1
|
Walter U, Loewenbrück KF, Dodel R, Storch A, Trenkwalder C, Höglinger G. Systematic review-based guideline "Parkinson's disease" of the German Society of Neurology: diagnostic use of transcranial sonography. J Neurol 2024; 271:7387-7401. [PMID: 38963440 PMCID: PMC11588812 DOI: 10.1007/s00415-024-12502-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND AND OBJECTIVE Transcranial brain parenchyma sonography (TCS) has been recommended as a tool for the early and differential diagnosis of Parkinson's disease (PD) in German and European clinical guidelines. Still, the brain structures to be examined for the diagnostic questions and the requirements for being a qualified investigator were not specified in detail. These issues have now been addressed in the 2023 update of the clinical guideline on PD by the German Society of Neurology (DGN). METHODS The recommendations were based on a systematic literature review following PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. RESULTS Three diagnostic questions were defined: (1) What is the accuracy of TCS in the differential diagnosis of PD versus atypical and secondary Parkinsonian syndromes? (2) What is the accuracy of TCS in the differential diagnosis of PD versus essential tremor? (3) What is the accuracy of TCS in the diagnosis of PD in persons with typical early symptoms, compared with the diagnosis established by clinical follow-up? The brain structures to be assessed and the level of recommendation were formulated for these questions. The training requirements for being regarded as qualified TCS investigator were stipulated by the responsible medical societies (German Society of Ultrasound in Medicine, DEGUM; German Society for Clinical Neurophysiology and Functional Imaging, DGKN). Finally, the recommendations for these diagnostic questions reached strong consensus (each ≥ 97%) of the guideline committee. Here, the details of review and recommendations are presented. CONCLUSION The updated guideline clarifies the diagnostic uses and limitations of TCS in PD.
Collapse
Affiliation(s)
- Uwe Walter
- Department of Neurology, Rostock University Medical Center, Gehlsheimer Str. 20, 18147, Rostock, Germany.
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Rostock/Greifswald, Rostock, Germany.
- Center for Transdisciplinary Neurosciences Rostock (CTNR), Rostock, Germany.
| | - Kai F Loewenbrück
- Faculty of Medicine Carl Gustav Carus, Department of Neurology, University Hospital, Technische Universität Dresden, Dresden, Germany
- Service de Neurologie, Centre Hospitalier de Luxembourg, Luxembourg, Grand Duchy of Luxembourg
| | - Richard Dodel
- Chair of Geriatric Medicine and Center for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, Essen, Germany
| | - Alexander Storch
- Department of Neurology, Rostock University Medical Center, Gehlsheimer Str. 20, 18147, Rostock, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Rostock/Greifswald, Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock (CTNR), Rostock, Germany
| | - Claudia Trenkwalder
- Paracelsus-Elena-Klinik, Kassel, Germany
- Department of Neurosurgery, University Medical Center Göttingen, Göttingen, Germany
| | - Günter Höglinger
- Department of Neurology, LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, Munich, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
2
|
Djordjević I, Djordjević S, Kosać A, Vučinić D, Ivanović Radović N, Ždraljević M, Mijajlović M. Transcranial brain parenchyma sonography in patients with juvenile myoclonic epilepsy. Acta Neurol Belg 2024; 124:1335-1342. [PMID: 38644442 DOI: 10.1007/s13760-024-02561-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/15/2024] [Indexed: 04/23/2024]
Abstract
INTRODUCTION There are rising evidences that subcortical structures, including the basal ganglia, are affected in patients with epilepsy. These structures are thought to influence the modulation and phenotypic expression of epileptic seizures. Our study aimed to evaluate the presence of structural abnormalities in subcortical structures in patients with juvenile myoclonic epilepsy (JME). METHODS This cross-sectional study included 51 patients who were diagnosed with JME and who were monitored on an outpatient basis at the Clinic for Neurology and Psychiatry for Children and Youth in Belgrade from January 1985 to October 2017. All patients underwent transcranial parenchymal sonography (TCS) from October 2015 to October 2017. Relation of clinical parameters (seizure control andcognitive functioning,) with TCS results was assessed. RESULTS Hyperechogenicity of the substantia nigra (SN) was detected in 37.2% of JME subjects and it was significantly more common in patients with JME than in the control group. The marked echogenicity of the red nucleus (RN) was detected in 17.6% of cases, while 11.8% of subjects had hyperechogenic RN. The presence of hyperechogenic RN (both right and left) was significantly more frequent in the group of patients with JME compared to the control group. The third ventricle diameter was larger in patients with JME than in controls. CONCLUSION Structural changes of certain subcortical structures, primarily SN and RN, detected in JME patients indicate additional non-lesional abnormalities of the basal ganglia and midbrain structures in these patients.
Collapse
Affiliation(s)
- Ivana Djordjević
- Clinic for Neurology and Psychiatry for Children and Youth, Belgrade, Serbia
| | - Stefan Djordjević
- University Children's Hospital, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Ana Kosać
- Clinic for Neurology and Psychiatry for Children and Youth, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Dragana Vučinić
- Clinic for Neurology and Psychiatry for Children and Youth, Belgrade, Serbia
| | - Nelica Ivanović Radović
- Institute for Children's Diseases, Clinical Center of Montenegro, Podgorica, Montenegro
- Faculty of Medicine, University of Montenegro, Podgorica, Montenegro
| | - Mirjana Ždraljević
- University Clinical Center of Serbia, Neurology Clinic, 6, Dr Subotica Street, 11000, Belgrade, Serbia
| | - Milija Mijajlović
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia.
- University Clinical Center of Serbia, Neurology Clinic, 6, Dr Subotica Street, 11000, Belgrade, Serbia.
| |
Collapse
|
3
|
Chen Z, Zhang W, He W, Guang Y, Yu T, Du Y, Li R. Transcranial sonography with clinical and demographic characteristics to predict cognitive impairment in PD: a longitudinal study. BMC Neurol 2023; 23:15. [PMID: 36639620 PMCID: PMC9837901 DOI: 10.1186/s12883-023-03057-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a neurodegenerative disease and is clinically characterized by a series of motor symptoms (MS) and nonmotor symptoms (NMS). NMS often appear before MS, while cognitive impairment mostly occurs within a few years after the diagnosis of PD. Therefore, we aimed to predict the risk factors for cognitive impairment (CI) in PD patients based on transcranial sonography, clinical symptoms, and demographic characteristics. METHODS Based on the occurrence time of CI, a total of 172 PD patients were divided into non-CI (N-CI, n = 48), CI at the first treatment (F-CI, n = 58), and CI at the last treatment (L-CI, n = 66) groups. Clinical data (including MS and NMS) and ultrasonic data of all patients at the first treatment and the last treatment were collected retrospectively. Independent samples t tests were used to compare continuous data, and chi-square tests were used to compare categorical data. The risk factors for CI and Parkinson's disease dementia were identified by logistic regression analysis, and an ROC curve was established to explore the diagnostic efficacy. RESULTS 1) The age of onset, first treatment and smoking history of CI patients were significantly different from those of N-CI patients. When age of first treatment ≥61 years was considered the boundary value to diagnose CI, the sensitivity and specificity were 77.40 and 66.70%, respectively. 2) The severity of depression was significantly different between F-CI and N-CI patients at the first treatment, while the cumulative and new or aggravated memory deficit was significantly different between the L-CI and N-CI patients at the last treatment. 3) There was a significant difference in TCS grading between the first and last treatment in L-CI patients. 4) Depression, sexual dysfunction, and olfactory dysfunction in NMS were independent risk factors for CI during the last treatment. 5) The sensitivity and specificity of predicting CI in PD patients were 81.80 and 64.60%, respectively. CONCLUSIONS PD patients with CI were older, and most of them had a history of smoking. Furthermore, there was good diagnostic efficiency for predicting CI in PD via TCS combined with clinical characteristics (especially NMS).
Collapse
Affiliation(s)
- Zhiguang Chen
- grid.411617.40000 0004 0642 1244Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050 China
| | - Wei Zhang
- grid.411617.40000 0004 0642 1244Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050 China
| | - Wen He
- grid.411617.40000 0004 0642 1244Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050 China
| | - Yang Guang
- grid.411617.40000 0004 0642 1244Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050 China
| | - Tengfei Yu
- grid.411617.40000 0004 0642 1244Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050 China
| | | | - Rui Li
- grid.411617.40000 0004 0642 1244Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050 China
| |
Collapse
|
4
|
Echogenicity and size of substantia nigra on transcranial sonography (TCS) in patients with attention-deficit/hyperactivity disorder and healthy children aged 6–12 years: a comparative study. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2023. [DOI: 10.1186/s41983-022-00579-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Abstract
Background
Attention-deficit/hyperactivity disorder (ADHD) is one of the most common neuropsychiatric disorders. Children with ADHD may experience significant functional problems, such as academic concerns at school, poor interpersonal relationships and low self-esteem. Current models of ADHD suggest that it is associated with functional impairments in dopamine and norepinephrine systems. The substantia nigra in the midbrain produces the largest amount of dopamine in the brain. The present study was conducted using TCS to compare the size and echogenicity of substantia nigra between ADHD and healthy children.
Results
This cross-sectional, analytical study was conducted on 68 (34 ADHD and 34 healthy individuals) aged 6–12 years. Based on the results obtained, the hyper-echogenicity of SN in control and ADHD groups were 33.3% and 66.7% (P < 0.001) and hypo-echogenicity of thalamic nuclei were 55.2% and 44.8% (P < 0.05), respectively. Interestingly, the TCS results of healthy children with a positive family history of ADHD were similar to results for patients with the disorder.
Conclusions
The echogenicity of Substantia nigra and thalamus nucleus among children and adolescents with ADHD is significantly higher from that in healthy children.
Collapse
|
5
|
Riederer P, Monoranu C, Strobel S, Iordache T, Sian-Hülsmann J. Iron as the concert master in the pathogenic orchestra playing in sporadic Parkinson's disease. J Neural Transm (Vienna) 2021; 128:1577-1598. [PMID: 34636961 PMCID: PMC8507512 DOI: 10.1007/s00702-021-02414-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/29/2021] [Indexed: 02/07/2023]
Abstract
About 60 years ago, the discovery of a deficiency of dopamine in the nigro-striatal system led to a variety of symptomatic therapeutic strategies to supplement dopamine and to substantially improve the quality of life of patients with Parkinson's disease (PD). Since these seminal developments, neuropathological, neurochemical, molecular biological and genetic discoveries contributed to elucidate the pathology of PD. Oxidative stress, the consequences of reactive oxidative species, reduced antioxidative capacity including loss of glutathione, excitotoxicity, mitochondrial dysfunction, proteasomal dysfunction, apoptosis, lysosomal dysfunction, autophagy, suggested to be causal for ɑ-synuclein fibril formation and aggregation and contributing to neuroinflammation and neural cell death underlying this devastating disorder. However, there are no final conclusions about the triggered pathological mechanism(s) and the follow-up of pathological dysfunctions. Nevertheless, it is a fact, that iron, a major component of oxidative reactions, as well as neuromelanin, the major intraneuronal chelator of iron, undergo an age-dependent increase. And ageing is a major risk factor for PD. Iron is significantly increased in the substantia nigra pars compacta (SNpc) of PD. Reasons for this finding include disturbances in iron-related import and export mechanisms across the blood-brain barrier (BBB), localized opening of the BBB at the nigro-striatal tract including brain vessel pathology. Whether this pathology is of primary or secondary importance is not known. We assume that there is a better fit to the top-down hypotheses and pathogens entering the brain via the olfactory system, then to the bottom-up (gut-brain) hypothesis of PD pathology. Triggers for the bottom-up, the dual-hit and the top-down pathologies include chemicals, viruses and bacteria. If so, hepcidin, a regulator of iron absorption and its distribution into tissues, is suggested to play a major role in the pathogenesis of iron dyshomeostasis and risk for initiating and progressing ɑ-synuclein pathology. The role of glial components to the pathology of PD is still unknown. However, the dramatic loss of glutathione (GSH), which is mainly synthesized in glia, suggests dysfunction of this process, or GSH uptake into neurons. Loss of GSH and increase in SNpc iron concentration have been suggested to be early, may be even pre-symptomatic processes in the pathology of PD, despite the fact that they are progression factors. The role of glial ferritin isoforms has not been studied so far in detail in human post-mortem brain tissue and a close insight into their role in PD is called upon. In conclusion, "iron" is a major player in the pathology of PD. Selective chelation of excess iron at the site of the substantia nigra, where a dysfunction of the BBB is suggested, with peripherally acting iron chelators is suggested to contribute to the portfolio and therapeutic armamentarium of anti-Parkinson medications.
Collapse
Affiliation(s)
- P Riederer
- Clinic and Policlinic for Psychiatry, Psychosomatics and Psychotherapy, University Hospital Wuerzburg, University of Wuerzburg, Wuerzburg, Germany. .,Department of Psychiatry, University of Southern Denmark, Odense, Denmark.
| | - C Monoranu
- Institute of Pathology, Department of Neuropathology, University of Wuerzburg, Wuerzburg, Germany
| | - S Strobel
- Institute of Pathology, Department of Neuropathology, University of Wuerzburg, Wuerzburg, Germany
| | - T Iordache
- George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, Târgu Mureș, Romania
| | - J Sian-Hülsmann
- Department of Medical Physiology, University of Nairobi, P.O. Box 30197, Nairobi, 00100, Kenya
| |
Collapse
|
6
|
Charelli LE, Ferreira JPD, Naveira-Cotta CP, Balbino TA. Engineering mechanobiology through organoids-on-chip: A strategy to boost therapeutics. J Tissue Eng Regen Med 2021; 15:883-899. [PMID: 34339588 DOI: 10.1002/term.3234] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/09/2021] [Accepted: 07/21/2021] [Indexed: 12/26/2022]
Abstract
The mechanical environment of living cells is as critical as chemical signaling. Mechanical stimuli play a pivotal role in organogenesis and tissue homeostasis. Unbalances in mechanotransduction pathways often lead to diseases, such as cancer, cystic fibrosis, and neurodevelopmental disorders. Despite its inherent relevance, there is a lack of proper mechanoresponsive in vitro study systems. In this context, there is an urge to engineer innovative, robust, dynamic, and reliable organotypic technologies to better connect cellular processes to organ-level function and multi-tissue cross-talk. Mechanically active organoid-on-chip has the potential to surpass this challenge. These systems converge microfabrication, microfluidics, biophysics, and tissue engineering fields to emulate key features of living organisms, hence, reducing costs, time, and animal testing. In this review, we intended to present cutting-edge organ-on-chip platforms that integrate biomechanical stimuli as well as novel multicellular culture, such as organoids. We focused on its application in two main fields: precision medicine and drug development. Moreover, we also discussed the state of the art for the development of an engineered model to assess patient-derived tumor organoid metastatic potential. Finally, we highlighted the current drawbacks and emerging opportunities to match the industry needs. We envision the use of mechanoresponsive organotypic-on-chip microdevices as an indispensable tool for precision medicine, drug development, disease modeling, tissue engineering, and developmental biology.
Collapse
Affiliation(s)
- Letícia E Charelli
- Nanotechnology Engineering Program, Alberto Luiz Coimbra Institute for Graduate Studies and Research in Engineering, COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.,Mechanical Engineering Department POLI & COPPE/UFRJ, Laboratory of Nano & Microfluidics and Microsystems-LabMEMS, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - João P D Ferreira
- Undergraduate Program in Nanotechnology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Carolina P Naveira-Cotta
- Mechanical Engineering Department POLI & COPPE/UFRJ, Laboratory of Nano & Microfluidics and Microsystems-LabMEMS, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Tiago A Balbino
- Nanotechnology Engineering Program, Alberto Luiz Coimbra Institute for Graduate Studies and Research in Engineering, COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| |
Collapse
|
7
|
Transcranial Sonography of the Substantia Nigra for the Differential Diagnosis of Parkinson's Disease and Other Movement Disorders: A Meta-Analysis. PARKINSON'S DISEASE 2021; 2021:8891874. [PMID: 34007439 PMCID: PMC8110416 DOI: 10.1155/2021/8891874] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 12/17/2020] [Accepted: 04/24/2021] [Indexed: 12/12/2022]
Abstract
This meta-analysis aimed to evaluate the accuracy of hyperechogenicity of the substantia nigra (SN) for the differential diagnosis of Parkinson's disease (PD) and other movement disorders. We systematically searched the PubMed, EMBASE, Cochrane Library, and China National Knowledge Infrastructure databases for relevant studies published between January 2015 and May 2020. Eligible articles comparing the echogenicity of the SN between patients with PD and those with other movement disorders were screened, and two independent reviewers extracted data according to the inclusion and exclusion criteria. Statistical analyses were conducted using STATA (version 15.0) (Stata Corporation, College Station, TX, USA), Review Manager 5.3 (Cochrane Collaboration), and Meta-DiSc1.4 to assess the pooled diagnostic value of transcranial sonography (TCS) for PD. Nine studies with a total of 1046 participants, including 669 patients with PD, were included in the final meta-analysis. Our meta-analysis demonstrated that hyperechogenicity of the SN had a pooled sensitivity and specificity of 0.85 (0.82, 0.87) and 0.71 (0.66, 0.75), respectively, for distinguishing idiopathic Parkinson's disease from other movement disorders. Furthermore, the area under the curve of the summary receiver operating characteristic was 0.94. Transcranial sonography of the SN is a valuable tool for the differential diagnosis of PD and other movement disorders.
Collapse
|
8
|
Kajtez J, Nilsson F, Fiorenzano A, Parmar M, Emnéus J. 3D biomaterial models of human brain disease. Neurochem Int 2021; 147:105043. [PMID: 33887378 DOI: 10.1016/j.neuint.2021.105043] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/21/2021] [Accepted: 04/06/2021] [Indexed: 01/25/2023]
Abstract
Inherent limitations of the traditional approaches to study brain function and disease, such as rodent models and 2D cell culture platforms, have led to the development of 3D in vitro cell culture systems. These systems, products of multidisciplinary efforts encompassing stem cell biology, materials engineering, and biofabrication, have quickly shown great potential to mimic biochemical composition, structural properties, and cellular morphology and diversity found in the native brain tissue. Crucial to these developments have been the advancements in stem cell technology and cell reprogramming protocols that allow reproducible generation of human subtype-specific neurons and glia in laboratory conditions. At the same time, biomaterials have been designed to provide cells in 3D with a microenvironment that mimics functional and structural aspects of the native extracellular matrix with increasing fidelity. In this article, we review the use of biomaterials in 3D in vitro models of neurological disorders with focus on hydrogel technology and with biochemical composition and physical properties of the in vivo environment as reference.
Collapse
Affiliation(s)
- Janko Kajtez
- Department of Experimental Medical Sciences, Wallenberg Neuroscience Center, Division of Neurobiology and Lund Stem Cell Center, BMC A11, Lund University, Lund, S-22184, Sweden.
| | - Fredrik Nilsson
- Department of Experimental Medical Sciences, Wallenberg Neuroscience Center, Division of Neurobiology and Lund Stem Cell Center, BMC A11, Lund University, Lund, S-22184, Sweden
| | - Alessandro Fiorenzano
- Department of Experimental Medical Sciences, Wallenberg Neuroscience Center, Division of Neurobiology and Lund Stem Cell Center, BMC A11, Lund University, Lund, S-22184, Sweden
| | - Malin Parmar
- Department of Experimental Medical Sciences, Wallenberg Neuroscience Center, Division of Neurobiology and Lund Stem Cell Center, BMC A11, Lund University, Lund, S-22184, Sweden
| | - Jenny Emnéus
- Department of Biotechnology and Biomedicine (DTU Bioengineering), Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
9
|
Nicaise AM, Willis CM, Crocker SJ, Pluchino S. Stem Cells of the Aging Brain. Front Aging Neurosci 2020; 12:247. [PMID: 32848716 PMCID: PMC7426063 DOI: 10.3389/fnagi.2020.00247] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022] Open
Abstract
The adult central nervous system (CNS) contains resident stem cells within specific niches that maintain a self-renewal and proliferative capacity to generate new neurons, astrocytes, and oligodendrocytes throughout adulthood. Physiological aging is associated with a progressive loss of function and a decline in the self-renewal and regenerative capacities of CNS stem cells. Also, the biggest risk factor for neurodegenerative diseases is age, and current in vivo and in vitro models of neurodegenerative diseases rarely consider this. Therefore, combining both aging research and appropriate interrogation of animal disease models towards the understanding of the disease and age-related stem cell failure is imperative to the discovery of new therapies. This review article will highlight the main intrinsic and extrinsic regulators of neural stem cell (NSC) aging and discuss how these factors impact normal homeostatic functions within the adult brain. We will consider established in vivo animal and in vitro human disease model systems, and then discuss the current and future trajectories of novel senotherapeutics that target aging NSCs to ameliorate brain disease.
Collapse
Affiliation(s)
- Alexandra M Nicaise
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Cory M Willis
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Stephen J Crocker
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, United States
| | - Stefano Pluchino
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
10
|
Cobbaut M, Karagil S, Bruno L, Diaz de la Loza MDC, Mackenzie FE, Stolinski M, Elbediwy A. Dysfunctional Mechanotransduction through the YAP/TAZ/Hippo Pathway as a Feature of Chronic Disease. Cells 2020; 9:cells9010151. [PMID: 31936297 PMCID: PMC7016982 DOI: 10.3390/cells9010151] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/02/2020] [Accepted: 01/04/2020] [Indexed: 02/07/2023] Open
Abstract
In order to ascertain their external environment, cells and tissues have the capability to sense and process a variety of stresses, including stretching and compression forces. These mechanical forces, as experienced by cells and tissues, are then converted into biochemical signals within the cell, leading to a number of cellular mechanisms being activated, including proliferation, differentiation and migration. If the conversion of mechanical cues into biochemical signals is perturbed in any way, then this can be potentially implicated in chronic disease development and processes such as neurological disorders, cancer and obesity. This review will focus on how the interplay between mechanotransduction, cellular structure, metabolism and signalling cascades led by the Hippo-YAP/TAZ axis can lead to a number of chronic diseases and suggest how we can target various pathways in order to design therapeutic targets for these debilitating diseases and conditions.
Collapse
Affiliation(s)
- Mathias Cobbaut
- Protein Phosphorylation Lab, Francis Crick Institute, London NW1 1AT, UK;
| | - Simge Karagil
- Department of Biomolecular Sciences, Kingston University, Kingston-upon-Thames KT1 2EE, UK; (S.K.); (L.B.); (M.S.)
| | - Lucrezia Bruno
- Department of Biomolecular Sciences, Kingston University, Kingston-upon-Thames KT1 2EE, UK; (S.K.); (L.B.); (M.S.)
- Department of Chemical and Pharmaceutical Sciences, Kingston University, Kingston-upon-Thames KT1 2EE, UK;
| | | | - Francesca E Mackenzie
- Department of Chemical and Pharmaceutical Sciences, Kingston University, Kingston-upon-Thames KT1 2EE, UK;
| | - Michael Stolinski
- Department of Biomolecular Sciences, Kingston University, Kingston-upon-Thames KT1 2EE, UK; (S.K.); (L.B.); (M.S.)
| | - Ahmed Elbediwy
- Department of Biomolecular Sciences, Kingston University, Kingston-upon-Thames KT1 2EE, UK; (S.K.); (L.B.); (M.S.)
- Correspondence:
| |
Collapse
|
11
|
Midbrain area for differentiating Parkinson’s disease from progressive supranuclear palsy. Clin Neurol Neurosurg 2019; 183:105383. [DOI: 10.1016/j.clineuro.2019.105383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 04/18/2019] [Accepted: 06/04/2019] [Indexed: 11/17/2022]
|
12
|
Cunningham J, Zheng Y, Subramanian T, Almekkawy M. Improved Real-Time Capability for Nonlinear Seperable Harmonic Filtering of Ultrasound Images Using a Damped Regularization Method With In-Vivo Results. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2018:891-894. [PMID: 30440534 DOI: 10.1109/embc.2018.8512308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
During the early stage of the disease, idiopathic Parkinson's Disease can be very difficult to differentiate from atypical parkinsonian syndromes. Hyperechogenicity in the substantia nigra is one marker that has been shown to help make this differential diagnosis, and Transcranial Ultrasound Imaging is the preferred method for detecting SN hyperechogenicity. Hyperechogenicity is defined as an echogenic area larger than 0.2cm2. However, B-mode imaging often contains enough noise that the boundary may not be clear, thus making this diagnosis much more difficult. Harmonic imaging using a Third- Order Volterra filter is one solution that has been shown to be successful in filtering out the noise in these images. In this paper we show that regularization methods such as the Truncated Singular Value Decomposi- tion and Damped Singular Value Decomposition can be used to solve for the Volterra Filter's coefficients much more quickly than adaptive Least Mean Squared methods without sacrifice in image quality. These findings have significant implications for the viability of using the Volterra Filter in real-time applications.
Collapse
|
13
|
Butcher NJ, Marras C, Pondal M, Rusjan P, Boot E, Christopher L, Repetto GM, Fritsch R, Chow EWC, Masellis M, Strafella AP, Lang AE, Bassett AS. Neuroimaging and clinical features in adults with a 22q11.2 deletion at risk of Parkinson's disease. Brain 2017; 140:1371-1383. [PMID: 28369257 DOI: 10.1093/brain/awx053] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/23/2017] [Indexed: 11/14/2022] Open
Abstract
The recurrent 22q11.2 deletion is a genetic risk factor for early-onset Parkinson's disease. Adults with the associated 22q11.2 deletion syndrome (22q11.2DS) may exhibit phenotypes that could help identify those at highest risk and reveal disease trajectories. We investigated clinical and neuroimaging features relevant to Parkinson's disease in 26 adults: 13 with 22q11.2DS at genetic risk of Parkinson's disease (mean age = 41.5 years, standard deviation = 9.7), 12 healthy age and sex-matched controls, and a 22q11.2DS patient with l-DOPA-responsive early-onset Parkinson's disease. Neuroimaging included transcranial sonography and positron emission tomography using 11C-dihydrotetrabenazine (11C-DTBZ), a radioligand that binds to the presynaptic vesicular monoamine transporter. The 22q11.2DS group without Parkinson's disease demonstrated significant motor and olfactory deficits relative to controls. Eight (61.5%) were clinically classified with parkinsonism. Transcranial sonography showed a significantly larger mean area of substantia nigra echogenicity in the 22q11.2DS risk group compared with controls (P = 0.03). The 22q11.2DS patient with Parkinson's disease showed the expected pattern of severely reduced striatal 11C-DTBZ binding. The 22q11.2DS group without Parkinson's disease however showed significantly elevated striatal 11C-DTBZ binding relative to controls (∼33%; P < 0.01). Results were similar within the 22q11.2DS group for those with (n = 7) and without (n = 6) psychotic illness. These findings suggest that manifestations of parkinsonism and/or evolution to Parkinson's disease in this genetic at-risk population may include a hyperdopaminergic mechanism. Adequately powered longitudinal studies and animal models are needed to evaluate the relevance of the observed clinical and imaging phenotypes to Parkinson's disease and other disorders that are more prevalent in 22q11.2DS, such as schizophrenia.
Collapse
Affiliation(s)
- Nancy J Butcher
- Clinical Genetics Research Program and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Ontario, Canada
| | - Connie Marras
- Morton and Gloria Shulman Movement Disorders Centre, Toronto Western Hospital and the Edmond J. Safra Program in Parkinson's Disease Research, University of Toronto, Toronto, Ontario, Canada.,Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Margarita Pondal
- Morton and Gloria Shulman Movement Disorders Centre, Toronto Western Hospital and the Edmond J. Safra Program in Parkinson's Disease Research, University of Toronto, Toronto, Ontario, Canada
| | - Pablo Rusjan
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Erik Boot
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,The Dalglish Family 22q Clinic for Adults with 22q11.2 Deletion Syndrome, and Department of Psychiatry, University Health Network, Toronto, Ontario, Canada
| | - Leigh Christopher
- Institute of Medical Science, University of Toronto, Ontario, Canada.,Morton and Gloria Shulman Movement Disorders Centre, Toronto Western Hospital and the Edmond J. Safra Program in Parkinson's Disease Research, University of Toronto, Toronto, Ontario, Canada.,Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Division of Brain, Imaging and Behaviour-Systems Neuroscience, Toronto Western Research Institute, University Hospital Network, University of Toronto, Toronto, Ontario, Canada
| | - Gabriela M Repetto
- Centre for Genetics and Genomics, Facultad de Medicina, Clinica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Rosemarie Fritsch
- Departamento de Psiquiatría y Salud Mental, Clínica Psiquiátrica Recoleta, Universidad de Chile, Santiago, Chile
| | - Eva W C Chow
- Clinical Genetics Research Program and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Mario Masellis
- Sunnybrook Health Sciences Research Centre, Toronto, Ontario, Canada
| | - Antonio P Strafella
- Institute of Medical Science, University of Toronto, Ontario, Canada.,Morton and Gloria Shulman Movement Disorders Centre, Toronto Western Hospital and the Edmond J. Safra Program in Parkinson's Disease Research, University of Toronto, Toronto, Ontario, Canada.,Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada.,Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Division of Brain, Imaging and Behaviour-Systems Neuroscience, Toronto Western Research Institute, University Hospital Network, University of Toronto, Toronto, Ontario, Canada.,Toronto Western Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Anthony E Lang
- Institute of Medical Science, University of Toronto, Ontario, Canada.,Morton and Gloria Shulman Movement Disorders Centre, Toronto Western Hospital and the Edmond J. Safra Program in Parkinson's Disease Research, University of Toronto, Toronto, Ontario, Canada.,Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada.,Toronto Western Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Tanz Centre for Research in Neurodegenerative Diseases, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Anne S Bassett
- Clinical Genetics Research Program and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,The Dalglish Family 22q Clinic for Adults with 22q11.2 Deletion Syndrome, and Department of Psychiatry, University Health Network, Toronto, Ontario, Canada.,Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada.,Division of Cardiology, Department of Medicine, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Puz P, Lasek-Bal A, Radecka P. Transcranial sonography of subcortical structures in patients with multiple sclerosis. Acta Neurol Scand 2017; 136:24-30. [PMID: 27642106 DOI: 10.1111/ane.12689] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2016] [Indexed: 11/29/2022]
Abstract
BACKGROUND Transcranial sonography may be applied to assess the basal ganglia nuclei and brain atrophy by the measurement of the width of the third ventricle. The aim of this study was to assess usefulness of transcranial sonography (TCS) in patients with multiple sclerosis (MS) by examining the echogenicity of subcortical structures and the width of the third ventricle. METHOD Transcranial sonography evaluation of substantia nigra, brain stem raphe nuclei, diameter of the third ventricle, width of the anterior horn of the lateral ventricle, thalamus, lenticular nucleus, and head of the caudate nucleus in 41 patients with relapsing-remitting MS (RRMS), 23 with secondary progressive MS (SPMS), and 20 healthy controls was compared. A potential link between the patients' age, sex, Expanded Disability Status Scale (EDSS) score, relapse index, and ultrasound parameters was assessed. RESULTS The following were found in patients with MS, as compared to the control group: a greater area of the substantia nigra, a longer diameter of the third ventricle and wider frontal horns of the lateral ventricles, hypo-echogenicity of the brain stem raphe, and hyperechogenicity of the lenticular nucleus. The study group was found to have a significant correlation between the area of the substantia nigra, and the age of patients, the duration of the illness, EDSS score, and the number of relapses. There was a significant correlation between the diameter of the third ventricle and the age of patients and EDSS score. CONCLUSIONS Patients with MS reveal ultrasound features of subcortical structure atrophy. Selected TCS findings show a correlation with disease progression and activity.
Collapse
Affiliation(s)
- P. Puz
- Department of Neurology; Clinical Hospital No 7; Medical University of Silesia; Professor Leszek Giec Upper Silesian Medical Centre; Katowice Poland
| | - A. Lasek-Bal
- Department of Neurology; Clinical Hospital No 7; Medical University of Silesia; Professor Leszek Giec Upper Silesian Medical Centre; Katowice Poland
- High School of Science; Medical University of Silesia; Katowice Poland
| | - P. Radecka
- Department of Neurology; Clinical Hospital No 7; Medical University of Silesia; Professor Leszek Giec Upper Silesian Medical Centre; Katowice Poland
| |
Collapse
|
15
|
Walter U, Zach H, Liepelt-Scarfone I, Maetzler W. Hilfreiche Zusatzuntersuchungen beim idiopathischen Parkinson-Syndrom. DER NERVENARZT 2017; 88:365-372. [PMID: 28289798 DOI: 10.1007/s00115-017-0289-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- U Walter
- Klinik und Poliklinik für Neurologie, Universitätsmedizin Rostock, Rostock, Deutschland
| | - H Zach
- Universitätsklinik für Neurologie, Medizinische Universität Wien, Wien, Österreich
- Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Radboud University Medical Centre, Nijmegen, Niederlande
| | - I Liepelt-Scarfone
- Hertie Institut für klinische Hirnforschung, Universität Tübingen und Deutsches Zentrum für Neurodegenerative Erkrankungen, Tübingen, Deutschland
| | - W Maetzler
- Klinik für Neurologie, Universitätsklinikum Schleswig-Holstein, Arnold-Heller-Straße 3, 24105, Kiel, Deutschland.
| |
Collapse
|
16
|
Barnes JM, Przybyla L, Weaver VM. Tissue mechanics regulate brain development, homeostasis and disease. J Cell Sci 2017; 130:71-82. [PMID: 28043968 PMCID: PMC5394781 DOI: 10.1242/jcs.191742] [Citation(s) in RCA: 213] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
All cells sense and integrate mechanical and biochemical cues from their environment to orchestrate organismal development and maintain tissue homeostasis. Mechanotransduction is the evolutionarily conserved process whereby mechanical force is translated into biochemical signals that can influence cell differentiation, survival, proliferation and migration to change tissue behavior. Not surprisingly, disease develops if these mechanical cues are abnormal or are misinterpreted by the cells - for example, when interstitial pressure or compression force aberrantly increases, or the extracellular matrix (ECM) abnormally stiffens. Disease might also develop if the ability of cells to regulate their contractility becomes corrupted. Consistently, disease states, such as cardiovascular disease, fibrosis and cancer, are characterized by dramatic changes in cell and tissue mechanics, and dysregulation of forces at the cell and tissue level can activate mechanosignaling to compromise tissue integrity and function, and promote disease progression. In this Commentary, we discuss the impact of cell and tissue mechanics on tissue homeostasis and disease, focusing on their role in brain development, homeostasis and neural degeneration, as well as in brain cancer.
Collapse
Affiliation(s)
- J Matthew Barnes
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California San Francisco (UCSF), San Francisco, CA 94143, USA
| | - Laralynne Przybyla
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California San Francisco (UCSF), San Francisco, CA 94143, USA
| | - Valerie M Weaver
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California San Francisco (UCSF), San Francisco, CA 94143, USA
- Departments of Anatomy, Bioengineering and Therapeutic Sciences, Radiation Oncology, and the Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research and The Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, CA 94143, USA
| |
Collapse
|
17
|
Fujita H, Suzuki K, Numao A, Watanabe Y, Uchiyama T, Miyamoto T, Miyamoto M, Hirata K. Usefulness of Cardiac MIBG Scintigraphy, Olfactory Testing and Substantia Nigra Hyperechogenicity as Additional Diagnostic Markers for Distinguishing between Parkinson's Disease and Atypical Parkinsonian Syndromes. PLoS One 2016; 11:e0165869. [PMID: 27812167 PMCID: PMC5094741 DOI: 10.1371/journal.pone.0165869] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 10/19/2016] [Indexed: 01/02/2023] Open
Abstract
Background We aimed to evaluate the utility of the combined use of cardiac 123I-metaiodobenzylguanidine (MIBG) scintigraphy, olfactory testing, and substantia nigra (SN) hyperechogenicity on transcranial sonography (TCS) in differentiating Parkinson’s disease (PD) from atypical parkinsonian syndromes (APSs), such as multiple system atrophy (MSA) and progressive supranuclear palsy (PSP). Methods Cardiac MIBG scintigraphy, card-type odor identification testing (Open Essence (OE), Wako, Japan), and TCS were performed with 101 patients with PD and 38 patients with APSs (MSA and PSP). Receiver operating characteristic (ROC) curve analysis was used to assess the sensitivity and specificity of these batteries for diagnosing PD from APSs. The diagnostic accuracy of the three tests was also assessed among patients at the early disease stage (drug-naïve patients with a disease duration of 3 years or less). Results In differentiating PD from APSs, the area under the ROC curve was 0.74 (95% CI, 0.65–0.83), 0.8 (95% CI, 0.73–0.87), and 0.75 (95% CI, 0.67–0.82) for TCS, cardiac MIBG scintigraphy, and olfactory testing, respectively. The diagnostic sensitivity and specificity were 53.1% and 91.7%, respectively, for TCS, 70.3% and 86.8%, respectively, for cardiac MIBG scintigraphy, 58.4% and 76.3%, respectively, for OE. Among early-stage patients, sensitivity and specificity were 50.0% and 93.8%, respectively, for TCS, 57.1% and 87.5%, respectively, for cardiac MIBG scintigraphy, and 54.8% and 79.2%, respectively, for OE. At least one positive result from 3 tests improved sensitivity (86.1%) but decreased specificity (63.2%). In contrast, at least 2 positive results from 3 tests had good discrimination for both early-stage patients (50.0% sensitivity and 93.8% specificity) and patients overall (57.8% sensitivity and 95.8% specificity). Positive results for all 3 tests yielded 100% specificity but low sensitivity (25%). Conclusions At least 2 positive results from among TCS, cardiac MIBG scintigraphy, and olfactory testing can support clinical diagnosis in distinguishing PD from APSs.
Collapse
Affiliation(s)
- Hiroaki Fujita
- Department of Neurology, Dokkyo Medical University, Tochigi, Japan
| | - Keisuke Suzuki
- Department of Neurology, Dokkyo Medical University, Tochigi, Japan
- * E-mail:
| | - Ayaka Numao
- Department of Neurology, Dokkyo Medical University, Tochigi, Japan
| | - Yuji Watanabe
- Department of Neurology, Dokkyo Medical University, Tochigi, Japan
| | - Tomoyuki Uchiyama
- Department of Neurology, Dokkyo Medical University, Tochigi, Japan
- Continence Center, Dokkyo Medical University, Tochigi, Japan
| | - Tomoyuki Miyamoto
- Department of Neurology, Dokkyo Medical University Koshigaya Hospital, Saitama, Japan
| | - Masayuki Miyamoto
- Department of Clinical Medicine for Nursing, Dokkyo Medical University School of Nursing, Tochigi, Japan
| | - Koichi Hirata
- Department of Neurology, Dokkyo Medical University, Tochigi, Japan
| |
Collapse
|
18
|
Molina JL, González Alemán G, Florenzano N, Padilla E, Calvó M, Guerrero G, Kamis D, Stratton L, Toranzo J, Molina Rangeon B, Hernández Cuervo H, Bourdieu M, Sedó M, Strejilevich S, Cloninger CR, Escobar JI, de Erausquin GA. Prediction of Neurocognitive Deficits by Parkinsonian Motor Impairment in Schizophrenia: A Study in Neuroleptic-Naïve Subjects, Unaffected First-Degree Relatives and Healthy Controls From an Indigenous Population. Schizophr Bull 2016; 42:1486-1495. [PMID: 26994395 PMCID: PMC5049519 DOI: 10.1093/schbul/sbw023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND Neurocognitive deficits are among the most debilitating and pervasive symptoms of schizophrenia, and are present also in unaffected first-degree relatives. Also, multiple reports reveal parkisonian motor deficits in untreated subjects with schizophrenia and in first-degree relatives of affected subjects. Yet, the relation between motor and cognitive impairment and its value as a classifier of endophenotypes has not been studied. AIMS To test the efficacy of midbrain hyperechogenicity (MHE) and parkinsonian motor impairment (PKM) as predictors of neurocognitive impairment in subjects with or at risk for schizophrenia, that could be used to segregate them from first-degree relatives and healthy controls. METHOD Seventy-six subjects with chronic schizophrenia never exposed to antipsychotic medication, 106 unaffected first-degree relatives, and 62 healthy controls were blindly assessed for cognitive and motor function, and transcranial ultrasound. RESULTS Executive function, fluid intelligence, motor planning, and hand coordination showed group differences. PKM and MHE were significantly higher in untreated schizophrenia and unaffected relatives. Unaffected relatives showed milder impairment, but were different from controls. CONCLUSIONS PKM and MHE predict cognitive impairment in neuroleptic-naive patients with schizophrenia and their unaffected first-degree relatives and may be used to segregate them from first-degree relatives and healthy controls.
Collapse
Affiliation(s)
- Juan L. Molina
- Roskamp Laboratory of Brain Development, Modulation and Repair, Department of Psychiatry and Behavioral Neurosciences, University of South Florida, Tampa, FL
| | | | - Néstor Florenzano
- Unidad de Neurociencias, Dr. J.J. Naón, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Eduardo Padilla
- Hospital Neuropsiquiátrico Dr. Néstor Sequeiros, San Salvador de Jujuy, Argentina
| | - María Calvó
- Hospital Neuropsiquiátrico Dr. Néstor Sequeiros, San Salvador de Jujuy, Argentina
| | - Gonzalo Guerrero
- Hospital Neuropsiquiátrico Dr. Néstor Sequeiros, San Salvador de Jujuy, Argentina
| | - Danielle Kamis
- Roskamp Laboratory of Brain Development, Modulation and Repair, Department of Psychiatry and Behavioral Neurosciences, University of South Florida, Tampa, FL
| | - Lee Stratton
- Roskamp Laboratory of Brain Development, Modulation and Repair, Department of Psychiatry and Behavioral Neurosciences, University of South Florida, Tampa, FL
| | | | | | - Helena Hernández Cuervo
- Roskamp Laboratory of Brain Development, Modulation and Repair, Department of Psychiatry and Behavioral Neurosciences, University of South Florida, Tampa, FL
| | | | | | | | - Claude Robert Cloninger
- Departments of Psychiatry and Genetics, Washington University School of Medicine, St Louis, MO
| | - Javier I. Escobar
- Department of Psychiatry, Rutgers University-Robert Wood Johnson Medical School, New Brunswick, NJ
| | - Gabriel A. de Erausquin
- Roskamp Laboratory of Brain Development, Modulation and Repair, Department of Psychiatry and Behavioral Neurosciences, University of South Florida, Tampa, FL;,Division of Neurosciences and Department of Psychiatry and Neurology, UTRGV School of Medicine, Harlingen, TX,*To whom correspondence should be addressed; Division of Neurosciences and Department of Psychiatry and Neurology, UTRGV School of Medicine, 2102 Treasure Hills Blvd., Harlingen, TX 78550, US; tel: 956-296-1546, fax: 956-665-2450, e-mail:
| |
Collapse
|
19
|
Ungureanu AA, Benilova I, Krylychkina O, Braeken D, De Strooper B, Van Haesendonck C, Dotti CG, Bartic C. Amyloid beta oligomers induce neuronal elasticity changes in age-dependent manner: a force spectroscopy study on living hippocampal neurons. Sci Rep 2016; 6:25841. [PMID: 27173984 PMCID: PMC4865860 DOI: 10.1038/srep25841] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 04/22/2016] [Indexed: 01/09/2023] Open
Abstract
Small soluble species of amyloid-beta (Aβ) formed during early peptide aggregation stages are responsible for several neurotoxic mechanisms relevant to the pathology of Alzheimer's disease (AD), although their interaction with the neuronal membrane is not completely understood. This study quantifies the changes in the neuronal membrane elasticity induced by treatment with the two most common Aβ isoforms found in AD brains: Aβ40 and Aβ42. Using quantitative atomic force microscopy (AFM), we measured for the first time the static elastic modulus of living primary hippocampal neurons treated with pre-aggregated Aβ40 and Aβ42 soluble species. Our AFM results demonstrate changes in the elasticity of young, mature and aged neurons treated for a short time with the two Aβ species pre-aggregated for 2 hours. Neurons aging under stress conditions, showing aging hallmarks, are the most susceptible to amyloid binding and show the largest decrease in membrane stiffness upon Aβ treatment. Membrane stiffness defines the way in which cells respond to mechanical forces in their environment and has been shown to be important for processes such as gene expression, ion-channel gating and neurotransmitter vesicle transport. Thus, one can expect that changes in neuronal membrane elasticity might directly induce functional changes related to neurodegeneration.
Collapse
Affiliation(s)
- Andreea-Alexandra Ungureanu
- Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, B-3001, Leuven, Belgium.,imec, Kapeldreef 75, B-3001 Leuven, Belgium
| | - Iryna Benilova
- VIB Center for the Biology of Diseases, ON 4 Campus Gasthuisberg, Herestraat 49, B-3001, Leuven, Belgium
| | | | | | - Bart De Strooper
- VIB Center for the Biology of Diseases, ON 4 Campus Gasthuisberg, Herestraat 49, B-3001, Leuven, Belgium
| | - Chris Van Haesendonck
- Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, B-3001, Leuven, Belgium
| | - Carlos G Dotti
- VIB Center for the Biology of Diseases, ON 4 Campus Gasthuisberg, Herestraat 49, B-3001, Leuven, Belgium.,CSIC, Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid Campus Cantoblanco, 28049 Madrid, Spain
| | - Carmen Bartic
- Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, B-3001, Leuven, Belgium.,imec, Kapeldreef 75, B-3001 Leuven, Belgium
| |
Collapse
|
20
|
Pilotto A, Yilmaz R, Berg D. Developments in the role of transcranial sonography for the differential diagnosis of parkinsonism. Curr Neurol Neurosci Rep 2016; 15:43. [PMID: 26008814 DOI: 10.1007/s11910-015-0566-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the last two decades transcranial sonography (TCS) has developed as a valuable, supplementary tool in the diagnosis and differential diagnosis of movement disorders. In this review, we highlight recent evidence supporting TCS as a reliable method in the differential diagnosis of parkinsonism, combining substantia nigra (SN), basal ganglia and ventricular system findings. Moreover, several studies support SN hyperechogenicity as one of most important risk factors for Parkinson's disease (PD). The advantages of TCS include short investigation time, low cost and lack of radiation. Principal limitations are still the dependency on the bone window and operator experience. New automated algorithms may reduce the role of investigator skill in the assessment and interpretation, increasing TCS diagnostic reliability. Based on the convincing evidence available, the EFNS accredited the method of TCS a level A recommendation for supporting the diagnosis of PD and its differential diagnosis from secondary and atypical parkinsonism. An increasing number of training programmes is extending the use of this technique in clinical practice.
Collapse
Affiliation(s)
- Andrea Pilotto
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | | | | |
Collapse
|
21
|
Li K, Reichmann H. Role of iron in neurodegenerative diseases. J Neural Transm (Vienna) 2016; 123:389-99. [PMID: 26794939 DOI: 10.1007/s00702-016-1508-7] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 01/12/2016] [Indexed: 01/01/2023]
Abstract
Currently, we still lack effective measures to modify disease progression in neurodegenerative diseases. Iron-containing proteins play an essential role in many fundamental biological processes in the central nervous system. In addition, iron is a redox-active ion and can induce oxidative stress in the cell. Although the causes and pathology hallmarks of different neurodegenerative diseases vary, iron dyshomeostasis, oxidative stress and mitochondrial injury constitute a common pathway to cell death in several neurodegenerative diseases. MRI is capable of depicting iron content in the brain, and serves as a potential biomarker for early and differential diagnosis, tracking disease progression and evaluating the effectiveness of neuroprotective therapy. Iron chelators have shown their efficacy against neurodegeneration in a series of animal models, and been applied in several clinical trials. In this review, we summarize recent developments on iron dyshomeostasis in Parkinson's disease, Alzheimer's disease, Friedreich ataxia, and Huntington's disease.
Collapse
Affiliation(s)
- Kai Li
- Center of Clinical Neuroscience, University Hospital Carl Gustav Carus, Dresden University of Technology, Fetscherstr. 74, 01307, Dresden, Germany.
| | - Heinz Reichmann
- Department of Neurology, University Hospital Carl Gustav Carus, Dresden University of Technology, Fetscherstr. 74, 01307, Dresden, Germany
| |
Collapse
|
22
|
López-Sendón Moreno JL, Alonso-Cánovas A, Buisán Catevilla J, García Barragán N, Corral Corral I, de Felipe Mimbrera A, Matute Lozano MC, Masjuan Vallejo J, Martínez-Castrillo JC. Substantia Nigra Echogenicity Predicts Response to Drug Withdrawal in Suspected Drug-Induced Parkinsonism. Mov Disord Clin Pract 2015; 3:268-274. [PMID: 30363526 DOI: 10.1002/mdc3.12281] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 09/04/2015] [Accepted: 09/16/2015] [Indexed: 12/28/2022] Open
Abstract
Introduction Response to drug withdrawal in patients with suspected drug-induced parkinsonism (DIP) is of prognostic and therapeutic importance, but cannot be predicted solely on clinical information. The aim of this study was to validate SN hyperechogenicity (SN+) assessed by transcranial sonography as a predictor of response to drug withdrawal in this group of patients. Methods Patients were diagnosed according to previously published criteria and prospectively included in the study. All patients were followed until complete recovery of parkinsonian symptoms or at least for 6 months after discontinuation of the offending drug and then diagnosed as DIP or parkinsonism following neuroleptic exposure (PFNE). Transcranial sonography (TCS) findings were compared with the clinical diagnosis. Results Sixty patients comprised the group for the final analysis. Sixteen patients were classified as PFNE and 44 as DIP. The area of SN echogenicity was significantly increased in the PFNE group (0.23 cm2; standard deviation [SD]: 0.04), compared to the DIP group (0.14 cm2; SD, 0.05; one-way analysis of variance; P < 0.001). Normal SN was significantly associated with complete recovery after withdrawal of the parkinsonism-inducing drug (P < 0.0005). Accuracy of SN+ to distinguish PFNE from DIP was: sensitivity 81.2%; specificity 84.1%; positive predictive value 47.4%; and negative predictive value 96.2%. Conclusions We believe that SN+ assessed with TCS is a valid prognostic marker in the setting of suspected DIP. It is a nonexpensive, feasible technique that can be implemented for proper counseling and guidance of treatment decisions.
Collapse
Affiliation(s)
- Jose L López-Sendón Moreno
- Movement Disorders Center Department of Neurology Hospital Universitario Ramón y Cajal Madrid Spain.,Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) Madrid Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) Madrid Spain
| | - Araceli Alonso-Cánovas
- Movement Disorders Center Department of Neurology Hospital Universitario Ramón y Cajal Madrid Spain.,Department of Medicine Universidad de Alcalá de Henares Madrid Spain
| | | | | | | | | | | | - Jaime Masjuan Vallejo
- Department of Medicine Universidad de Alcalá de Henares Madrid Spain.,Department of Neurology Hospital Universitario Ramón y Cajal Madrid Spain
| | - Juan Carlos Martínez-Castrillo
- Movement Disorders Center Department of Neurology Hospital Universitario Ramón y Cajal Madrid Spain.,Department of Neurology Hospital Universitario Ramón y Cajal Madrid Spain
| |
Collapse
|
23
|
Kamis D, Stratton L, Calvó M, Padilla E, Florenzano N, Guerrero G, Molina Rangeon B, Molina J, de Erausquin GA. Sex and laterality differences in parkinsonian impairment and transcranial ultrasound in never-treated schizophrenics and their first degree relatives in an Andean population. Schizophr Res 2015; 164:250-5. [PMID: 25735637 PMCID: PMC4409537 DOI: 10.1016/j.schres.2015.01.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 01/18/2015] [Accepted: 01/21/2015] [Indexed: 11/16/2022]
Abstract
We tested the hypothesis that loss of substantia nigra neurons in subjects at risk of schizophrenia (1), as reflected by midbrain hyperechogenicity (2) and parkinsonian motor impairment (3), is asymmetric and influenced by sex. We evaluated 62 subjects with never-treated chronic schizophrenia, 80 of their adult, unaffected first degree relatives and 62 healthy controls (matched by sex and age to the cases), part of an Andean population of Northern Argentina. Parkinsonism was scored blindly using UPDRS-3 (Unified Parkinson's Disease Rating Scale) on videotaped exams by 2 independent raters. Transcranial ultrasound was performed by an expert sonographist blind to subject condition with a 2.5 MHz transducer through a temporal bone window. Quantification of echogenic area was carried out on saved images by a different evaluator. We found a significant difference in parkinsonian motor impairment between patients, their relatives as well as controls. All three groups showed worse parkinsonism on the left side than the right, corresponding with increased echogenicity on the right substantia nigra compared with the left. Females had significantly more right echogenicity than males, and patients and unaffected relatives were significantly more echogenic than controls on that side. On the left, only female patients had significant echogenicity. Our data supports the notion that unaffected relatives of schizophrenic subjects have increased parkinsonism and concomitant brainstem abnormalities which may represent a vulnerability to the disease. Both motor and brainstem abnormalities are asymmetric and influenced by sex.
Collapse
Affiliation(s)
- Danielle Kamis
- Roskamp Laboratory of Brain Development, Modulation and Repair, University of South Florida, United States
| | - Lee Stratton
- Roskamp Laboratory of Brain Development, Modulation and Repair, University of South Florida, United States
| | - María Calvó
- Hospital Neuropsiquiátrico Néstor Sequeiros, Ministerio de Salud, Provincia de Jujuy, Argentina; Fundación de Lucha contra los Trastornos Neurológicos y Psiquiátricos en Minorías (FULTRA), Argentina
| | - Eduardo Padilla
- Hospital Neuropsiquiátrico Néstor Sequeiros, Ministerio de Salud, Provincia de Jujuy, Argentina; Fundación de Lucha contra los Trastornos Neurológicos y Psiquiátricos en Minorías (FULTRA), Argentina
| | - Néstor Florenzano
- Fundación de Lucha contra los Trastornos Neurológicos y Psiquiátricos en Minorías (FULTRA), Argentina; Instituto de Morfología J. J. Naón, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | - Gonzalo Guerrero
- Fundación de Lucha contra los Trastornos Neurológicos y Psiquiátricos en Minorías (FULTRA), Argentina
| | - Beatriz Molina Rangeon
- Fundación de Lucha contra los Trastornos Neurológicos y Psiquiátricos en Minorías (FULTRA), Argentina
| | - Juan Molina
- Roskamp Laboratory of Brain Development, Modulation and Repair, University of South Florida, United States
| | - Gabriel A de Erausquin
- Roskamp Laboratory of Brain Development, Modulation and Repair, University of South Florida, United States.
| |
Collapse
|
24
|
Prell T, Schenk A, Witte OW, Grosskreutz J, Günther A. Transcranial brainstem sonography as a diagnostic tool for amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 2014; 15:244-9. [DOI: 10.3109/21678421.2014.881499] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
25
|
Evaluation of transcranial sonographic findings and MIBG cardiac scintigraphy in the diagnosis of idiopathic Parkinson's disease. Parkinsonism Relat Disord 2013; 19:995-9. [DOI: 10.1016/j.parkreldis.2013.06.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 04/29/2013] [Accepted: 06/27/2013] [Indexed: 11/23/2022]
|
26
|
Walter U. How to measure substantia nigra hyperechogenicity in Parkinson disease: detailed guide with video. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2013; 32:1837-1843. [PMID: 24065265 DOI: 10.7863/ultra.32.10.1837] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The detection of an enlarged echogenic size ("hyperechogenicity") of the substantia nigra on transcranial sonography is increasingly used for the early and differential diagnosis of Parkinson disease. However, the diagnostic value of substantia nigra sonography depends on the quality of its execution. This article with an accompanying video presents a step-by-step description and demonstration of ultrasound system settings, typical errors in assessment of the substantia nigra, planimetric measurement of substantia nigra echogenicity according to current guidelines, and its diagnostic implications in 2 exemplary patients with parkinsonism. Published cutoff values for grading substantia nigra hyperechogenicity with different ultrasound systems and novel technologies are reviewed.
Collapse
Affiliation(s)
- Uwe Walter
- Department of Neurology, University of Rostock, Gehlsheimer Strasse 20, D-18147 Rostock, Germany. E-
| |
Collapse
|
27
|
Blazejewska AI, Schwarz ST, Pitiot A, Stephenson MC, Lowe J, Bajaj N, Bowtell RW, Auer DP, Gowland PA. Visualization of nigrosome 1 and its loss in PD: pathoanatomical correlation and in vivo 7 T MRI. Neurology 2013; 81:534-40. [PMID: 23843466 DOI: 10.1212/wnl.0b013e31829e6fd2] [Citation(s) in RCA: 202] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE This study assessed whether high-resolution 7 T MRI allowed direct in vivo visualization of nigrosomes, substructures of the substantia nigra pars compacta (SNpc) undergoing the greatest and earliest dopaminergic cell loss in Parkinson disease (PD), and whether any disease-specific changes could be detected in patients with PD. METHODS Postmortem (PM) midbrains, 2 from healthy controls (HCs) and 1 from a patient with PD, were scanned with high-resolution T2*-weighted MRI scans, sectioned, and stained for iron and neuromelanin (Perl), TH, and calbindin. To confirm the identification of nigrosomes in vivo on 7 T T2*-weighted scans, we assessed colocalization with neuromelanin-sensitive T1-weighted scans. We then assessed the ability to depict PD pathology on in vivo T2*-weighted scans by comparing data from 10 patients with PD and 8 age- and sex-matched HCs. RESULTS A hyperintense, ovoid area within the dorsolateral border of the otherwise hypointense SNpc was identified in the HC brains on in vivo and PM T2*-weighted MRI. Location, size, shape, and staining characteristics conform to nigrosome 1. Blinded assessment by 2 neuroradiologists showed consistent bilateral absence of this nigrosome feature in all 10 patients with PD, and bilateral presence in 7/8 HC. CONCLUSIONS In vivo and PM MRI with histologic correlation demonstrates that high-resolution 7 T MRI can directly visualize nigrosome 1. The absence of nigrosome 1 in the SNpc on MRI scans might prove useful in developing a neuroimaging diagnostic test for PD.
Collapse
Affiliation(s)
- Anna I Blazejewska
- Sir Peter Mansfield Magnetic Resonance Centre, University of Nottingham, Nottingham, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Berardelli A, Wenning GK, Antonini A, Berg D, Bloem BR, Bonifati V, Brooks D, Burn DJ, Colosimo C, Fanciulli A, Ferreira J, Gasser T, Grandas F, Kanovsky P, Kostic V, Kulisevsky J, Oertel W, Poewe W, Reese JP, Relja M, Ruzicka E, Schrag A, Seppi K, Taba P, Vidailhet M. EFNS/MDS-ES/ENS [corrected] recommendations for the diagnosis of Parkinson's disease. Eur J Neurol 2013; 20:16-34. [PMID: 23279440 DOI: 10.1111/ene.12022] [Citation(s) in RCA: 346] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 09/18/2012] [Indexed: 01/24/2023]
Abstract
BACKGROUND A Task Force was convened by the EFNS/MDS-ES Scientist Panel on Parkinson's disease (PD) and other movement disorders to systemically review relevant publications on the diagnosis of PD. METHODS Following the EFNS instruction for the preparation of neurological diagnostic guidelines, recommendation levels have been generated for diagnostic criteria and investigations. RESULTS For the clinical diagnosis, we recommend the use of the Queen Square Brain Bank criteria (Level B). Genetic testing for specific mutations is recommended on an individual basis (Level B), taking into account specific features (i.e. family history and age of onset). We recommend olfactory testing to differentiate PD from other parkinsonian disorders including recessive forms (Level A). Screening for pre-motor PD with olfactory testing requires additional tests due to limited specificity. Drug challenge tests are not recommended for the diagnosis in de novo parkinsonian patients. There is an insufficient evidence to support their role in the differential diagnosis between PD and other parkinsonian syndromes. We recommend an assessment of cognition and a screening for REM sleep behaviour disorder, psychotic manifestations and severe depression in the initial evaluation of suspected PD cases (Level A). Transcranial sonography is recommended for the differentiation of PD from atypical and secondary parkinsonian disorders (Level A), for the early diagnosis of PD and in the detection of subjects at risk for PD (Level A), although the technique is so far not universally used and requires some expertise. Because specificity of TCS for the development of PD is limited, TCS should be used in conjunction with other screening tests. Conventional magnetic resonance imaging and diffusion-weighted imaging at 1.5 T are recommended as neuroimaging tools that can support a diagnosis of multiple system atrophy (MSA) or progressive supranuclear palsy versus PD on the basis of regional atrophy and signal change as well as diffusivity patterns (Level A). DaTscan SPECT is registered in Europe and the United States for the differential diagnosis between degenerative parkinsonisms and essential tremor (Level A). More specifically, DaTscan is indicated in the presence of significant diagnostic uncertainty such as parkinsonism associated with neuroleptic exposure and atypical tremor manifestations such as isolated unilateral postural tremor. Studies of [(123) I]MIBG/SPECT cardiac uptake may be used to identify patients with PD versus controls and MSA patients (Level A). All other SPECT imaging studies do not fulfil registration standards and cannot be recommended for routine clinical use. At the moment, no conclusion can be drawn as to diagnostic efficacy of autonomic function tests, neurophysiological tests and positron emission tomography imaging in PD. CONCLUSIONS The diagnosis of PD is still largely based on the correct identification of its clinical features. Selected investigations (genetic, olfactory, and neuroimaging studies) have an ancillary role in confirming the diagnosis, and some of them could be possibly used in the near future to identify subjects in a pre-symptomatic phase of the disease.
Collapse
Affiliation(s)
- A Berardelli
- Dipartimento di Neurologia e Psichiatria and IRCCS NEUROMED Institute, Sapienza, Università di Roma, Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Berg D, Lang AE, Postuma RB, Maetzler W, Deuschl G, Gasser T, Siderowf A, Schapira AH, Oertel W, Obeso JA, Olanow CW, Poewe W, Stern M. Changing the research criteria for the diagnosis of Parkinson's disease: obstacles and opportunities. Lancet Neurol 2013; 12:514-24. [DOI: 10.1016/s1474-4422(13)70047-4] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
30
|
Abstract
All cells are influenced by mechanical forces. In the brain, force-generating and load-bearing proteins twist, turn, ratchet, flex, compress, expand and bend to mediate neuronal signalling and plasticity. Although the functions of mechanosensitive proteins have been thoroughly described in classical sensory systems, the effects of endogenous mechanical energy on cellular function in the brain have received less attention, and many working models in neuroscience do not currently integrate principles of cellular mechanics. An understanding of cellular-mechanical concepts is essential to allow the integration of mechanobiology into ongoing studies of brain structure and function.
Collapse
|
31
|
Laučkaitė K, Rastenytė D, Šurkienė D, Vaitkus A, Sakalauskas A, Lukoševičius A, Gleiznienė R. Specificity of transcranial sonography in parkinson spectrum disorders in comparison to degenerative cognitive syndromes. BMC Neurol 2012; 12:12. [PMID: 22400906 PMCID: PMC3317847 DOI: 10.1186/1471-2377-12-12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 03/08/2012] [Indexed: 12/16/2022] Open
Abstract
Background Hyperechogenicity of the substantia nigra (SN+), detected by transcranial sonography (TCS), was reported as a characteristic finding in Parkinson's disease (PD), with high diagnostic accuracy values, when compared mainly to healthy controls or essential tremor (ET) group. However, some data is accumulating that the SN + could be detected in other neurodegenerative and even in non-neurodegenerative disorders too. Our aim was to estimate the diagnostic accuracy of TCS, mainly focusing on the specificity point, when applied to a range of the parkinsonian disorders, and comparing to the degenerative cognitive syndromes. Methods A prospective study was carried out at the Hospital of Lithuanian University of Health Sciences from January until September 2011. Initially, a TCS and clinical examination were performed on 258 patients and 76 controls. The General Electric Voluson 730 Expert ultrasound system was used. There were 12.8% of cases excluded with insufficient temporal bones, and 4.3% excluded with an unclear diagnosis. The studied sample consisted of the groups: PD (n = 71, 33.2%), ET (n = 58, 27.1%), PD and ET (n = 10, 4.7%), atypical parkinsonian syndromes (APS) (n = 3, 1.4%), hereditary neurodegenerative parkinsonism (HDP) (n = 3, 1.4%), secondary parkinsonism (SP) (n = 23, 10.8%), mild cognitive impairment (MCI) (n = 33, 15.4%), dementia (n = 13, 6.1%), and control (n = 71). Results There were 80.3% of PD patients at stages 1 & 2 according to Hoehn and Yahr. At the cut-off value of 0.20 cm2 of the SN+, the sensitivity for PD was 94.3% and the specificity - 63.3% (ROC analysis, AUC 0.891), in comparison to the rest of the cohort. At the cut-off value of 0.26 cm2, the sensitivity was 90% and the specificity 82.4%. The estimations for the lowest specificity for PD, in comparison to the latter subgroups (at the cut-off values of 0.20 cm2 and 0.26 cm2, respectively) were: 0% and 33.3% to APS, 33.3% and 66.7% to HDP, 34.8% and 69.6% to SP, 55.2% and 82.8% to ET, 75% and 91.7% to dementia. Conclusions The high sensitivity of the test could be employed as a valuable screening tool. But TCS is more useful as a supplementary diagnostic method, due to the specificity values not being comprehensive.
Collapse
Affiliation(s)
- Kristina Laučkaitė
- Department of Neurology, Lithuanian University of Health Sciences, Academy of Medicine, Mickevičiaus street 9, Kaunas, Lithuania.
| | | | | | | | | | | | | |
Collapse
|
32
|
Li XP, Xie WJ, Zhang Z, Kansara S, Jankovic J, Le WD. A mechanistic study of proteasome inhibition-induced iron misregulation in dopamine neuron degeneration. Neurosignals 2012; 20:223-36. [PMID: 22269801 DOI: 10.1159/000332954] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 08/30/2011] [Indexed: 12/30/2022] Open
Abstract
Ubiquitin proteasome system (UPS) impairment and iron misregulation have been implicated in dopamine (DA) neuron degeneration in Parkinson's disease. As previously shown, proteasome inhibition in a rodent model can cause nigral neuron degeneration accompanied by iron accumulation. To investigate the involvement of iron in DA neuron degeneration, we generated an in vitro model by applying proteasome inhibitor lactacystin in DAergic cell line MES23.5 culture. We found that lactacystin caused marked increase in labile iron, reactive oxygen species and ubiquitin-conjugated protein aggregation prior to cell injury. These effects were attenuated by iron chelators or antioxidants. Furthermore, we demonstrated that the iron regulatory protein (IRP)/iron response element system contributed to UPS impairment-mediated DA neuron injury. We documented that IRP2 disruption resulted in an increase in transferrin receptor 1 (TfR1), a decrease in ferritin heavy chain (H-Frt), and eventually cell death. These findings provide insight into the mechanistic interplay between UPS impairment and iron misregulation and suggest that the disturbances in IRP2, TfR1 and H-Frt may contribute to DA neuron degeneration.
Collapse
Affiliation(s)
- Xu-ping Li
- Parkinson Disease Research Laboratory, Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Berg D, Steinberger JD, Warren Olanow C, Naidich TP, Yousry TA. Milestones in magnetic resonance imaging and transcranial sonography of movement disorders. Mov Disord 2011; 26:979-92. [DOI: 10.1002/mds.23766] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
34
|
Substantia nigra hyperechogenicity is a risk marker of Parkinson’s disease: yes. J Neural Transm (Vienna) 2011; 118:613-9. [DOI: 10.1007/s00702-010-0565-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 12/12/2010] [Indexed: 11/26/2022]
|