Department of Old Age Psychiatry, Oldenaller 1, 1081 HJ, Amsterdam, the Netherlands; Amsterdam UMC, Vrije Universiteit Amsterdam, Psychiatry, Amsterdam Public Health Research Institute and Neuroscience Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands.
| | - Kimberly Boers
- Amsterdam UMC, Vrije Universiteit Amsterdam, Psychiatry, Amsterdam Public Health Research Institute and Neuroscience Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands
| | - Robert Veerhuis
- Amsterdam UMC, Vrije Universiteit Amsterdam, Psychiatry, Amsterdam Public Health Research Institute and Neuroscience Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands; Amsterdam UMC, Vrije Universiteit Amsterdam, Clinical Chemistry Department, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands
| | - Filip Bouckaert
- KU Leuven, University Psychiatric Center KU Leuven, Department of Old Age Psychiatry, Leuvensesteenweg 517, 3070 Kortenberg, Belgium; KU Leuven, University Psychiatric Center KU Leuven, Academic Center for ECT and Neuromodulation, Leuvensesteenweg 517, 3070 Kortenberg, Belgium
| | - Pascal Sienaert
- KU Leuven, University Psychiatric Center KU Leuven, Academic Center for ECT and Neuromodulation, Leuvensesteenweg 517, 3070 Kortenberg, Belgium
| | - Piet Eikelenboom
- GGZ inGeest Specialized Mental Health Care, Department of Old Age Psychiatry, Oldenaller 1, 1081 HJ, Amsterdam, the Netherlands
| | - Mathieu Vandenbulcke
- KU Leuven, University Psychiatric Center KU Leuven, Department of Old Age Psychiatry, Leuvensesteenweg 517, 3070 Kortenberg, Belgium
| | - Max L Stek
- GGZ inGeest Specialized Mental Health Care, Department of Old Age Psychiatry, Oldenaller 1, 1081 HJ, Amsterdam, the Netherlands; Amsterdam UMC, Vrije Universiteit Amsterdam, Psychiatry, Amsterdam Public Health Research Institute and Neuroscience Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands
| | - Eric van Exel
- GGZ inGeest Specialized Mental Health Care, Department of Old Age Psychiatry, Oldenaller 1, 1081 HJ, Amsterdam, the Netherlands; Amsterdam UMC, Vrije Universiteit Amsterdam, Psychiatry, Amsterdam Public Health Research Institute and Neuroscience Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands
| | - Annemiek Dols
- GGZ inGeest Specialized Mental Health Care, Department of Old Age Psychiatry, Oldenaller 1, 1081 HJ, Amsterdam, the Netherlands; Amsterdam UMC, Vrije Universiteit Amsterdam, Psychiatry, Amsterdam Public Health Research Institute and Neuroscience Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands
| | - Didi Rhebergen
- GGZ inGeest Specialized Mental Health Care, Department of Old Age Psychiatry, Oldenaller 1, 1081 HJ, Amsterdam, the Netherlands; Amsterdam UMC, Vrije Universiteit Amsterdam, Psychiatry, Amsterdam Public Health Research Institute and Neuroscience Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands
| |
Collapse
|
13
|
Arora P, Sagar R, Mehta M, Pallavi P, Sharma S, Mukhopadhyay AK. Serum S100B levels in patients with depression. Indian J Psychiatry 2019; 61:70-76. [PMID: 30745657 PMCID: PMC6341924 DOI: 10.4103/psychiatry.indianjpsychiatry_391_16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The biochemical basis of depression has been related to blood-brain barrier (BBB) allowing/restricting a number of components to enter the brain milieu from the peripheral plasma milieu. S100B has been associated with BBB damage and is used as a marker of its integrity. Several studies have reported that depressive patients have increased levels of S100B in serum and cerebrospinal fluid. MATERIALS AND METHODS Forty-two confirmed cases of depression, 13-25 years of ages were recruited from the Department of Psychiatry, All India Institute of Medical Sciences during the period from January 2013 to June 2014 along with 42 healthy controls of comparable age and sex. Psychometric evaluation of the patients and controls was done to assess the severity of depression using Beck's Depression Inventory-II and Hamilton Depression Rating Scale. Medical assessment and laboratory investigations were done. Serum S100B levels were measured using Sandwich ELISA. The results obtained were statistically analyzed. RESULTS Levels of serum S100B were significantly elevated in patients with major depression as compared to controls. Significantly higher levels of S100B were seen only in females as compared to their healthy counterparts. Serum S100B was higher in depressed participants with the recurrent disorder than those with single episode. No correlation of levels of this marker was seen with clinical severity of the patients. It was found that with increased duration of illness for which the patient was being treated with antidepressants, the patients had higher levels of S100B. CONCLUSIONS Serum S100B can be used as a biomarker of depression.
Collapse
Affiliation(s)
- Parul Arora
- Department of Laboratory Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Rajesh Sagar
- Department of Psychiatry, All India Institute of Medical Sciences, New Delhi, India
| | - Manju Mehta
- Department of Psychiatry, All India Institute of Medical Sciences, New Delhi, India
| | - Pooja Pallavi
- Department of Laboratory Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Subhadra Sharma
- Department of Laboratory Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Asok Kumar Mukhopadhyay
- Department of Laboratory Medicine, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
14
|
Abstract
BACKGROUND S100B is a calcium-binding protein located in glial cells; it is regarded as a potential biomarker in affective disorders. AIM To review the literature investigating the role of S100B in patients with affective disorders. METHOD A systematic review of original English language studies investigating S100B in serum, cerebrospinal fluid, plasma and lymphocytes, in patients with affective disorders, was conducted. The literature search was conducted within the PubMed database. Effect sizes were calculated to adjust for systematic measurement effects. RESULTS Twenty studies were included, with a total of 1292 participants. Of these, 398 patients had or have had depressive disorder, 301 patients had bipolar disorder and 593 were healthy controls. S100B levels in serum were consistently elevated in studies with statistically significant results which investigated acute affective episodes (comprising major depressive episode in major depressive disorder, and both manic and depressive episodes in patients with bipolar disorder), in comparison to healthy controls. There were few studies assessing S100B levels in cerebrospinal fluid, plasma or lymphocytes, and these had inconsistent results. CONCLUSION The results indicated that elevated S100B levels might be associated with mood episodes in affective disorders. However, the role of S100B, and its possible impact in affective disorders, requires further investigation and at the present S100B does not have a role as clinically biomarker in affective disorder. Future longitudinal multicentre studies with larger transdiagnostic real life patient cohorts are warranted.
Collapse
Affiliation(s)
- Hilda Kroksmark
- a Psychiatric Centre Copenhagen, Rigshospitalet, University Hospital of Copenhagen , Copenhagen , Denmark
| | - Maj Vinberg
- a Psychiatric Centre Copenhagen, Rigshospitalet, University Hospital of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
15
|
Labaka A, Goñi-Balentziaga O, Lebeña A, Pérez-Tejada J. Biological Sex Differences in Depression: A Systematic Review. Biol Res Nurs 2018; 20:383-392. [DOI: 10.1177/1099800418776082] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Depression is the leading cause of disability worldwide, and its prevalence is 2 times higher in women than in men. There is, however, a lack of data on sex-specific pathophysiology of this disorder. The purpose of this systematic review is to identify the biological sex differences found in major depressive disorder (MDD) in studies published in the last 10 years. We conducted a literature search using the Medline, PsycInfo, PubMed, and Web of Science databases, selecting English-language studies that included physiological measures compared by sex in addition to MDD. We identified 20 relevant studies, which consisted primarily of mixed methodology and samples. The reported physiological measures comprised a variety of serum biomarkers, gene mRNA expression, and brain activity. Findings suggest different biological patterns in those with MDD depending on sex. Specifically, women presented higher levels of inflammatory, neurotrophic, and serotonergic markers and a stronger correlation between levels of some inflammatory and neurotrophic factors and the severity of symptoms. This review provides information about possible different biological patterns for women and men with depressive disorder and may have important implications for treatment. Future research should include homogeneous samples; make comparisons based on sex, control sex hormone fluctuations and pharmacological treatment; and use consistent criteria for evaluating psychobiological changes in MDD.
Collapse
Affiliation(s)
- Ainitze Labaka
- Department of Basic Psychological Processes and their Development, University of the Basque Country, San Sebastián, Spain
| | - Olatz Goñi-Balentziaga
- Department of Basic Psychological Processes and their Development, University of the Basque Country, San Sebastián, Spain
| | - Andrea Lebeña
- Department of Basic Psychological Processes and their Development, University of the Basque Country, San Sebastián, Spain
| | - Joana Pérez-Tejada
- Department of Basic Psychological Processes and their Development, University of the Basque Country, San Sebastián, Spain
| |
Collapse
|
16
|
Zaremba D, Dohm K, Redlich R, Grotegerd D, Strojny R, Meinert S, Bürger C, Enneking V, Förster K, Repple J, Opel N, Baune BT, Zwitserlood P, Heindel W, Arolt V, Kugel H, Dannlowski U. Association of Brain Cortical Changes With Relapse in Patients With Major Depressive Disorder. JAMA Psychiatry 2018; 75:484-492. [PMID: 29590315 PMCID: PMC5875383 DOI: 10.1001/jamapsychiatry.2018.0123] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
IMPORTANCE More than half of all patients with major depressive disorder (MDD) experience a relapse within 2 years after recovery. It is unclear how relapse affects brain morphologic features during the course of MDD. OBJECTIVE To use structural magnetic resonance imaging to identify morphologic brain changes associated with relapse in MDD. DESIGN, SETTING, AND PARTICIPANTS In this longitudinal case-control study, patients with acute MDD at baseline and healthy controls were recruited from the University of Münster Department of Psychiatry from March 21, 2010, to November 14, 2014, and were reassessed from November 11, 2012, to October 28, 2016. Depending on patients' course of illness during follow-up, they were subdivided into groups of patients with and without relapse. Whole-brain gray matter volume and cortical thickness of the anterior cingulate cortex, orbitofrontal cortex, middle frontal gyrus, and insula were assessed via 3-T magnetic resonance imaging at baseline and 2 years later. MAIN OUTCOMES AND MEASURES Gray matter was analyzed via group (no relapse, relapse, and healthy controls) by time (baseline and follow-up) analysis of covariance, controlling for age and total intracranial volume. Confounding factors of medication and depression severity were assessed. RESULTS This study included 37 patients with MDD and a relapse (19 women and 18 men; mean [SD] age, 37.0 [12.7] years), 23 patients with MDD and without relapse (13 women and 10 men; mean [SD] age, 32.5 [10.5] years), and 54 age- and sex-matched healthy controls (24 women and 30 men; mean [SD] age, 37.5 [8.7] years). A significant group-by-time interaction controlling for age and total intracranial volume revealed that patients with relapse showed a significant decline of insular volume (difference, -0.032; 95% CI, -0.063 to -0.002; P = .04) and dorsolateral prefrontal volume (difference, -0.079; 95% CI, -0.113 to -0.045; P < .001) from baseline to follow-up. In patients without relapse, gray matter volume in these regions did not change significantly (insula: difference, 0.027; 95% CI, -0.012 to 0.066; P = .17; and dorsolateral prefrontal volume: difference, 0.023; 95% CI, -0.020 to 0.066; P = .30). Volume changes were not correlated with psychiatric medication or with severity of depression at follow-up. Additional analysis of cortical thickness showed an increase in the anterior cingulate cortex (difference, 0.073 mm; 95% CI, 0.023-0.123 mm; P = .005) and orbitofrontal cortex (difference, 0.089 mm; 95% CI, 0.032-0.147 mm; P = .003) from baseline to follow-up in patients without relapse. CONCLUSION AND RELEVANCE A distinct association of relapse in MDD with brain morphologic features was revealed using a longitudinal design. Relapse is associated with brain structures that are crucial for regulation of emotions and thus needs to be prevented. This study might be a step to guide future prognosis and maintenance treatment in patients with recurrent MDD.
Collapse
Affiliation(s)
- Dario Zaremba
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Katharina Dohm
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Ronny Redlich
- Department of Psychiatry, University of Münster, Münster, Germany
| | | | - Robert Strojny
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Susanne Meinert
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Christian Bürger
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Verena Enneking
- Department of Psychiatry, University of Münster, Münster, Germany
| | | | - Jonathan Repple
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Nils Opel
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Bernhard T. Baune
- Discipline of Psychiatry, University of Adelaide, Adelaide, South Australia
| | | | - Walter Heindel
- Department of Clinical Radiology, University of Münster, Münster, Germany
| | - Volker Arolt
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Harald Kugel
- Department of Clinical Radiology, University of Münster, Münster, Germany
| | - Udo Dannlowski
- Department of Psychiatry, University of Münster, Münster, Germany
| |
Collapse
|
17
|
Zhao Y, Lin Z, Chen L, Ouyang L, Gu L, Chen F, Zhang Q. Hippocampal astrocyte atrophy in a mouse depression model induced by corticosterone is reversed by fluoxetine instead of benzodiazepine diazepam. Prog Neuropsychopharmacol Biol Psychiatry 2018; 83:99-109. [PMID: 29369777 DOI: 10.1016/j.pnpbp.2018.01.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/16/2018] [Accepted: 01/16/2018] [Indexed: 12/13/2022]
Abstract
Astrocytes have become promising new agents against major depressive disorders (MDD) primarily due to the crucial role they play in the pathogenesis of such disorders. However, a simple and reliable animal model that can be used to screen for astrocyte-targeting antidepressants has not yet been developed. In this study, we utilized a repeated corticosterone (CORT) injection paradigm to develop a mouse depression model wherein we examined the occurrence of alterations in hippocampal astrocyte population by using two astrocytic markers, namely, glial fibrillary acidic protein (GFAP) and S100β. Moreover, we determined the effects of fluoxetine and diazepam on CORT-induced astrocytic alterations to assess the predictive validity. Results showed that repeated CORT injections showed no effects on the number of GFAP+ and S100β+ astrocytes, but they decreased the protrusion length of GFAP+ astrocytes and GFAP protein expression in the hippocampus. Furthermore, repeated CORT injections produced a sustained increase of S100β protein levels in the entire hippocampus of male mice. CORT-induced hippocampal astrocyte disruption was antagonized by chronic fluoxetine treatment. By contrast, the anxiolytic drug diazepam was ineffective in the same experimental setting. All these findings suggest that the repeated CORT injection paradigm produces the astrocytic alterations similar to those in MDD and can serve as a useful mouse model to screen antidepressants meant to target astrocytes. These observations can also help in further discussing the underlying mechanisms of CORT-induced astrocytic alterations.
Collapse
Affiliation(s)
- Yunan Zhao
- Department of Pathology and Pathophysiology, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing 210046, China.
| | - Zixuan Lin
- Department of Pathology and Pathophysiology, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Lin Chen
- Department of Pathology and Pathophysiology, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Liufeng Ouyang
- Laboratory of Pathological Sciences, College of Medicine, Yan'an University, Yan'an 716000, China
| | - Ling Gu
- Research Center, Basic Medical College, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Feiyan Chen
- Research Center, Basic Medical College, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Qiang Zhang
- Department of Pathology and Pathophysiology, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing 210046, China
| |
Collapse
|
18
|
Yilmaz S, Karakayali O, Kale E, Akdogan A. Could serum S100B be a predictor of neuronal damage and clinical poor outcomes associated with the use of synthetic cannabinoids? S100B to predict neuronal damage of SC in the ED. Am J Emerg Med 2017; 36:435-441. [PMID: 28867154 DOI: 10.1016/j.ajem.2017.08.053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 08/22/2017] [Accepted: 08/23/2017] [Indexed: 01/08/2023] Open
Abstract
AIM This study aims to evaluate the serum S100B levels to predict neuronal damage and poor clinical outcomes associated with the use of synthetic cannabinoids. METHOD Thirty patients identified as synthetic cannabinoid users and 30 healthy controls were included in the study. S100B levels were compared between healthy controls and synthetic cannabinoid users. The following were considered to be composite outcomes: the need for endotracheal intubation, incidence of seizures, the need for intensive care unit admission, and in-hospital mortality. Clinical and laboratory findings associated with composite clinical outcomes were examined. RESULTS The mean S100B level was 19.3 (95% CI: 17.7 to 21.4) pg/mL in patients who use synthetic cannabinoid, and 15.9 (95% CI: 15 to 16.9) pg/mL in the controls; mean df: -3.6 (95% CI: -5.6 to -1.6). In patients with and without composite clinical outcomes, the mean S100B level measured 24.5 (95% CI: 21.2 to 27.9) pg/mL and 17.4 (95% CI: 15.8 to 18.4) pg/mL, respectively; mean df: -7.4 (95% CI: -10.2 to -4.6). With the cut-off value for S100B set at 20pg/mL based on the highest sensitivity, the sensitivity, specificity, PPV, and NPV for S100B were 89.9%, 52.0%, 44.4%, and 91.9%, respectively; odds ratio: 13.2, 95% CI (2.1 to 28.1). CONCLUSION Our data suggest that serum S100B levels are elevated in patients using synthetic cannabinoids. These results show that S100B can help clinicians stratify risk or may have a role in excluding those with neuronal damage.
Collapse
Affiliation(s)
- Serkan Yilmaz
- Department of Emergency Medicine, Faculty of Medicine, Kocaeli University, Turkey.
| | - Onur Karakayali
- Department of Emergency Medicine, Derince Training And Research Hospital, Kocaeli, Turkey
| | - Ebru Kale
- Department of Biochemistry, Derince Training And Research Hospital, Kocaeli, Turkey
| | - Ahmet Akdogan
- Department of Emergency Medicine, Derince Training And Research Hospital, Kocaeli, Turkey
| |
Collapse
|
19
|
Serum S100B in manic bipolar disorder patients: Systematic review and meta-analysis. J Affect Disord 2016; 206:210-215. [PMID: 27475892 DOI: 10.1016/j.jad.2016.07.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 07/17/2016] [Indexed: 01/17/2023]
Abstract
BACKGROUND Bipolar disorder (BD) is a neuropsychiatric disorder characterized by recurrent episodes of mania/hypomania, affecting more than 1% of the world population. S100B is a calcium-binding protein, mostly produced and secreted by astrocytes in the CNS that participate in several cellular responses. Previous studies have shown that patients with bipolar disorder had higher peripheral S100B levels than healthy individuals, suggesting a potential role for S100B BD. METHODS In this study, a systematic and quantitative meta-analysis of studies S100B serum was performed according to the guidelines PRISMA-statement to confirm the increase of serum S100B in patients with manic bipolar disorder. RESULTS We included in the meta-analysis two studies that reported the mean and standard deviation of serum S100B 52 patients manic BP and 52 control studies. Our results showed higher levels of S100B peripheral TB patients compared with healthy controls. In this meta-analysis, we found evidence that serum S100B are increased in patients with bipolar disorder. CONCLUSION In conclusion, several studies have observed morphological abnormalities in the brains of bipolar disorder patients, changes in the peripheral S100B levels in mood disorders were described, and this protein could be a putative marker for damage to the brain. Thus, in this meta-analysis we have found evidence, based on two studies of 52 patients and 52 healthy controls, that the serum concentrations of S100B are increased in bipolar disorder patients.
Collapse
|
20
|
Büyükaslan H, Kandemir SB, Asoğlu M, Kaya H, Gökdemir MT, Karababa İF, Güngörmez F, Kılıçaslan F, Şavik E. Evaluation of oxidant, antioxidant, and S100B levels in patients with conversion disorder. Neuropsychiatr Dis Treat 2016; 12:1725-9. [PMID: 27471386 PMCID: PMC4948713 DOI: 10.2147/ndt.s109174] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Various psychodynamic, neurobiological, genetic, and sociocultural factors are believed to be involved in the etiology of conversion disorder (CD). Oxidative metabolism has been shown to deteriorate in association with many health problems and psychiatric disorders. We evaluated oxidative metabolism and S100B levels in the context of this multifactorial disease. METHODS Thirty-seven patients with CD (25 females and 12 males) and 42 healthy volunteers (21 females and 21 males), all matched for age and sex, were included in this study. The total oxidant status, total antioxidant status, oxidative stress index, and S100B levels were compared between the two groups. RESULTS The total oxidant status, oxidative stress index, and S100B levels were significantly higher in patients with CD than in the control group, whereas the total antioxidant status was significantly lower. CONCLUSION CD is associated with deterioration of oxidative metabolism and increased neuronal damage.
Collapse
Affiliation(s)
- Hasan Büyükaslan
- Department of Emergency Medicine, Faculty of Medicine, Harran University
| | | | - Mehmet Asoğlu
- Department of Psychiatry, Faculty of Medicine, Harran University, Sanliurfa
| | - Halil Kaya
- Bursa Yüksek Ihtisas Training and Research Hospital, Bursa
| | | | | | - Fatih Güngörmez
- Department of Emergency Medicine, Mehmet Akif İnan Research Hospital
| | | | - Emin Şavik
- Department of Biochemistry, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| |
Collapse
|
21
|
Polyakova M, Sander C, Arelin K, Lampe L, Luck T, Luppa M, Kratzsch J, Hoffmann KT, Riedel-Heller S, Villringer A, Schoenknecht P, Schroeter ML. First evidence for glial pathology in late life minor depression: S100B is increased in males with minor depression. Front Cell Neurosci 2015; 9:406. [PMID: 26500502 PMCID: PMC4598479 DOI: 10.3389/fncel.2015.00406] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/25/2015] [Indexed: 01/05/2023] Open
Abstract
Minor depression is diagnosed when a patient suffers from 2 to 4 depressive symptoms for at least 2 weeks. Though minor depression is a widespread phenomenon, its pathophysiology has hardly been studied. To get a first insight into the pathophysiological mechanisms underlying this disorder we assessed serum levels of biomarkers for plasticity, glial and neuronal function: brain-derived neurotrophic factor (BDNF), S100B and neuron specific enolase (NSE). 27 subjects with minor depressive episode and 82 healthy subjects over 60 years of age were selected from the database of the Leipzig population-based study of civilization diseases (LIFE). Serum levels of BDNF, S100B and NSE were compared between groups, and correlated with age, body-mass index (BMI), and degree of white matter hyperintensities (score on Fazekas scale). S100B was significantly increased in males with minor depression in comparison to healthy males, whereas other biomarkers did not differ between groups (p = 0.10–0.66). NSE correlated with Fazekas score in patients with minor depression (rs = 0.436, p = 0.048) and in the whole sample (rs = 0.252, p = 0.019). S100B correlated with BMI (rs = 0.246, p = 0.031) and with age in healthy subjects (rs = 0.345, p = 0.002). Increased S100B in males with minor depression, without alterations in BDNF and NSE, supports the glial hypothesis of depression. Correlation between white matter hyperintensities and NSE underscores the vascular hypothesis of late life depression.
Collapse
Affiliation(s)
- Maryna Polyakova
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany ; University Clinic for Psychiatry and Psychotherapy, Leipzig University Leipzig, Germany ; LIFE-Leipzig Rsearch Center for Civilization Diseases, Leipzig University Leipzig, Germany
| | - Christian Sander
- University Clinic for Psychiatry and Psychotherapy, Leipzig University Leipzig, Germany ; LIFE-Leipzig Rsearch Center for Civilization Diseases, Leipzig University Leipzig, Germany
| | - Katrin Arelin
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany ; LIFE-Leipzig Rsearch Center for Civilization Diseases, Leipzig University Leipzig, Germany
| | - Leonie Lampe
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany ; LIFE-Leipzig Rsearch Center for Civilization Diseases, Leipzig University Leipzig, Germany
| | - Tobias Luck
- LIFE-Leipzig Rsearch Center for Civilization Diseases, Leipzig University Leipzig, Germany ; Institute of Social Medicine, Occupational Health and Public Health (ISAP), Leipzig University Leipzig, Germany
| | - Melanie Luppa
- LIFE-Leipzig Rsearch Center for Civilization Diseases, Leipzig University Leipzig, Germany ; Institute of Social Medicine, Occupational Health and Public Health (ISAP), Leipzig University Leipzig, Germany
| | - Jürgen Kratzsch
- LIFE-Leipzig Rsearch Center for Civilization Diseases, Leipzig University Leipzig, Germany ; Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Leipzig University Leipzig, Germany
| | | | - Steffi Riedel-Heller
- LIFE-Leipzig Rsearch Center for Civilization Diseases, Leipzig University Leipzig, Germany ; Institute of Social Medicine, Occupational Health and Public Health (ISAP), Leipzig University Leipzig, Germany
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany ; LIFE-Leipzig Rsearch Center for Civilization Diseases, Leipzig University Leipzig, Germany ; Clinic for Cognitive Neurology, University of Leipzig Leipzig, Germany
| | - Peter Schoenknecht
- University Clinic for Psychiatry and Psychotherapy, Leipzig University Leipzig, Germany ; LIFE-Leipzig Rsearch Center for Civilization Diseases, Leipzig University Leipzig, Germany
| | - Matthias L Schroeter
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany ; LIFE-Leipzig Rsearch Center for Civilization Diseases, Leipzig University Leipzig, Germany ; Clinic for Cognitive Neurology, University of Leipzig Leipzig, Germany
| |
Collapse
|
22
|
Schmidt FM, Mergl R, Stach B, Jahn I, Schönknecht P. Elevated levels of cerebrospinal fluid neuron-specific enolase (NSE), but not S100B in major depressive disorder. World J Biol Psychiatry 2015; 16:106-13. [PMID: 25264292 DOI: 10.3109/15622975.2014.952776] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Alterations in neuronal and glial integrity are considered to be of pathogenic impact on major depressive disorder (MDD). For MDD, data on cerebrospinal fluid (CSF) levels of neuron-specific enolase (NSE) are lacking and scarce for glial protein S100B. METHODS We measured CSF levels of NSE and S100B in 31 patients with MDD and 32 mentally healthy controls using electrochemiluminescence immunoassays (ECLIA). RESULTS Adjusted means of NSE were significantly elevated in the MDD patients (11.73 ng/ml (9.95-13.52 95% CI) compared to the controls (6.17 ng/ml (4.55-7.78), F = 9.037, P = 0.004. Effect size for adjusted mean group difference of 5.57 ng/ml was found invariably high (Cohen's d = 1.23). Differentiating MDD from controls, a NSE cut-off of 7.94 ng/ml showed sensitivity of 81% (95% CI 63.7-90.8) and specificity of 75% (95% CI 57.9-86.7). Adjusted levels of S100B did not differ significantly between the two groups (1.12 ng/ml (0.77-1.48) in MDD, 0.97 ng/ml (0.64-1.30) in controls). CONCLUSIONS Our results of elevated CSF-NSE levels support neuronal pathology in MDD and the potential use of CSF-NSE as marker in clinical diagnostics. Missing group differences in S100B do not promote a specific glial pathology in depressive disorders.
Collapse
Affiliation(s)
- Frank Martin Schmidt
- Department of Psychiatry and Psychotherapy, University Hospital Leipzig , Leipzig , Germany
| | | | | | | | | |
Collapse
|
23
|
Blood levels of S-100 calcium-binding protein B, high-sensitivity C-reactive protein, and interleukin-6 for changes in depressive symptom severity after coronary artery bypass grafting: prospective cohort nested within a randomized, controlled trial. PLoS One 2014; 9:e111110. [PMID: 25329583 PMCID: PMC4203837 DOI: 10.1371/journal.pone.0111110] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 09/28/2014] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Cross-sectional and retrospective studies have associated major depressive disorder with glial activation and injury as well as blood-brain barrier disruption, but these associations have not been assessed prospectively. Here, we aimed to determine the relationship between changes in depressive symptom severity and in blood levels of S-100 calcium-binding protein B (S-100B), high-sensitivity C-reactive protein, and interleukin-6 following an inflammatory challenge. METHODS Fifty unselected participants were recruited from a randomized, controlled trial comparing coronary artery bypass grafting procedures performed with versus without cardiopulmonary bypass for the risk of neurocognitive decline. Depressive symptom severity was measured at baseline, discharge, and six-month follow-up using the Beck Depression Inventory II (BDI-II). The primary outcome of the present biomarker study was acute change in depressive symptom severity, defined as the intra-subject difference between baseline and discharge BDI-II scores. Blood biomarker levels were determined at baseline and 2 days postoperative. RESULTS Changes in S-100B levels correlated positively with acute changes in depressive symptom severity (Spearman ρ, 0.62; P = 0.0004) and accounted for about one-fourth of their observed variance (R2, 0.23; P = 0.0105). This association remained statistically significant after adjusting for baseline S-100B levels, age, weight, body-mass index, or β-blocker use, but not baseline BDI-II scores (P = 0.064). There was no statistically significant association between the primary outcome and baseline S-100B levels, baseline high-sensitivity C-reactive protein or interleukin-6 levels, or changes in high-sensitivity C-reactive protein or interleukin-6 levels. Among most participants, levels of all three biomarkers were normal at baseline and markedly elevated at 2 days postoperative. CONCLUSIONS Acute changes in depressive symptom severity were specifically associated with incremental changes in S-100B blood levels, largely independent of covariates associated with either. These findings support the hypothesis that glial activation and injury and blood-brain barrier disruption can be mechanistically linked to acute exacerbation of depressive symptoms in some individuals.
Collapse
|
24
|
Strathmann FG, Schulte S, Goerl K, Petron DJ. Blood-based biomarkers for traumatic brain injury: Evaluation of research approaches, available methods and potential utility from the clinician and clinical laboratory perspectives. Clin Biochem 2014; 47:876-88. [DOI: 10.1016/j.clinbiochem.2014.01.028] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 01/05/2014] [Accepted: 01/23/2014] [Indexed: 01/06/2023]
|
25
|
Schroeter ML, Sacher J, Steiner J, Schoenknecht P, Mueller K. Serum S100B represents a new biomarker for mood disorders. Curr Drug Targets 2014; 14:1237-48. [PMID: 23701298 PMCID: PMC3821390 DOI: 10.2174/13894501113149990014] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/26/2013] [Accepted: 05/17/2013] [Indexed: 01/11/2023]
Abstract
Recently, mood disorders have been discussed to be characterized by glial pathology. The protein S100B, a growth and differentiation factor, is located in, and may actively be released by astro- and oligodendrocytes. This protein is easily assessed in human serum and provides a useful parameter for glial activation or injury. Here, we review studies investigating the glial marker S100B in serum of patients with mood disorders. Studies consistently show that S100B is elevated in mood disorders; more strongly in major depressive than bipolar disorder. Consistent with the glial hypothesis of mood disorders, serum S100B levels interact with age with higher levels in elderly depressed subjects. Successful antidepressive treatment has been associated with serum S100B reduction in major depression, whereas there is no evidence of treatment effects in mania. In contrast to the glial marker S100B, the neuronal marker protein neuron-specific enolase is unaltered in mood disorders. Recently, serum S100B has been linked to specific imaging parameters in the human white matter suggesting a role for S100B as an oligodendrocytic marker protein. In sum, serum S100B can be regarded as a promising in vivo biomarker for mood disorders deepening the understanding of the pathogenesis and plasticity-changes in these disorders. Future longitudinal studies combining serum S100B with other cell-specific serum parameters and multimodal imaging are warranted to further explore this serum protein in the development, monitoring and treatment of mood disorders.
Collapse
Affiliation(s)
- Matthias L Schroeter
- Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1A, 04103 Leipzig, Germany.
| | | | | | | | | |
Collapse
|
26
|
Moylan S, Maes M, Wray NR, Berk M. The neuroprogressive nature of major depressive disorder: pathways to disease evolution and resistance, and therapeutic implications. Mol Psychiatry 2013; 18:595-606. [PMID: 22525486 DOI: 10.1038/mp.2012.33] [Citation(s) in RCA: 353] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In some patients with major depressive disorder (MDD), individual illness characteristics appear consistent with those of a neuroprogressive illness. Features of neuroprogression include poorer symptomatic, treatment and functional outcomes in patients with earlier disease onset and increased number and length of depressive episodes. In such patients, longer and more frequent depressive episodes appear to increase vulnerability for further episodes, precipitating an accelerating and progressive illness course leading to functional decline. Evidence from clinical, biochemical and neuroimaging studies appear to support this model and are informing novel therapeutic approaches. This paper reviews current knowledge of the neuroprogressive processes that may occur in MDD, including structural brain consequences and potential molecular mechanisms including the role of neurotransmitter systems, inflammatory, oxidative and nitrosative stress pathways, neurotrophins and regulation of neurogenesis, cortisol and the hypothalamic-pituitary-adrenal axis modulation, mitochondrial dysfunction and epigenetic and dietary influences. Evidence-based novel treatments informed by this knowledge are discussed.
Collapse
Affiliation(s)
- S Moylan
- School of Medicine, Deakin University, Geelong, VIC, Australia.
| | | | | | | |
Collapse
|
27
|
Schroeter ML, Steiner J, Mueller K. Glial pathology is modified by age in mood disorders--a systematic meta-analysis of serum S100B in vivo studies. J Affect Disord 2011; 134:32-8. [PMID: 21144594 DOI: 10.1016/j.jad.2010.11.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 11/06/2010] [Accepted: 11/06/2010] [Indexed: 01/01/2023]
Abstract
BACKGROUND Mood disorders are characterized by specific glial pathology. Recently, based on histopathological post mortem studies, the glial hypothesis has been discussed as a dynamic process, in particular with regard to glioplasticity. Whereas in young subjects with mood disorders, glial cell density or glial cell numbers are reduced, they are increased in elderly subjects. METHODS To validate this concept in vivo, we investigated the dynamic course of glial pathology in mood disorders across studies measuring the glial marker protein S100B in serum in a systematic and quantitative meta-analysis according to the QUOROM and PRISMA statement. We searched for studies in PubMed and Medline, applied strict inclusion/exclusion criteria, and calculated effect sizes according to Cohen and Hedges. RESULTS The final meta-analysis included 174 subjects with mood disorders and 102 control subjects. It demonstrated higher levels of the glial marker protein S100B in older compared with younger adult subjects suffering from mood disorders, although both young and older subjects showed elevated values in comparison to control subjects. Illness duration and age at onset had no impact on serum S100B. LIMITATIONS Influences of antidepressive drugs vs. the spontaneous course of the illness, differences between mood disorder subtypes and the specific role of S100B have to be investigated in future longitudinal studies. CONCLUSIONS The meta-analysis indicates a modifying effect of S100B in mood disorders in the interaction with age, with an increasing role across the lifespan. Results are relevant for the understanding of mood disorders and future illness modifying therapies because S100B may influence neuro- and glioplasticity.
Collapse
Affiliation(s)
- Matthias L Schroeter
- Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany.
| | | | | |
Collapse
|
28
|
Williams SK, Lauder JM, Johns JM. Prenatal Cocaine Disrupts Serotonin Signaling-Dependent Behaviors: Implications for Sex Differences, Early Stress and Prenatal SSRI Exposure. Curr Neuropharmacol 2011; 9:478-511. [PMID: 22379462 PMCID: PMC3151602 DOI: 10.2174/157015911796557957] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 12/31/2010] [Accepted: 01/07/2011] [Indexed: 02/06/2023] Open
Abstract
Prenatal cocaine (PC) exposure negatively impacts the developing nervous system, including numerous changes in serotonergic signaling. Cocaine, a competitive antagonist of the serotonin transporter, similar to selective serotonin reuptake inhibitors (SSRIs), also blocks dopamine and norepinephrine transporters, leaving the direct mechanism through which cocaine disrupts the developing serotonin system unclear. In order to understand the role of the serotonin transporter in cocaine's effect on the serotonergic system, we compare reports concerning PC and prenatal antidepressant exposure and conclude that PC exposure affects many facets of serotonergic signaling (serotonin levels, receptors, transporters) and that these effects differ significantly from what is observed following prenatal SSRI exposure. Alterations in serotonergic signaling are dependent on timing of exposure, test regimens, and sex. Following PC exposure, behavioral disturbances are observed in attention, emotional behavior and stress response, aggression, social behavior, communication, and like changes in serotonergic signaling, these effects depend on sex, age and developmental exposure. Vulnerability to the effects of PC exposure can be mediated by several factors, including allelic variance in serotonergic signaling genes, being male (although fewer studies have investigated female offspring), and experiencing the adverse early environments that are commonly coincident with maternal drug use. Early environmental stress results in disruptions in serotonergic signaling analogous to those observed with PC exposure and these may interact to produce greater behavioral effects observed in children of drug-abusing mothers. We conclude that based on past evidence, future studies should put a greater emphasis on including females and monitoring environmental factors when studying the impact of PC exposure.
Collapse
Affiliation(s)
- Sarah K Williams
- Curriculum in Neurobiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jean M Lauder
- Curriculum in Neurobiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Josephine M Johns
- Curriculum in Neurobiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Psychology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
29
|
S100B and homocysteine in the acute alcohol withdrawal syndrome. Eur Arch Psychiatry Clin Neurosci 2011; 261:133-8. [PMID: 20593192 PMCID: PMC3046349 DOI: 10.1007/s00406-010-0121-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 06/18/2010] [Indexed: 12/17/2022]
Abstract
Elevations of serum homocysteine levels are a consistent finding in alcohol addiction. Serum S100B levels are altered in different neuropsychiatric disorders but not well investigated in alcohol withdrawal syndromes. Because of the close connection of S100B to ACTH and glutamate secretion that both are involved in neurodegeneration and symptoms of alcoholism the relationship of S100B and homocysteine to acute withdrawal variables has been examined. A total of 22 male and 9 female inpatients (mean age 46.9 ± 9.7 years) with an ICD-10 diagnosis of alcohol addiction without relevant affective comorbidity were examined on admission and after 24, 48, and 120 h during withdrawal. S100B and homocysteine levels in serum were collected, and severity of withdrawal symptoms (AWS-scale), applied withdrawal medication, initial serum ethanol levels and duration of addiction were recorded. Serum S100B and homocysteine levels declined significantly (P < .05) over time. Both levels declined with withdrawal syndrome severity. Females showed a trend to a more intense decline in serum S100B levels compared to males at day 5 (P = .06). Homocysteine levels displayed a negative relationship to applied amount of clomethiazole (P < .05) and correlated with age of onset of addiction. No withdrawal seizures were recorded during the trial. As it is known for homocysteine, S100B revealed to decline rapidly over withdrawal treatment in alcoholism. This effect is more pronounced in female patients. S100B could be of relevance in the neurobiology of alcohol withdrawal syndromes. It may be indirectly related to the level of stress level or glutamatergic activity during alcohol withdrawal.
Collapse
|
30
|
Luo KR, Hong CJ, Liou YJ, Hou SJ, Huang YH, Tsai SJ. Differential regulation of neurotrophin S100B and BDNF in two rat models of depression. Prog Neuropsychopharmacol Biol Psychiatry 2010; 34:1433-9. [PMID: 20728493 DOI: 10.1016/j.pnpbp.2010.07.033] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2010] [Revised: 07/30/2010] [Accepted: 07/31/2010] [Indexed: 11/18/2022]
Abstract
Several clinical studies have demonstrated that serum brain-derived neurotrophic factor (BDNF) levels are decreased and serum S100B levels are increased in patients with major depression. In this study, we investigated whether these findings could be replicated in animal models of depression. We measured BDNF and S100B protein levels in the serum, prefrontal cortex, striatum and hippocampus of rats in models of depression, i.e., olfactory bulbectomy (OBX) and chronic unpredictable stress (CUS) models. Serum BDNF levels were significantly increased in the OBX rats, as were hippocampal BDNF levels in the CUS rats, in comparison with their respective controls. Significant increases in serum S100B levels were observed in both the OBX and CUS rats as compared with their respective controls; however, S100B levels were decreased in the prefrontal cortex of the CUS rats. No significant correlation was found between serum and regional brain S100B/BDNF levels. Our findings suggest that both of these animal models of depression, in which similar serum S100B level changes to those in depressed patients were observed, could be used as valid models to explore the role of S100B underlying major depression. Neither serum S100B nor BDNF levels reflect their levels in the brain, and changes in their levels in patients with neuropsychiatric diseases should be interpreted cautiously.
Collapse
Affiliation(s)
- Kai-Ren Luo
- Institute of Anatomy and Cell Biology, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
31
|
Mood disorders are glial disorders: evidence from in vivo studies. Cardiovasc Psychiatry Neurol 2010; 2010:780645. [PMID: 20585358 PMCID: PMC2878670 DOI: 10.1155/2010/780645] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 03/30/2010] [Indexed: 02/07/2023] Open
Abstract
It has recently been suggested that mood disorders can be characterized by glial pathology as indicated by histopathological postmortem findings. Here, we review studies investigating the glial marker S100B in serum of patients with mood disorders. This protein might act as a growth and differentiation factor. It is located in, and may actively be released by, astro- and oligodendrocytes. Studies consistently show that S100B is elevated in mood disorders; more strongly in major depressive than bipolar disorder. Successful antidepressive treatment reduces S100B in major depression whereas there is no evidence of treatment effects in mania. In contrast to the glial marker S100B, the neuronal marker protein neuron-specific enolase is unaltered. By indicating glial alterations without neuronal changes, serum S100B studies confirm specific glial pathology in mood disorders in vivo. S100B can be regarded as a potential diagnostic biomarker for mood disorders and as a biomarker for successful antidepressive treatment.
Collapse
|