1
|
Fenton TA, Petkova SP, Adhikari A, Silverman JL. Acute administration of lovastatin had no pronounced effect on motor abilities, motor coordination, gait nor simple cognition in a mouse model of Angelman syndrome. J Neurodev Disord 2025; 17:27. [PMID: 40382580 DOI: 10.1186/s11689-025-09616-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/01/2025] [Indexed: 05/20/2025] Open
Abstract
Translational research is needed to discover pharmacological targets and treatments for the diagnostic behavioral domains of neurodevelopmental disorders (NDDs), including autism spectrum disorders (ASDs) and intellectual disabilities (IDs). One NDD, associated with ASD and ID, is Angelman Syndrome (AS). AS is a rare genetic NDD for which there is currently no cure nor effective therapeutics. The genetic cause is known to be the loss of expression from the maternal allele of ubiquitin protein ligase E3A (UBE3A). The Ube3a maternal deletion mouse model of AS reliably demonstrates behavioral phenotypes of relevance to AS and therefore offers a suitable in vivo system in which to test potential therapeutics, with construct and face validity. Successes in reducing hyperexcitability and epileptogenesis have been reported in an AS model following acute treatment with lovastatin, an ERK inhibitor by reducing seizure threshold and percentage of mice exhibiting seizures. Since there has been literature reporting disruption of the ERK signaling pathway in AS, we chose to evaluate the effects of acute lovastatin administration in a tailored set of translationally relevant behavioral assays in a mouse model of AS. Unexpectedly, deleterious effects of sedation were observed in wildtype (WT), age matched littermate control mice and despite a baseline hypolocomotive phenotype in AS mice, even further reductions in exploratory activity, were observed post-acute lovastatin treatment. Limitations of this work include that chronic lower dose regimens, more akin to drug administration in humans were beyond the scope of this work, and may have produced a more favorable impact of lovastatin administration over single acute high doses. In addition, lovastatin's effects were not assessed in younger subjects, since our study focused exclusively on adult functional outcomes. Metrics of gait, as well as motor coordination and motor learning in rotarod, previously observed to be impaired in AS mice, were not improved by lovastatin treatment. Finally, cognition by novel object recognition task was worsened in WT controls and not improved in AS, following lovastatin administration. In conclusion, lovastatin did not indicate any major improvement to AS symptoms, and in fact, worsened behavioral outcomes in the WT control groups. Therefore, despite its attractive low toxicity, immediate availability, and low cost of the drug, further investigation for clinical study is unwarranted given the results presented herein.
Collapse
Affiliation(s)
- Timothy A Fenton
- MIND Institute, University of California Davis School of Medicine, Room 1001 A, Research II Building 96, 4625 2nd Avenue, Sacramento, CA, 95817, USA
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Stela P Petkova
- MIND Institute, University of California Davis School of Medicine, Room 1001 A, Research II Building 96, 4625 2nd Avenue, Sacramento, CA, 95817, USA
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Anna Adhikari
- MIND Institute, University of California Davis School of Medicine, Room 1001 A, Research II Building 96, 4625 2nd Avenue, Sacramento, CA, 95817, USA
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Jill L Silverman
- MIND Institute, University of California Davis School of Medicine, Room 1001 A, Research II Building 96, 4625 2nd Avenue, Sacramento, CA, 95817, USA.
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA.
| |
Collapse
|
2
|
Rodríguez-Martín M, Báez-Flores J, Ribes V, Isidoro-García M, Lacal J, Prieto-Matos P. Non-Mammalian Models for Understanding Neurological Defects in RASopathies. Biomedicines 2024; 12:841. [PMID: 38672195 PMCID: PMC11048513 DOI: 10.3390/biomedicines12040841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/27/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
RASopathies, a group of neurodevelopmental congenital disorders stemming from mutations in the RAS/MAPK pathway, present a unique opportunity to delve into the intricacies of complex neurological disorders. Afflicting approximately one in a thousand newborns, RASopathies manifest as abnormalities across multiple organ systems, with a pronounced impact on the central and peripheral nervous system. In the pursuit of understanding RASopathies' neurobiology and establishing phenotype-genotype relationships, in vivo non-mammalian models have emerged as indispensable tools. Species such as Danio rerio, Drosophila melanogaster, Caenorhabditis elegans, Xenopus species and Gallus gallus embryos have proven to be invaluable in shedding light on the intricate pathways implicated in RASopathies. Despite some inherent weaknesses, these genetic models offer distinct advantages over traditional rodent models, providing a holistic perspective on complex genetics, multi-organ involvement, and the interplay among various pathway components, offering insights into the pathophysiological aspects of mutations-driven symptoms. This review underscores the value of investigating the genetic basis of RASopathies for unraveling the underlying mechanisms contributing to broader neurological complexities. It also emphasizes the pivotal role of non-mammalian models in serving as a crucial preliminary step for the development of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Mario Rodríguez-Martín
- Laboratory of Functional Genetics of Rare Diseases, Department of Microbiology and Genetics, University of Salamanca, 37007 Salamanca, Spain; (M.R.-M.); (J.B.-F.)
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (M.I.-G.); (P.P.-M.)
| | - Juan Báez-Flores
- Laboratory of Functional Genetics of Rare Diseases, Department of Microbiology and Genetics, University of Salamanca, 37007 Salamanca, Spain; (M.R.-M.); (J.B.-F.)
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (M.I.-G.); (P.P.-M.)
| | - Vanessa Ribes
- Institut Jacques Monod, Université Paris Cité, CNRS, F-75013 Paris, France;
| | - María Isidoro-García
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (M.I.-G.); (P.P.-M.)
- Clinical Biochemistry Department, Hospital Universitario de Salamanca, 37007 Salamanca, Spain
- Clinical Rare Diseases Reference Unit DiERCyL, 37007 Castilla y León, Spain
- Department of Medicine, University of Salamanca, 37007 Salamanca, Spain
| | - Jesus Lacal
- Laboratory of Functional Genetics of Rare Diseases, Department of Microbiology and Genetics, University of Salamanca, 37007 Salamanca, Spain; (M.R.-M.); (J.B.-F.)
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (M.I.-G.); (P.P.-M.)
| | - Pablo Prieto-Matos
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (M.I.-G.); (P.P.-M.)
- Clinical Rare Diseases Reference Unit DiERCyL, 37007 Castilla y León, Spain
- Department of Pediatrics, Hospital Universitario de Salamanca, 37007 Salamanca, Spain
- Department of Biomedical and Diagnostics Science, University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
3
|
Marzola P, Melzer T, Pavesi E, Gil-Mohapel J, Brocardo PS. Exploring the Role of Neuroplasticity in Development, Aging, and Neurodegeneration. Brain Sci 2023; 13:1610. [PMID: 38137058 PMCID: PMC10741468 DOI: 10.3390/brainsci13121610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/16/2023] [Accepted: 11/18/2023] [Indexed: 12/24/2023] Open
Abstract
Neuroplasticity refers to the ability of the brain to reorganize and modify its neural connections in response to environmental stimuli, experience, learning, injury, and disease processes. It encompasses a range of mechanisms, including changes in synaptic strength and connectivity, the formation of new synapses, alterations in the structure and function of neurons, and the generation of new neurons. Neuroplasticity plays a crucial role in developing and maintaining brain function, including learning and memory, as well as in recovery from brain injury and adaptation to environmental changes. In this review, we explore the vast potential of neuroplasticity in various aspects of brain function across the lifespan and in the context of disease. Changes in the aging brain and the significance of neuroplasticity in maintaining cognitive function later in life will also be reviewed. Finally, we will discuss common mechanisms associated with age-related neurodegenerative processes (including protein aggregation and accumulation, mitochondrial dysfunction, oxidative stress, and neuroinflammation) and how these processes can be mitigated, at least partially, by non-invasive and non-pharmacologic lifestyle interventions aimed at promoting and harnessing neuroplasticity.
Collapse
Affiliation(s)
- Patrícia Marzola
- Department of Morphological Sciences and Graduate Neuroscience Program, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis 88040-900, SC, Brazil; (P.M.); (T.M.); (E.P.)
| | - Thayza Melzer
- Department of Morphological Sciences and Graduate Neuroscience Program, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis 88040-900, SC, Brazil; (P.M.); (T.M.); (E.P.)
| | - Eloisa Pavesi
- Department of Morphological Sciences and Graduate Neuroscience Program, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis 88040-900, SC, Brazil; (P.M.); (T.M.); (E.P.)
| | - Joana Gil-Mohapel
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada
- Island Medical Program, Faculty of Medicine, University of British Columbia, Victoria, BC V8P 5C2, Canada
| | - Patricia S. Brocardo
- Department of Morphological Sciences and Graduate Neuroscience Program, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis 88040-900, SC, Brazil; (P.M.); (T.M.); (E.P.)
| |
Collapse
|
4
|
Jung NH, Egert-Schwender S, Schossow B, Kehl V, Wahlländer U, Brich L, Janke V, Blankenstein C, Zenker M, Mall V. Improvement of synaptic plasticity and cognitive function in RASopathies-a monocentre, randomized, double-blind, parallel-group, placebo-controlled, cross-over clinical trial (SynCoRAS). Trials 2023; 24:383. [PMID: 37280688 DOI: 10.1186/s13063-023-07392-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/18/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND Cognitive impairment is a common medical issue in rat sarcoma (RAS) pathway disorders, so-called RASopathies, like Neurofibromatosis type 1 (NF1) or Noonan syndrome (NS). It is presumed to be caused by impaired synaptic plasticity. In animal studies, pathway-specific pharmacological interventions with lovastatin (LOV) and lamotrigine (LTG) have been shown to improve synaptic plasticity as well as cognitive function. The aim of this clinical trial is to translate the findings of animal studies to humans and to probe the effect of lovastatin (NS) and lamotrigine (NS and NF1) on synaptic plasticity and cognitive function/alertness in RASopathies. METHODS Within this phase IIa, monocentre, randomized, double-blind, parallel-group, placebo-controlled, cross-over clinical trial (syn. SynCoRAS), three approaches (approaches I-III) will be carried out. In patients with NS, the effect of LTG (approach I) and of LOV (approach II) is investigated on synaptic plasticity and alertness. LTG is tested in patients with NF1 (approach III). Trial participants receive a single dose of 300 mg LTG or placebo (I and III) and 200 mg LOV or placebo (II) daily for 4 days with a cross-over after at least 7 days. Synaptic plasticity is investigated using a repetitive high-frequency transcranial magnetic stimulation (TMS) protocol called quadri-pulse theta burst stimulation (qTBS). Attention is examined by using the test of attentional performance (TAP). Twenty-eight patients are randomized in groups NS and NF1 with n = 24 intended to reach the primary endpoint (change in synaptic plasticity). Secondary endpoints are attention (TAP) and differences in short interval cortical inhibition (SICI) between placebo and trial medication (LTG and LOV). DISCUSSION The study is targeting impairments in synaptic plasticity and cognitive impairment, one of the main health problems of patients with RASopathies. Recent first results with LOV in patients with NF1 have shown an improvement in synaptic plasticity and cognition. Within this clinical trial, it is investigated if these findings can be transferred to patients with NS. LTG is most likely a more effective and promising substance improving synaptic plasticity and, consecutively, cognitive function. It is expected that both substances are improving synaptic plasticity as well as alertness. Changes in alertness may be a precondition for improvement of cognition. TRIAL REGISTRATION The clinical trial is registered in ClinicalTrials.gov (NCT03504501; https://www. CLINICALTRIALS gov ; date of registration: 04/11/2018) and in EudraCT (number 2016-005022-10).
Collapse
Affiliation(s)
- Nikolai H Jung
- Social Pediatrics, School of Medicine, Technical University of Munich, Munich, Germany.
| | - Silvia Egert-Schwender
- Münchner Studienzentrum, School of Medicine, Technical University of Munich, Munich, Germany
| | - Beate Schossow
- Münchner Studienzentrum, School of Medicine, Technical University of Munich, Munich, Germany
| | - Victoria Kehl
- Münchner Studienzentrum, School of Medicine, Technical University of Munich, Munich, Germany
| | - Ute Wahlländer
- Institut for General Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Louisa Brich
- Social Pediatrics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Viktoria Janke
- Münchner Studienzentrum, School of Medicine, Technical University of Munich, Munich, Germany
| | - Christiane Blankenstein
- Münchner Studienzentrum, School of Medicine, Technical University of Munich, Munich, Germany
| | - Martin Zenker
- Institute of Human Genetics, University Hospital Magdeburg, Magdeburg, Germany
| | - Volker Mall
- Social Pediatrics, School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
5
|
Lacroix A, Proteau-Lemieux M, Côté S, Near J, Hui SC, Edden RA, Lippé S, Çaku A, Corbin F, Lepage JF. Multimodal assessment of the GABA system in patients with fragile-X syndrome and neurofibromatosis of type 1. Neurobiol Dis 2022; 174:105881. [DOI: 10.1016/j.nbd.2022.105881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/12/2022] [Accepted: 10/02/2022] [Indexed: 11/24/2022] Open
|
6
|
Ramos-Kuri M, Meka SH, Salamanca-Buentello F, Hajjar RJ, Lipskaia L, Chemaly ER. Molecules linked to Ras signaling as therapeutic targets in cardiac pathologies. Biol Res 2021; 54:23. [PMID: 34344467 PMCID: PMC8330049 DOI: 10.1186/s40659-021-00342-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/26/2021] [Indexed: 12/11/2022] Open
Abstract
Abstract The Ras family of small Guanosine Triphosphate (GTP)-binding proteins (G proteins) represents one of the main components of intracellular signal transduction required for normal cardiac growth, but is also critically involved in the development of cardiac hypertrophy and heart failure. The present review provides an update on the role of the H-, K- and N-Ras genes and their related pathways in cardiac diseases. We focus on cardiac hypertrophy and heart failure, where Ras has been studied the most. We also review other cardiac diseases, like genetic disorders related to Ras. The scope of the review extends from fundamental concepts to therapeutic applications. Although the three Ras genes have a nearly identical primary structure, there are important functional differences between them: H-Ras mainly regulates cardiomyocyte size, whereas K-Ras regulates cardiomyocyte proliferation. N-Ras is the least studied in cardiac cells and is less associated to cardiac defects. Clinically, oncogenic H-Ras causes Costello syndrome and facio-cutaneous-skeletal syndromes with hypertrophic cardiomyopathy and arrhythmias. On the other hand, oncogenic K-Ras and alterations of other genes of the Ras-Mitogen-Activated Protein Kinase (MAPK) pathway, like Raf, cause Noonan syndrome and cardio-facio-cutaneous syndromes characterized by cardiac hypertrophy and septal defects. We further review the modulation by Ras of key signaling pathways in the cardiomyocyte, including: (i) the classical Ras-Raf-MAPK pathway, which leads to a more physiological form of cardiac hypertrophy; as well as other pathways associated with pathological cardiac hypertrophy, like (ii) The SAPK (stress activated protein kinase) pathways p38 and JNK; and (iii) The alternative pathway Raf-Calcineurin-Nuclear Factor of Activated T cells (NFAT). Genetic alterations of Ras isoforms or of genes in the Ras-MAPK pathway result in Ras-opathies, conditions frequently associated with cardiac hypertrophy or septal defects among other cardiac diseases. Several studies underline the potential role of H- and K-Ras as a hinge between physiological and pathological cardiac hypertrophy, and as potential therapeutic targets in cardiac hypertrophy and failure. Graphic abstract ![]()
The Ras (Rat Sarcoma) gene family is a group of small G proteins Ras is regulated by growth factors and neurohormones affecting cardiomyocyte growth and hypertrophy Ras directly affects cardiomyocyte physiological and pathological hypertrophy Genetic alterations of Ras and its pathways result in various cardiac phenotypes Ras and its pathway are differentially regulated in acquired heart disease Ras modulation is a promising therapeutic target in various cardiac conditions.
Collapse
Affiliation(s)
- Manuel Ramos-Kuri
- Instituto Nacional de Cancerología, Unidad de Investigación Biomédica en Cáncer, Secretarìa de Salud/Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, México.,Researcher of the Facultad de Bioética, Cátedra de Infertilidad, Universidad Anáhuac, Mexico City, México.,Centro de Investigación en Bioética y Genética, Querétaro, México
| | - Sri Harika Meka
- Division of Nephrology, Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Clinical and Translational Research Center, 875 Ellicott Street, Suite 8030B, Buffalo, NY, 14203, USA
| | - Fabio Salamanca-Buentello
- University of Toronto Institute of Medical Science, Medical Sciences Building, 1 King's College Circle, Room 2374, Toronto, ON, M5S 1A8, Canada
| | | | - Larissa Lipskaia
- INSERM U955 and Département de Physiologie, Hôpital Henri Mondor, FHU SENEC, AP-HP, and Université Paris-Est Créteil (UPEC), 94010, Créteil, France
| | - Elie R Chemaly
- Division of Nephrology, Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Clinical and Translational Research Center, 875 Ellicott Street, Suite 8030B, Buffalo, NY, 14203, USA.
| |
Collapse
|
7
|
McNeill AM, Hudock RL, Foy AMH, Shanley R, Semrud-Clikeman M, Pierpont ME, Berry SA, Sommer K, Moertel CL, Pierpont EI. Emotional functioning among children with neurofibromatosis type 1 or Noonan syndrome. Am J Med Genet A 2019; 179:2433-2446. [PMID: 31566897 DOI: 10.1002/ajmg.a.61361] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/13/2019] [Accepted: 09/05/2019] [Indexed: 12/13/2022]
Abstract
While neurofibromatosis type 1 (NF1) and Noonan syndrome (NS) are clinically distinct genetic syndromes, they have overlapping features because they are caused by pathogenic variants in genes encoding molecules within the Ras-mitogen-activated protein kinase signaling pathway. Increased risk for emotional and behavioral challenges has been reported in both children and adults with these syndromes. The current study examined parent-report and self-report measures of emotional functioning among children with NF1 and NS as compared to their unaffected siblings. Parents and children with NS (n = 39), NF1 (n = 39), and their siblings without a genetic condition (n = 32) completed well-validated clinical symptom rating scales. Results from parent questionnaires indicated greater symptomatology on scales measuring internalizing behaviors and symptoms of attention deficit hyperactivity disorder (ADHD) in both syndrome groups as compared with unaffected children. Frequency and severity of emotional and behavioral symptoms were remarkably similar across the two clinical groups. Symptoms of depression and anxiety were higher in children who were also rated as meeting symptom criteria for ADHD. While self-report ratings by children generally correlated with parent ratings, symptom severity was less pronounced. Among unaffected siblings, parent ratings indicated higher than expected levels of anxiety. Study findings may assist with guiding family-based interventions to address emotional challenges.
Collapse
Affiliation(s)
- Alana M McNeill
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Rebekah L Hudock
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Allison M H Foy
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota.,Department of Educational Psychology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Ryan Shanley
- Biostatistics Core, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Margaret Semrud-Clikeman
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Mary Ella Pierpont
- Division of Genetics and Metabolism, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Susan A Berry
- Division of Genetics and Metabolism, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Katherine Sommer
- Division of Hematology and Oncology, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Christopher L Moertel
- Division of Hematology and Oncology, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Elizabeth I Pierpont
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota
| |
Collapse
|
8
|
Ryu HH, Kim T, Kim JW, Kang M, Park P, Kim YG, Kim H, Ha J, Choi JE, Lee J, Lim CS, Kim CH, Kim SJ, Silva AJ, Kaang BK, Lee YS. Excitatory neuron-specific SHP2-ERK signaling network regulates synaptic plasticity and memory. Sci Signal 2019; 12:12/571/eaau5755. [PMID: 30837304 DOI: 10.1126/scisignal.aau5755] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mutations in RAS signaling pathway components cause diverse neurodevelopmental disorders, collectively called RASopathies. Previous studies have suggested that dysregulation in RAS-extracellular signal-regulated kinase (ERK) activation is restricted to distinct cell types in different RASopathies. Some cases of Noonan syndrome (NS) are associated with gain-of-function mutations in the phosphatase SHP2 (encoded by PTPN11); however, SHP2 is abundant in multiple cell types, so it is unclear which cell type(s) contribute to NS phenotypes. Here, we found that expressing the NS-associated mutant SHP2D61G in excitatory, but not inhibitory, hippocampal neurons increased ERK signaling and impaired both long-term potentiation (LTP) and spatial memory in mice, although endogenous SHP2 was expressed in both neuronal types. Transcriptomic analyses revealed that the genes encoding SHP2-interacting proteins that are critical for ERK activation, such as GAB1 and GRB2, were enriched in excitatory neurons. Accordingly, expressing a dominant-negative mutant of GAB1, which reduced its interaction with SHP2D61G, selectively in excitatory neurons, reversed SHP2D61G-mediated deficits. Moreover, ectopic expression of GAB1 and GRB2 together with SHP2D61G in inhibitory neurons resulted in ERK activation. These results demonstrate that RAS-ERK signaling networks are notably different between excitatory and inhibitory neurons, accounting for the cell type-specific pathophysiology of NS and perhaps other RASopathies.
Collapse
Affiliation(s)
- Hyun-Hee Ryu
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea.,Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - TaeHyun Kim
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Korea
| | - Jung-Woong Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - Minkyung Kang
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Pojeong Park
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Korea
| | - Yong Gyu Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Hyopil Kim
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Korea
| | - Jiyeon Ha
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Ja Eun Choi
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Korea
| | - Jisu Lee
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Korea
| | - Chae-Seok Lim
- Department of Pharmacology, Wonkwang University School of Medicine, Iksan 54538, Korea
| | - Chul-Hong Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - Sang Jeong Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea.,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Alcino J Silva
- Department of Neurobiology, Integrative Center for Learning and Memory, Brain Research Institute, University of California Los Angeles, California, CA 90095, USA
| | - Bong-Kiun Kaang
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Korea
| | - Yong-Seok Lee
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea. .,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea.,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
9
|
Jung NH, Münchau A, Mall V. [Neuronal plasticity and neuromodulation in pediatric neurology]. DER NERVENARZT 2018; 89:1131-1139. [PMID: 30141068 DOI: 10.1007/s00115-018-0586-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
BACKGROUND Neuronal plasticity is a core mechanism for learning and memory. Abnormal neuronal plasticity has emerged as a key mechanism in many neurological and neuropediatric diseases. OBJECTIVE Chances and perspectives of neuromodulation techniques in neurological and neuropediatric diseases with altered neuronal plasticity. MATERIAL AND METHODS Presentation and discussion of own results of neuronal plasticity investigations in patients with neurodevelopmental disorders including RASopathies, autism spectrum disorders (ASD) and Gilles de la Tourette syndrome (GTS). RESULTS The results of neuronal plasticity studies in patients with RASopathies, ASD and GTS underline the pathophysiological relevance of abnormal neuronal plasticity in these diseases. Transcranial magnetic stimulation (TMS) is a useful tool to examine and also induce neuronal plasticity in these patients. CONCLUSION Neuronal plasticity appears to be an important pathophysiological factor in neuronal developmental disorders and can be investigated using TMS. New and innovative techniques may offer novel approaches for individualized TMS applications, particularly in children with neuropediatric conditions.
Collapse
Affiliation(s)
- N H Jung
- Fakultät für Medizin, Lehrstuhl für Sozialpädiatrie, Technische Universität München, Heiglhoftstr. 65, 81377, München, Deutschland.
| | - A Münchau
- Institut für Neurogenetik, Universität zu Lübeck, Marie-Curie-Straße, 23562, Lübeck, Deutschland
| | - V Mall
- Fakultät für Medizin, Lehrstuhl für Sozialpädiatrie, Technische Universität München, Heiglhoftstr. 65, 81377, München, Deutschland
| |
Collapse
|
10
|
Nakhaei-Rad S, Haghighi F, Nouri P, Rezaei Adariani S, Lissy J, Kazemein Jasemi NS, Dvorsky R, Ahmadian MR. Structural fingerprints, interactions, and signaling networks of RAS family proteins beyond RAS isoforms. Crit Rev Biochem Mol Biol 2018; 53:130-156. [PMID: 29457927 DOI: 10.1080/10409238.2018.1431605] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Saeideh Nakhaei-Rad
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| | - Fereshteh Haghighi
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| | - Parivash Nouri
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| | - Soheila Rezaei Adariani
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| | - Jana Lissy
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| | - Neda S Kazemein Jasemi
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| | - Radovan Dvorsky
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| | - Mohammad Reza Ahmadian
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| |
Collapse
|
11
|
Altered Brain Cholesterol/Isoprenoid Metabolism in a Rat Model of Autism Spectrum Disorders. Neuroscience 2018; 372:27-37. [PMID: 29309878 DOI: 10.1016/j.neuroscience.2017.12.053] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 11/28/2017] [Accepted: 12/28/2017] [Indexed: 12/11/2022]
Abstract
Autism spectrum disorders (ASDs) present a wide range of symptoms characterized by altered sociability, compromised communication and stereotypic/repetitive behaviors. These symptoms are caused by developmental changes, but the mechanisms remain largely unknown. Some lines of evidence suggest an impairment of the cholesterol/isoprenoid metabolism in the brain as a possible cause, but systematic analyses in rodent models of ASDs are lacking. Prenatal exposure to the antiepileptic drug valproate (VPA) is a risk factor for ASDs in humans and generates a well-established model for the disease in rodents. Here, we studied cholesterol/isoprenoid metabolism in different brain areas of infant, adolescent and adult rats prenatally exposed to VPA. VPA-treated rats present autistic-like symptoms, they show changes in cholesterol/isoprenoid homeostasis in some brain areas, a decreased number of oligodendrocytes and impaired myelination in the hippocampus. Together, our data suggest a relation between brain cholesterol/isoprenoid homeostasis and ASDs.
Collapse
|
12
|
Borrie SC, Brems H, Legius E, Bagni C. Cognitive Dysfunctions in Intellectual Disabilities: The Contributions of the Ras-MAPK and PI3K-AKT-mTOR Pathways. Annu Rev Genomics Hum Genet 2017; 18:115-142. [DOI: 10.1146/annurev-genom-091416-035332] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sarah C. Borrie
- Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | - Hilde Brems
- Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | - Eric Legius
- Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | - Claudia Bagni
- Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
- Department of Fundamental Neuroscience, University of Lausanne, 1005 Lausanne, Switzerland
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00173 Rome, Italy
| |
Collapse
|
13
|
Titus HE, López-Juárez A, Silbak SH, Rizvi TA, Bogard M, Ratner N. Oligodendrocyte RasG12V expressed in its endogenous locus disrupts myelin structure through increased MAPK, nitric oxide, and notch signaling. Glia 2017; 65:1990-2002. [PMID: 28856719 DOI: 10.1002/glia.23209] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/18/2017] [Accepted: 08/04/2017] [Indexed: 01/28/2023]
Abstract
Costello syndrome (CS) is a gain of function Rasopathy caused by heterozygous activating mutations in the HRAS gene. Patients show brain dysfunction that can include abnormal brain white matter. Transgenic activation of HRas in the entire mouse oligodendrocyte lineage resulted in myelin defects and behavioral abnormalities, suggesting roles for disrupted myelin in CS brain dysfunction. Here, we studied a mouse model in which the endogenous HRas gene is conditionally replaced by mutant HRasG12V in mature oligodendrocytes, to separate effects in mature myelinating cells from developmental events. Increased myelin thickness due to decompaction was detectable within one month of HRasG12V expression in the corpus callosum of adult mice. Increases in active ERK and Nitric Oxide (NO) were present in HRas mutants and inhibition of NO synthase (NOS) or MEK each partially rescued myelin decompaction. In addition, genetic or pharmacologic inhibition of Notch signaling improved myelin compaction. Complete rescue of myelin structure required dual drug treatments combining MAPK, NO, or Notch inhibition; with MEK + NOS blockade producing the most robust effect. We suggest that individual or concomitant blockade of these pathways in CS patients may improve aspects of brain function.
Collapse
Affiliation(s)
- Haley E Titus
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229
| | - Alejandro López-Juárez
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229
| | - Sadiq H Silbak
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229
| | - Tilat A Rizvi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229
| | - Madeleine Bogard
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229
| | - Nancy Ratner
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229
| |
Collapse
|