1
|
Goel K, Chhetri A, Ludhiadch A, Munshi A. Current Update on Categorization of Migraine Subtypes on the Basis of Genetic Variation: a Systematic Review. Mol Neurobiol 2024; 61:4804-4833. [PMID: 38135854 DOI: 10.1007/s12035-023-03837-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023]
Abstract
Migraine is a complex neurovascular disorder that is characterized by severe behavioral, sensory, visual, and/or auditory symptoms. It has been labeled as one of the ten most disabling medical illnesses in the world by the World Health Organization (Aagaard et al Sci Transl Med 6(237):237ra65, 2014). According to a recent report by the American Migraine Foundation (Shoulson et al Ann Neurol 25(3):252-9, 1989), around 148 million people in the world currently suffer from migraine. On the basis of presence of aura, migraine is classified into two major subtypes: migraine with aura (Aagaard et al Sci Transl Med 6(237):237ra65, 2014) and migraine without aura. (Aagaard K et al Sci Transl Med 6(237):237ra65, 2014) Many complex genetic mechanisms have been proposed in the pathophysiology of migraine but specific pathways associated with the different subtypes of migraine have not yet been explored. Various approaches including candidate gene association studies (CGAS) and genome-wide association studies (Fan et al Headache: J Head Face Pain 54(4):709-715, 2014). have identified the genetic markers associated with migraine and its subtypes. Several single nucleotide polymorphisms (Kaur et al Egyp J Neurol, Psychiatry Neurosurg 55(1):1-7, 2019) within genes involved in ion homeostasis, solute transport, synaptic transmission, cortical excitability, and vascular function have been associated with the disorder. Currently, the diagnosis of migraine is majorly behavioral with no focus on the genetic markers and thereby the therapeutic intervention specific to subtypes. Therefore, there is a need to explore genetic variants significantly associated with MA and MO as susceptibility markers in the diagnosis and targets for therapeutic interventions in the specific subtypes of migraine. Although the proper characterization of pathways based on different subtypes is yet to be studied, this review aims to make a first attempt to compile the information available on various genetic variants and the molecular mechanisms involved with the development of MA and MO. An attempt has also been made to suggest novel candidate genes based on their function to be explored by future research.
Collapse
Affiliation(s)
- Kashish Goel
- Complex Disease Genomics and Precision Medicine Laboratory, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India, 151401
| | - Aakash Chhetri
- Complex Disease Genomics and Precision Medicine Laboratory, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India, 151401
| | - Abhilash Ludhiadch
- Complex Disease Genomics and Precision Medicine Laboratory, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India, 151401
| | - Anjana Munshi
- Complex Disease Genomics and Precision Medicine Laboratory, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India, 151401.
| |
Collapse
|
2
|
Braz CU, Passamonti MM, Khatib H. Characterization of genomic regions escaping epigenetic reprogramming in sheep. ENVIRONMENTAL EPIGENETICS 2023; 10:dvad010. [PMID: 38496251 PMCID: PMC10944287 DOI: 10.1093/eep/dvad010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 12/04/2023] [Accepted: 12/15/2023] [Indexed: 03/19/2024]
Abstract
The mammalian genome undergoes two global epigenetic reprogramming events during the establishment of primordial germ cells and in the pre-implantation embryo after fertilization. These events involve the erasure and re-establishment of DNA methylation marks. However, imprinted genes and transposable elements (TEs) maintain their DNA methylation signatures to ensure normal embryonic development and genome stability. Despite extensive research in mice and humans, there is limited knowledge regarding environmentally induced epigenetic marks that escape epigenetic reprogramming in other species. Therefore, the objective of this study was to examine the characteristics and locations of genomic regions that evade epigenetic reprogramming in sheep, as well as to explore the biological functions of the genes within these regions. In a previous study, we identified 107 transgenerationally inherited differentially methylated cytosines (DMCs) in the F1 and F2 generations in response to a paternal methionine-supplemented diet. These DMCs were found in TEs, non-repetitive regions, and imprinted and non-imprinted genes. Our findings suggest that genomic regions, rather than TEs and imprinted genes, have the propensity to escape reprogramming and serve as potential candidates for transgenerational epigenetic inheritance. Notably, 34 transgenerational methylated genes influenced by paternal nutrition escaped reprogramming, impacting growth, development, male fertility, cardiac disorders, and neurodevelopment. Intriguingly, among these genes, 21 have been associated with neural development and brain disorders, such as autism, schizophrenia, bipolar disease, and intellectual disability. This suggests a potential genetic overlap between brain and infertility disorders. Overall, our study supports the concept of transgenerational epigenetic inheritance of environmentally induced marks in mammals.
Collapse
Affiliation(s)
- Camila U Braz
- Department of Animal Sciences, University of Illinois Urbana–Champaign, Urbana, IL 61801, USA
| | - Matilde Maria Passamonti
- Department of Animal Science, Food and Nutrition, Universit’a Cattolica del Sacro Cuore, Piacenza, 29122, Italy
| | - Hasan Khatib
- Department of Animal and Dairy Sciences, University of Wisconsin–Madison, Madison, WI 53706, USA
| |
Collapse
|
3
|
Yudin NS, Larkin DM. Candidate genes for domestication and resistance to cold climate according to whole genome sequencing data of Russian cattle and sheep breeds. Vavilovskii Zhurnal Genet Selektsii 2023; 27:463-470. [PMID: 37867610 PMCID: PMC10587008 DOI: 10.18699/vjgb-23-56] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 10/24/2023] Open
Abstract
It is known that different species of animals, when living in the same environmental conditions, can form similar phenotypes. The study of the convergent evolution of several species under the influence of the same environmental factor makes it possible to identify common mechanisms of genetic adaptation. Local cattle and sheep breeds have been formed over thousands of years under the influence of domestication, as well as selection aimed at adaptation to the local environment and meeting human needs. Previously, we identified a number of candidate genes in genome regions potentially selected during domestication and adaptation to the climatic conditions of Russia, in local breeds of cattle and sheep using whole genome genotyping data. However, these data are of low resolution and do not reveal most nucleotide substitutions. The aim of the work was to create, using the whole genome sequencing data, a list of genes associated with domestication, selection and adaptation in Russian cattle and sheep breeds, as well as to identify candidate genes and metabolic pathways for selection for cold adaptation. We used our original data on the search for signatures of selection in the genomes of Russian cattle (Yakut, Kholmogory, Buryat, Wagyu) and sheep (Baikal, Tuva) breeds. We used the HapFLK, DCMS, FST and PBS methods to identify DNA regions with signatures of selection. The number of candidate genes in potentially selective regions was 946 in cattle and 151 in sheep. We showed that the studied Russian cattle and sheep breeds have at least 10 genes in common, apparently involved in the processes of adaptation/selection, including adaptation to a cold climate, including the ASTN2, PM20D1, TMEM176A, and GLIS1 genes. Based on the intersection with the list of selected genes in at least two Arctic/Antarctic mammal species, 20 and 8 genes, have been identified in cattle and sheep, respectively, that are potentially involved in cold adaptation. Among them, the most promising for further research are the ASPH, NCKAP5L, SERPINF1, and SND1 genes. Gene ontology analysis indicated the existence of possible common biochemical pathways for adaptation to cold in domestic and wild mammals associated with cytoskeleton disassembly and apoptosis.
Collapse
Affiliation(s)
- N S Yudin
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - D M Larkin
- Royal Veterinary College, University of London, London, United Kingdom
| |
Collapse
|
4
|
Genetic association study between Astrotactin-2 (ASTN2) rs10817999 gene polymorphism and attention deficit hyperactivity disorder in Korean children. GENE REPORTS 2023. [DOI: 10.1016/j.genrep.2023.101751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
5
|
Cai Y, Lv W, Jiang Y, Li Q, Su P, Pang Y. Molecular evolution of the BRINP and ASTN genes and expression profles in response to pathogens and spinal cord injury repair in lamprey (Lethenteron reissneri). FISH & SHELLFISH IMMUNOLOGY 2022; 131:274-282. [PMID: 36228880 DOI: 10.1016/j.fsi.2022.09.076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Bone morphogenic protein/retinoic acid inducible neural-specific proteins (BRINPs) and astrotactins (ASTNs) are two members of membrane attack complex/perforin-like (MACPF) superfamily proteins that present high expression in the growing and mature vertebrate neurons. Lamprey has a unique evolutionary status as a representative of the oldest jawless vertebrates, making it an ideal animal model for understanding vertebrate evolution. The evolutionary origins of BRINPs and ASTNs genes in vertebrates, however, have not been shown in lampreys. Here, BRINP and ASTN genes were found in lamprey genomes and the evolutionary relationships of them were investigated by phylogenetic analysis. Protein domains, motifs, genetic structure, and crystal structure analysis revealed that the features of BRINP and ASTN appear to be conserved in vertebrates. Genomic synteny analysis indicated that lamprey BRINP and ASTN neighbor genes differed dramatically from jawed vertebrate. Real-time quantitative results illustrated that the BRINP and ASTN genes family might take part in immune defence and spinal cord injury repair. This study not only enriches a better understanding of the evolution of the BRINP and ASTN genes but also offers a foundation for exploring their roles in the development of the vertebrate central nervous system (CNS).
Collapse
Affiliation(s)
- Yang Cai
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Wanrong Lv
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Ying Jiang
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Qingwei Li
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China.
| | - Peng Su
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China.
| | - Yue Pang
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China.
| |
Collapse
|
6
|
Liu M, Yu C, Zhang Z, Song M, Sun X, Piálek J, Jacob J, Lu J, Cong L, Zhang H, Wang Y, Li G, Feng Z, Du Z, Wang M, Wan X, Wang D, Wang YL, Li H, Wang Z, Zhang B, Zhang Z. Whole-genome sequencing reveals the genetic mechanisms of domestication in classical inbred mice. Genome Biol 2022; 23:203. [PMID: 36163035 PMCID: PMC9511766 DOI: 10.1186/s13059-022-02772-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/12/2022] [Indexed: 11/10/2022] Open
Abstract
Background The laboratory mouse was domesticated from the wild house mouse. Understanding the genetics underlying domestication in laboratory mice, especially in the widely used classical inbred mice, is vital for studies using mouse models. However, the genetic mechanism of laboratory mouse domestication remains unknown due to lack of adequate genomic sequences of wild mice. Results We analyze the genetic relationships by whole-genome resequencing of 36 wild mice and 36 inbred strains. All classical inbred mice cluster together distinctly from wild and wild-derived inbred mice. Using nucleotide diversity analysis, Fst, and XP-CLR, we identify 339 positively selected genes that are closely associated with nervous system function. Approximately one third of these positively selected genes are highly expressed in brain tissues, and genetic mouse models of 125 genes in the positively selected genes exhibit abnormal behavioral or nervous system phenotypes. These positively selected genes show a higher ratio of differential expression between wild and classical inbred mice compared with all genes, especially in the hippocampus and frontal lobe. Using a mutant mouse model, we find that the SNP rs27900929 (T>C) in gene Astn2 significantly reduces the tameness of mice and modifies the ratio of the two Astn2 (a/b) isoforms. Conclusion Our study indicates that classical inbred mice experienced high selection pressure during domestication under laboratory conditions. The analysis shows the positively selected genes are closely associated with behavior and the nervous system in mice. Tameness may be related to the Astn2 mutation and regulated by the ratio of the two Astn2 (a/b) isoforms. Supplementary Information The online version contains supplementary material available at 10.1186/s13059-022-02772-1.
Collapse
Affiliation(s)
- Ming Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,International Society of Zoological Sciences, Beijing, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Caixia Yu
- Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China.,National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Zhichao Zhang
- Novogene Bioinformatics Institute, Beijing, China.,Glbizzia Biosciences, Beijing, China
| | - Mingjing Song
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiuping Sun
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing, China
| | - Jaroslav Piálek
- House Mouse Group, Research Facility Studenec, Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic
| | - Jens Jacob
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Horticulture and Forests / Institute for Epidemiology and Pathogen Diagnostics, Münster, Germany
| | - Jiqi Lu
- School of Life Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Lin Cong
- Institute of Plant Protection, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Hongmao Zhang
- School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Yong Wang
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Guoliang Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Zhiyong Feng
- Plant Protection Research Institute Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Zhenglin Du
- Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China.,National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Meng Wang
- Novogene Bioinformatics Institute, Beijing, China
| | - Xinru Wan
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Dawei Wang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yan-Ling Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hongjun Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zuoxin Wang
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, 32306, USA
| | - Bing Zhang
- Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China.
| | - Zhibin Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China. .,International Society of Zoological Sciences, Beijing, China. .,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
7
|
Structure-constrained combination-based nonlinear association analysis between incomplete multimodal imaging and genetic data for biomarker detection of neurodegenerative diseases. Med Image Anal 2022; 78:102419. [DOI: 10.1016/j.media.2022.102419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 02/15/2022] [Accepted: 03/10/2022] [Indexed: 11/18/2022]
|
8
|
Morozova A, Zorkina Y, Abramova O, Pavlova O, Pavlov K, Soloveva K, Volkova M, Alekseeva P, Andryshchenko A, Kostyuk G, Gurina O, Chekhonin V. Neurobiological Highlights of Cognitive Impairment in Psychiatric Disorders. Int J Mol Sci 2022; 23:1217. [PMID: 35163141 PMCID: PMC8835608 DOI: 10.3390/ijms23031217] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 02/07/2023] Open
Abstract
This review is focused on several psychiatric disorders in which cognitive impairment is a major component of the disease, influencing life quality. There are plenty of data proving that cognitive impairment accompanies and even underlies some psychiatric disorders. In addition, sources provide information on the biological background of cognitive problems associated with mental illness. This scientific review aims to summarize the current knowledge about neurobiological mechanisms of cognitive impairment in people with schizophrenia, depression, mild cognitive impairment and dementia (including Alzheimer's disease).The review provides data about the prevalence of cognitive impairment in people with mental illness and associated biological markers.
Collapse
Affiliation(s)
- Anna Morozova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.P.); (K.P.); (O.G.); (V.C.)
| | - Yana Zorkina
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.P.); (K.P.); (O.G.); (V.C.)
| | - Olga Abramova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.P.); (K.P.); (O.G.); (V.C.)
| | - Olga Pavlova
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.P.); (K.P.); (O.G.); (V.C.)
| | - Konstantin Pavlov
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.P.); (K.P.); (O.G.); (V.C.)
| | - Kristina Soloveva
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
| | - Maria Volkova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
| | - Polina Alekseeva
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
| | - Alisa Andryshchenko
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
| | - Georgiy Kostyuk
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
| | - Olga Gurina
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.P.); (K.P.); (O.G.); (V.C.)
| | - Vladimir Chekhonin
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.P.); (K.P.); (O.G.); (V.C.)
- Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| |
Collapse
|
9
|
OUP accepted manuscript. Brain 2022; 145:3214-3224. [DOI: 10.1093/brain/awac105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/11/2022] [Accepted: 03/04/2022] [Indexed: 11/15/2022] Open
|
10
|
Lo YH, Cheng HC, Hsiung CN, Yang SL, Wang HY, Peng CW, Chen CY, Lin KP, Kang ML, Chen CH, Chu HW, Lin CF, Lee MH, Liu Q, Satta Y, Lin CJ, Lin M, Chaw SM, Loo JH, Shen CY, Ko WY. Detecting Genetic Ancestry and Adaptation in the Taiwanese Han People. Mol Biol Evol 2021; 38:4149-4165. [PMID: 33170928 PMCID: PMC8476137 DOI: 10.1093/molbev/msaa276] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The Taiwanese people are composed of diverse indigenous populations and the Taiwanese Han. About 95% of the Taiwanese identify themselves as Taiwanese Han, but this may not be a homogeneous population because they migrated to the island from various regions of continental East Asia over a period of 400 years. Little is known about the underlying patterns of genetic ancestry, population admixture, and evolutionary adaptation in the Taiwanese Han people. Here, we analyzed the whole-genome single-nucleotide polymorphism genotyping data from 14,401 individuals of Taiwanese Han collected by the Taiwan Biobank and the whole-genome sequencing data for a subset of 772 people. We detected four major genetic ancestries with distinct geographic distributions (i.e., Northern, Southeastern, Japonic, and Island Southeast Asian ancestries) and signatures of population mixture contributing to the genomes of Taiwanese Han. We further scanned for signatures of positive natural selection that caused unusually long-range haplotypes and elevations of hitchhiked variants. As a result, we identified 16 candidate loci in which selection signals can be unambiguously localized at five single genes: CTNNA2, LRP1B, CSNK1G3, ASTN2, and NEO1. Statistical associations were examined in 16 metabolic-related traits to further elucidate the functional effects of each candidate gene. All five genes appear to have pleiotropic connections to various types of disease susceptibility and significant associations with at least one metabolic-related trait. Together, our results provide critical insights for understanding the evolutionary history and adaption of the Taiwanese Han population.
Collapse
Affiliation(s)
- Yun-Hua Lo
- Faculty of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Hsueh-Chien Cheng
- Faculty of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Chia-Ni Hsiung
- Institute of Biomedical Sciences, Academia Sinica, Taipei City, Taiwan
| | - Show-Ling Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei City, Taiwan
| | - Han-Yu Wang
- Faculty of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Chia-Wei Peng
- Faculty of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Chun-Yu Chen
- Faculty of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Kung-Ping Lin
- Faculty of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Mei-Ling Kang
- Faculty of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Chien-Hsiun Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei City, Taiwan
| | - Hou-Wei Chu
- Institute of Biomedical Sciences, Academia Sinica, Taipei City, Taiwan
| | | | - Mei-Hsuan Lee
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Quintin Liu
- Department of Evolutionary Studies of Biosystems, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Japan
| | - Yoko Satta
- Department of Evolutionary Studies of Biosystems, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Japan
| | - Cheng-Jui Lin
- Molecular Anthropology and Transfusion Medicine Research Laboratory, Mackay Memorial Hospital, Taipei, Taiwan
| | - Marie Lin
- Molecular Anthropology and Transfusion Medicine Research Laboratory, Mackay Memorial Hospital, Taipei, Taiwan
| | - Shu-Miaw Chaw
- Biodiversity Research Center, Academia Sinica, Taipei City, Taiwan
| | - Jun-Hun Loo
- Molecular Anthropology and Transfusion Medicine Research Laboratory, Mackay Memorial Hospital, Taipei, Taiwan
| | - Chen-Yang Shen
- Institute of Biomedical Sciences, Academia Sinica, Taipei City, Taiwan
| | - Wen-Ya Ko
- Faculty of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
11
|
Kim SK, Nguyen C, Jones KB, Tashjian RZ. A genome-wide association study for shoulder impingement and rotator cuff disease. J Shoulder Elbow Surg 2021; 30:2134-2145. [PMID: 33482370 DOI: 10.1016/j.jse.2020.11.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 11/15/2020] [Accepted: 11/19/2020] [Indexed: 02/01/2023]
Abstract
BACKGROUND The purpose of the study was to identify genetic variants associated with rotator cuff disease by performing a genome-wide association study (GWAS) for shoulder impingement using the UK Biobank (UKB) cohort and then combining the GWAS data with a prior GWAS for rotator cuff tears. The loci identified by the GWAS and meta-analysis were examined for changes in expression following rotator cuff tearing using RNA sequencing. METHODS A GWAS was performed using data from UKB with 3864 cases of shoulder impingement. The summary statistics from shoulder impingement and a prior study on rotator cuff tears were combined in a meta-analysis. Also, the previous association of 2 single-nucleotide polymorphisms (SNPs) with shoulder impingement from a published GWAS using the UKB was tested. Rotator cuff tendon biopsies were obtained from 24 patients with full-thickness rotator cuff tears who underwent arthroscopic rotator cuff repair (cases) and 9 patients who underwent open reduction internal fixation for a proximal humeral fracture (controls). Total RNA was extracted and differential gene expression was measured by RNA sequencing for genes with variants associated with rotator cuff tearing. RESULTS The shoulder impingement GWAS identified 4 new loci: LOC100506457, LSP1P3, LOC100506207, and MIS18BP1/LINC00871. Combining data with a prior GWAS for rotator cuff tears in a meta-analysis resulted in the identification of an additional 7 loci: SLC39A8/UBE2D3, C5orf63, ASTN2, STK24, FRMPD4, ACOT9/SAT1, and LINC00890/ALG13. Many of the identified loci have known biologic functions or prior associations with diseases, suggesting possible biologic pathways leading to rotator cuff disease. RNA sequencing experiments show that expression of STK24 increases whereas expression of SAT1 and UBE2D3 decreases following rotator cuff tearing. Two SNPs previously reported to show an association with shoulder impingement from a prior UKB GWAS were not validated in our study. CONCLUSION This is the first GWAS for shoulder impingement in which new data from UKB enabled the identification of 4 loci showing a genetic association. A meta-analysis with a prior GWAS for rotator cuff tearing identified an additional 7 loci. The known biologic roles of many of the 11 loci suggest plausible biologic mechanisms underlying the etiology of rotator cuff disease. The risk alleles from each of the genetic loci can be used to assess the risk for rotator cuff disease in individual patients, enabling preventative or restorative actions via personalized medicine.
Collapse
Affiliation(s)
- Stuart K Kim
- Department of Developmental Biology, Stanford University Medical School, Stanford, CA, USA
| | - Condor Nguyen
- Department of Developmental Biology, Stanford University Medical School, Stanford, CA, USA
| | - Kevin B Jones
- Department of Orthopaedics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Robert Z Tashjian
- Department of Orthopaedics, University of Utah School of Medicine, Salt Lake City, UT, USA.
| |
Collapse
|
12
|
Benítez-Burraco A. Mental time travel, language evolution, and human self-domestication. Cogn Process 2021; 22:363-367. [DOI: 10.1007/s10339-020-01005-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023]
|
13
|
Bayly-Jones C, Pang SS, Spicer BA, Whisstock JC, Dunstone MA. Ancient but Not Forgotten: New Insights Into MPEG1, a Macrophage Perforin-Like Immune Effector. Front Immunol 2020; 11:581906. [PMID: 33178209 PMCID: PMC7593815 DOI: 10.3389/fimmu.2020.581906] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/25/2020] [Indexed: 12/29/2022] Open
Abstract
Macrophage-expressed gene 1 [MPEG1/Perforin-2 (PRF2)] is an ancient metazoan protein belonging to the Membrane Attack Complex/Perforin (MACPF) branch of the MACPF/Cholesterol Dependent Cytolysin (CDC) superfamily of pore-forming proteins (PFPs). MACPF/CDC proteins are a large and extremely diverse superfamily that forms large transmembrane aqueous channels in target membranes. In humans, MACPFs have known roles in immunity and development. Like perforin (PRF) and the membrane attack complex (MAC), MPEG1 is also postulated to perform a role in immunity. Indeed, bioinformatic studies suggest that gene duplications of MPEG1 likely gave rise to PRF and MAC components. Studies reveal partial or complete loss of MPEG1 causes an increased susceptibility to microbial infection in both cells and animals. To this end, MPEG1 expression is upregulated in response to proinflammatory signals such as tumor necrosis factor α (TNFα) and lipopolysaccharides (LPS). Furthermore, germline mutations in MPEG1 have been identified in connection with recurrent pulmonary mycobacterial infections in humans. Structural studies on MPEG1 revealed that it can form oligomeric pre-pores and pores. Strikingly, the unusual domain arrangement within the MPEG1 architecture suggests a novel mechanism of pore formation that may have evolved to guard against unwanted lysis of the host cell. Collectively, the available data suggest that MPEG1 likely functions as an intracellular pore-forming immune effector. Herein, we review the current understanding of MPEG1 evolution, regulation, and function. Furthermore, recent structural studies of MPEG1 are discussed, including the proposed mechanisms of action for MPEG1 bactericidal activity. Lastly limitations, outstanding questions, and implications of MPEG1 models are explored in the context of the broader literature and in light of newly available structural data.
Collapse
Affiliation(s)
- Charles Bayly-Jones
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, VIC, Australia.,Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Siew Siew Pang
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, VIC, Australia.,Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Bradley A Spicer
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, VIC, Australia.,Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - James C Whisstock
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, VIC, Australia.,Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia.,John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Michelle A Dunstone
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, VIC, Australia.,Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
14
|
Investigation of gene-gene interactions in cardiac traits and serum fatty acid levels in the LURIC Health Study. PLoS One 2020; 15:e0238304. [PMID: 32915819 PMCID: PMC7485803 DOI: 10.1371/journal.pone.0238304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 08/13/2020] [Indexed: 01/25/2023] Open
Abstract
Epistasis analysis elucidates the effects of gene-gene interactions (G×G) between multiple loci for complex traits. However, the large computational demands and the high multiple testing burden impede their discoveries. Here, we illustrate the utilization of two methods, main effect filtering based on individual GWAS results and biological knowledge-based modeling through Biofilter software, to reduce the number of interactions tested among single nucleotide polymorphisms (SNPs) for 15 cardiac-related traits and 14 fatty acids. We performed interaction analyses using the two filtering methods, adjusting for age, sex, body mass index (BMI), waist-hip ratio, and the first three principal components from genetic data, among 2,824 samples from the Ludwigshafen Risk and Cardiovascular (LURIC) Health Study. Using Biofilter, one interaction nearly met Bonferroni significance: an interaction between rs7735781 in XRCC4 and rs10804247 in XRCC5 was identified for venous thrombosis with a Bonferroni-adjusted likelihood ratio test (LRT) p: 0.0627. A total of 57 interactions were identified from main effect filtering for the cardiac traits G×G (10) and fatty acids G×G (47) at Bonferroni-adjusted LRT p < 0.05. For cardiac traits, the top interaction involved SNPs rs1383819 in SNTG1 and rs1493939 (138kb from 5’ of SAMD12) with Bonferroni-adjusted LRT p: 0.0228 which was significantly associated with history of arterial hypertension. For fatty acids, the top interaction between rs4839193 in KCND3 and rs10829717 in LOC107984002 with Bonferroni-adjusted LRT p: 2.28×10−5 was associated with 9-trans 12-trans octadecanoic acid, an omega-6 trans fatty acid. The model inflation factor for the interactions under different filtering methods was evaluated from the standard median and the linear regression approach. Here, we applied filtering approaches to identify numerous genetic interactions related to cardiac-related outcomes as potential targets for therapy. The approaches described offer ways to detect epistasis in the complex traits and to improve precision medicine capability.
Collapse
|
15
|
Unfolding of hidden white blood cell count phenotypes for gene discovery using latent class mixed modeling. Genes Immun 2018; 20:555-565. [PMID: 30459343 DOI: 10.1038/s41435-018-0051-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 09/24/2018] [Accepted: 10/24/2018] [Indexed: 12/26/2022]
Abstract
Resting-state white blood cell (WBC) count is a marker of inflammation and immune system health. There is evidence that WBC count is not fixed over time and there is heterogeneity in WBC trajectory that is associated with morbidity and mortality. Latent class mixed modeling (LCMM) is a method that can identify unobserved heterogeneity in longitudinal data and attempts to classify individuals into groups based on a linear model of repeated measurements. We applied LCMM to repeated WBC count measures derived from electronic medical records of participants of the National Human Genetics Research Institute (NHRGI) electronic MEdical Record and GEnomics (eMERGE) network study, revealing two WBC count trajectory phenotypes. Advancing these phenotypes to GWAS, we found genetic associations between trajectory class membership and regions on chromosome 1p34.3 and chromosome 11q13.4. The chromosome 1 region contains CSF3R, which encodes the granulocyte colony-stimulating factor receptor. This protein is a major factor in neutrophil stimulation and proliferation. The association on chromosome 11 contain genes RNF169 and XRRA1; both involved in the regulation of double-strand break DNA repair.
Collapse
|
16
|
Vélez JI, Lopera F, Creagh PK, Piñeros LB, Das D, Cervantes-Henríquez ML, Acosta-López JE, Isaza-Ruget MA, Espinosa LG, Easteal S, Quintero GA, Silva CT, Mastronardi CA, Arcos-Burgos M. Targeting Neuroplasticity, Cardiovascular, and Cognitive-Associated Genomic Variants in Familial Alzheimer's Disease. Mol Neurobiol 2018; 56:3235-3243. [PMID: 30112632 PMCID: PMC6476862 DOI: 10.1007/s12035-018-1298-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 08/02/2018] [Indexed: 11/24/2022]
Abstract
The identification of novel genetic variants contributing to the widespread in the age of onset (AOO) of Alzheimer’s disease (AD) could aid in the prognosis and/or development of new therapeutic strategies focused on early interventions. We recruited 78 individuals with AD from the Paisa genetic isolate in Antioquia, Colombia. These individuals belong to the world largest multigenerational and extended pedigree segregating AD as a consequence of a dominant fully penetrant mutation in the PSEN1 gene and exhibit an AOO ranging from the early 1930s to the late 1970s. To shed light on the genetic underpinning that could explain the large spread of the age of onset (AOO) of AD, 64 single nucleotide polymorphisms (SNP) associated with neuroanatomical, cardiovascular, and cognitive measures in AD were genotyped. Standard quality control and filtering procedures were applied, and single- and multi-locus linear mixed-effects models were used to identify AOO-associated SNPs. A full two-locus interaction model was fitted to define how identified SNPs interact to modulate AOO. We identified two key epistatic interactions between the APOE*E2 allele and SNPs ASTN2-rs7852878 and SNTG1-rs16914781 that delay AOO by up to ~ 8 years (95% CI 3.2–12.7, P = 1.83 × 10−3) and ~ 7.6 years (95% CI 3.3–11.8, P = 8.69 × 10−4), respectively, and validated our previous finding indicating that APOE*E2 delays AOO of AD in PSEN1 E280 mutation carriers. This new evidence involving APOE*E2 as an AOO delayer could be used for developing precision medicine approaches and predictive genomics models to potentially determine AOO in individuals genetically predisposed to AD.
Collapse
Affiliation(s)
- Jorge I. Vélez
- Genomics and Predictive Medicine Group, Department of Genome Sciences, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2600 Australia
- Universidad del Norte, Barranquilla, Colombia
| | - Francisco Lopera
- Neuroscience Research Group, University of Antioquia, Medellín, Colombia
| | - Penelope K. Creagh
- Genomics and Predictive Medicine Group, Department of Genome Sciences, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2600 Australia
| | - Laura B. Piñeros
- GENIUROS, Center for Research in Genetics and Genomics, Institute of Translational Medicine, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Debjani Das
- Genome Diversity and Health Group, Department of Genome Sciences, John Curtin School of Medical Research, The Australian National University, ACT, Canberra, 2600 Australia
| | - Martha L. Cervantes-Henríquez
- Universidad del Norte, Barranquilla, Colombia
- Grupo de Neurociencias del Caribe, Universidad Simón Bolívar, Barranquilla, Colombia
| | - Johan E. Acosta-López
- Grupo de Neurociencias del Caribe, Universidad Simón Bolívar, Barranquilla, Colombia
| | | | - Lady G. Espinosa
- INPAC Research Group, Fundación Universitaria Sanitas, Bogotá, Colombia
| | - Simon Easteal
- Genome Diversity and Health Group, Department of Genome Sciences, John Curtin School of Medical Research, The Australian National University, ACT, Canberra, 2600 Australia
| | - Gustavo A. Quintero
- Studies in Translational Microbiology and Emerging Diseases (MICROS) Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Claudia Tamar Silva
- GENIUROS, Center for Research in Genetics and Genomics, Institute of Translational Medicine, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Claudio A. Mastronardi
- Genomics and Predictive Medicine Group, Department of Genome Sciences, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2600 Australia
- Neuroscience Group (NeUROS), Institute of Translational Medicine, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Mauricio Arcos-Burgos
- Genomics and Predictive Medicine Group, Department of Genome Sciences, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2600 Australia
- GENIUROS, Center for Research in Genetics and Genomics, Institute of Translational Medicine, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
17
|
Blue EE, Yu CE, Thornton TA, Chapman NH, Kernfeld E, Jiang N, Shively KM, Buckingham KJ, Marvin CT, Bamshad MJ, Bird TD, Wijsman EM. Variants regulating ZBTB4 are associated with age-at-onset of Alzheimer's disease. GENES, BRAIN, AND BEHAVIOR 2018; 17:e12429. [PMID: 29045054 PMCID: PMC5902667 DOI: 10.1111/gbb.12429] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/11/2017] [Accepted: 10/12/2017] [Indexed: 01/01/2023]
Abstract
The identification of novel genetic modifiers of age-at-onset (AAO) of Alzheimer's disease (AD) could advance our understanding of AD and provide novel therapeutic targets. A previous genome scan for modifiers of AAO among families affected by early-onset AD caused by the PSEN2 N141I variant identified 2 loci with significant evidence for linkage: 1q23.3 and 17p13.2. Here, we describe the fine-mapping of these 2 linkage regions, and test for replication in 6 independent datasets. By fine-mapping these linkage signals in a single large family, we reduced the linkage regions to 11% their original size and nominated 54 candidate variants. Among the 11 variants associated with AAO of AD in a larger sample of Germans from Russia, the strongest evidence implicated promoter variants influencing NCSTN on 1q23.3 and ZBTB4 on 17p13.2. The association between ZBTB4 and AAO of AD was replicated by multiple variants in independent, trans-ethnic datasets. Our results show association between AAO of AD and both ZBTB4 and NCSTN. ZBTB4 is a transcriptional repressor that regulates the cell cycle, including the apoptotic response to amyloid beta, while NCSTN is part of the gamma secretase complex, known to influence amyloid beta production. These genes therefore suggest important roles for amyloid beta and cell cycle pathways in AAO of AD.
Collapse
Affiliation(s)
- Elizabeth E. Blue
- Division of Medical Genetics, University of Washington, Seattle, WA 98195, USA
| | - Chang-En Yu
- Division of Gerontology, University of Washington, Seattle, WA 98195, USA
- Geriatric Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Timothy A. Thornton
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Nicola H. Chapman
- Division of Medical Genetics, University of Washington, Seattle, WA 98195, USA
| | - Eric Kernfeld
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Nan Jiang
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Kathryn M. Shively
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Kati J. Buckingham
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Colby T. Marvin
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Michael J. Bamshad
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Division of Genetic Medicine, Seattle Children’s Hospital, Seattle, WA 98105, USA
| | - Thomas D. Bird
- Division of Medical Genetics, University of Washington, Seattle, WA 98195, USA
- Geriatric Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, WA 98108, USA
- Department of Neurology, University of Washington, Seattle, WA 98195, USA
| | - Ellen M. Wijsman
- Division of Medical Genetics, University of Washington, Seattle, WA 98195, USA
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
18
|
Johnson TK, Henstridge MA, Warr CG. MACPF/CDC proteins in development: Insights from Drosophila torso-like. Semin Cell Dev Biol 2017; 72:163-170. [DOI: 10.1016/j.semcdb.2017.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 05/01/2017] [Accepted: 05/11/2017] [Indexed: 01/08/2023]
|
19
|
Chang H. Cleave but not leave: Astrotactin proteins in development and disease. IUBMB Life 2017; 69:572-577. [PMID: 28517363 DOI: 10.1002/iub.1641] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/01/2017] [Accepted: 05/02/2017] [Indexed: 01/12/2023]
Abstract
Over the years, animal studies have identified astrotactins as important membrane proteins for glial-guided neuronal migration during central nervous system development and hair follicle polarity control during skin development. Biochemical studies have revealed intramembrane proteolysis as an important feature of astrotactins. The two fragments of astrotactins remain linked together by a disulfide bond after the proteolytic cleavage. In humans, mutations in astrotactin genes have also been linked to a wide range of diseases, including several developmental brain disorders, neurodegenerative diseases and cancer. In this review, I will summarize the current knowledge of the biological function of astrotactins in development, highlight the linkage between mutations in astrotactin genes and human disease and discuss several outstanding questions that remain unanswered. © 2017 IUBMB Life, 69(8):572-577, 2017.
Collapse
Affiliation(s)
- Hao Chang
- Department of Dermatology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
20
|
Berkowicz SR, Giousoh A, Bird PI. Neurodevelopmental MACPFs: The vertebrate astrotactins and BRINPs. Semin Cell Dev Biol 2017; 72:171-181. [PMID: 28506896 DOI: 10.1016/j.semcdb.2017.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 04/27/2017] [Accepted: 05/11/2017] [Indexed: 02/06/2023]
Abstract
Astrotactins (ASTNs) and Bone morphogenetic protein/retinoic acid inducible neural-specific proteins (BRINPs) are two groups of Membrane Attack Complex/Perforin (MACPF) superfamily proteins that show overlapping expression in the developing and mature vertebrate nervous system. ASTN(1-2) and BRINP(1-3) genes are found at conserved loci in humans that have been implicated in neurodevelopmental disorders (NDDs). Here we review the tissue distribution and cellular localization of these proteins, and discuss recent studies that provide insight into their structure and interactions. We highlight the genetic relationships and co-expression of Brinps and Astns; and review recent knock-out mouse phenotypes that indicate a possible overlap in protein function between ASTNs and BRINPs.
Collapse
Affiliation(s)
- Susan R Berkowicz
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, 3800, Australia.
| | - Aminah Giousoh
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, 3800, Australia
| | - Phillip I Bird
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, 3800, Australia
| |
Collapse
|
21
|
Ni T, Harlos K, Gilbert R. Structure of astrotactin-2: a conserved vertebrate-specific and perforin-like membrane protein involved in neuronal development. Open Biol 2016; 6:rsob.160053. [PMID: 27249642 PMCID: PMC4892435 DOI: 10.1098/rsob.160053] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 04/07/2016] [Indexed: 11/30/2022] Open
Abstract
The vertebrate-specific proteins astrotactin-1 and 2 (ASTN-1 and ASTN-2) are integral membrane perforin-like proteins known to play critical roles in neurodevelopment, while ASTN-2 has been linked to the planar cell polarity pathway in hair cells. Genetic variations associated with them are linked to a variety of neurodevelopmental disorders and other neurological pathologies, including an advanced onset of Alzheimer's disease. Here we present the structure of the majority endosomal region of ASTN-2, showing it to consist of a unique combination of polypeptide folds: a perforin-like domain, a minimal epidermal growth factor-like module, a unique form of fibronectin type III domain and an annexin-like domain. The perforin-like domain differs from that of other members of the membrane attack complex-perforin (MACPF) protein family in ways that suggest ASTN-2 does not form pores. Structural and biophysical data show that ASTN-2 (but not ASTN-1) binds inositol triphosphates, suggesting a mechanism for membrane recognition or secondary messenger regulation of its activity. The annexin-like domain is closest in fold to repeat three of human annexin V and similarly binds calcium, and yet shares no sequence homology with it. Overall, our structure provides the first atomic-resolution description of a MACPF protein involved in development, while highlighting distinctive features of ASTN-2 responsible for its activity.
Collapse
Affiliation(s)
- Tao Ni
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Karl Harlos
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Robert Gilbert
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| |
Collapse
|
22
|
Benítez-Burraco A, Uriagereka J. The Immune Syntax Revisited: Opening New Windows on Language Evolution. Front Mol Neurosci 2016; 8:84. [PMID: 26793054 PMCID: PMC4707268 DOI: 10.3389/fnmol.2015.00084] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/14/2015] [Indexed: 01/29/2023] Open
Abstract
Recent research has added new dimensions to our understanding of classical evolution, according to which evolutionary novelties result from gene mutations inherited from parents to offspring. Language is surely one such novelty. Together with specific changes in our genome and epigenome, we suggest that two other (related) mechanisms may have contributed to the brain rewiring underlying human cognitive evolution and, specifically, the changes in brain connectivity that prompted the emergence of our species-specific linguistic abilities: the horizontal transfer of genetic material by viral and non-viral vectors and the brain/immune system crosstalk (more generally, the dialogue between the microbiota, the immune system, and the brain).
Collapse
Affiliation(s)
| | - Juan Uriagereka
- Department of Linguistics, University of Maryland College Park, MD, USA
| |
Collapse
|
23
|
Reiner O, Karzbrun E, Kshirsagar A, Kaibuchi K. Regulation of neuronal migration, an emerging topic in autism spectrum disorders. J Neurochem 2015; 136:440-56. [PMID: 26485324 DOI: 10.1111/jnc.13403] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/04/2015] [Accepted: 10/09/2015] [Indexed: 12/14/2022]
Abstract
Autism spectrum disorders (ASD) encompass a group of neurodevelopmental diseases that demonstrate strong heritability, however, the inheritance is not simple and many genes have been associated with these disorders. ASD is regarded as a neurodevelopmental disorder, and abnormalities at different developmental stages are part of the disease etiology. This review provides a general background on neuronal migration during brain development and discusses recent advancements in the field connecting ASD and aberrant neuronal migration. We propose that neuronal migration impairment may be an important common pathophysiology in autism spectrum disorders (ASD). This review provides a general background on neuronal migration during brain development and discusses recent advancements in the field connecting ASD and aberrant neuronal migration.
Collapse
Affiliation(s)
- Orly Reiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Eyal Karzbrun
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Aditya Kshirsagar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Kozo Kaibuchi
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Showa, Nagoya, Japan
| |
Collapse
|