1
|
Grabowski GA, Kishnani PS, Alcalay RN, Prakalapakorn SG, Rosenbloom BE, Tuason DA, Weinreb NJ. Challenges in Gaucher disease: Perspectives from an expert panel. Mol Genet Metab 2025; 145:109074. [PMID: 40112481 DOI: 10.1016/j.ymgme.2025.109074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/25/2024] [Accepted: 02/25/2025] [Indexed: 03/22/2025]
Abstract
This focused review concentrates on eight topics of high importance for Gaucher disease (GD) clinicians and researchers: 1) The consideration of GD as distinct types rather than a spectrum. A review of the literature clearly supports the view that there are distinct types of GD. Type 1 is characterized by the absence of primary neuronopathic involvement, while types 2 and 3 are characterized by progressive primary neuronopathic disease. 2) Neurologic and neuronopathic manifestations. A growing body of evidence indicates that the peripheral nervous system may be involved in GD type 1 and that there may also be signs and symptoms of central nervous system (CNS) disease in this group. However, GD type 1 is characterized by the absence of primary neuronopathic disease, whereas GD types 2 and 3 are characterized by progressive, albeit variable, primary neuronopathic disease. Abnormalities in saccadic eye movements have been suggested as being diagnostic for neuronopathic GD, but they may also occur in GD type 1 and in other inflammatory diseases. 3) The importance of whole GBA1 sequencing. This approach is superior to exome sequencing because of potential effects of deep intronic variants on gene expression. It also has the capacity to detect variant alleles that might be missed with gene panels. 4) Monoclonal gammopathy of undetermined significance (MGUS). The risks of MGUS, multiple myeloma, and non-Hodgkin's lymphoma are elevated in patients with GD compared to the general population and strong evidence indicates that lyso-Gb1 stimulates the formation of monoclonal immunoglobulins (M-protein) in patients with GD and MGUS. 5) Pulmonary involvement in GD. Pulmonary complications can be identified through spirometry in up to 45 % of patients with GD type 1 and 55 % of those with GD type 3. Limited evidence exists that enzyme replacement therapy (ERT) reduces the severity of these complications in patients with GD type 1. 6) Gaucheromas. These may occur in patients with GD types 1 or 3, but there is little detailed information about their inception, mechanisms underlying growth, cellular organization, and biochemical activities, and no definitive guidance for their management. Gaucheromas behave like benign (i.e. non-metastasizing) neoplasms, and it may be reasonable to classify them as such. 7) Bone and joint involvement. Dual-energy X-ray absorptiometry scans alone are insufficient for monitoring all changes in bone that may occur in patients with GD. Quantitative magnetic resonance imaging (MRI) techniques using Dixon quantitative chemical shift imaging have provided results that correlate with GD severity scores, bone complications, and biomarkers for GD bone involvement. Thoracic kyphosis is a common complication of GD types 1 and 3, and there is very limited information regarding the effects of ERT or substrate synthesis inhibition therapy (SSIT) on this condition. 8) Treatment initiation, selection, combination, and switching. Prompt initiation of treatment in pediatric patients is important as GD can lead to impaired growth, lower peak bone mass, and delayed puberty. These adverse outcomes can often be ameliorated or prevented with timely treatment. Either ERT or eliglustat, a SSIT agent, is suitable as first-line treatment of adults with GD. Studies of switching from ERT to eliglustat, or between different ERT products, have indicated that changing treatment is safe, although efficacy outcomes vary. A critical remaining issue is the lack of treatments capable of reaching the CNS to slow or halt the progression of neuronopathic disease in patients with GD type 2 or 3 and potentially reduce the risk of Parkinson's disease in GD type 1 patients and heterozygotes for GBA1 variants.
Collapse
Affiliation(s)
- Gregory A Grabowski
- Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Ave, Cincinnati, OH 45267, USA; Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA.
| | - Priya S Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, 905 Lasalle Street, GSRB1, 4th Floor, Room 4010, Durham, NC 27710, USA.
| | - Roy N Alcalay
- Neurological Institute of New York, Columbia University, 710 West 168th Street, New York, NY 10032, USA.
| | - S Grace Prakalapakorn
- Department of Ophthalmology and Pediatrics, Duke University Medical Center, 2351 Erwin Rd, Box 3802, DUMC, Durham, NC 27705-4699, USA.
| | - Barry E Rosenbloom
- Cedars-Sinai Tower Hematology Oncology Medical Group, 9090 Wilshire Blvd #300, Beverly Hills, CA 90211, USA.
| | - Dominick A Tuason
- Department of Orthopaedics and Rehabilitation, Yale School of Medicine, 800 Howard Ave, New Haven, CT 06510, USA.
| | - Neal J Weinreb
- University of Miami UHealth Sylvester Cancer Center Coral Springs, 8170 Royal Palm Blvd, Coral Springs, FL 33065, USA
| |
Collapse
|
2
|
Nedachi T, Kawasaki H, Inoue E, Suzuki T, Nakagawa-Yagi Y, Ishida N. Electric-field induced sleep promotion and lifespan extension in Gaucher's disease model flies. Biochem Biophys Rep 2025; 41:101915. [PMID: 39881956 PMCID: PMC11774813 DOI: 10.1016/j.bbrep.2025.101915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/25/2024] [Accepted: 01/03/2025] [Indexed: 01/31/2025] Open
Abstract
Gaucher's disease (GD) is a genetic disease characterized by a mutation in the metabolic enzyme glucocerebrosidase (GBA1), leading to the accumulation of glucosylceramide in tissues. We previously discovered that a minos-inserted mutation in the GBA1 gene of fruit flies, Drosophila melanogaster, mimics human neuronopathic GD (nGD) characteristics, providing a promising model for studying the molecular mechanisms of the disease. We also reported that extremely low-frequency electric fields (ELF-EFs) promote sleep and extend the lifespan of wild-type flies. In this study, we show that ELF-EFs have health-promoting effects on nGD model flies. Firstly, the total sleep time and sleep episode duration of EF-exposed nGD model flies increased. EFs also extended the lifespans of nGD model flies. Additionally, the expression of the endoplasmic reticulum stress-related gene PERK and autophagy-related gene p62 were elevated after EF exposure. The effects of EF exposure on nGD flies are associated with the change of these genes expression. Our findings suggest that EF exposure may be effective as an additional therapy for nGD.
Collapse
Affiliation(s)
- Takaki Nedachi
- Hakuju Institute for Health Science Co., Ltd., 1-37-5 Tomigaya, Shibuya-ku, Tokyo, 151-0063, Japan
- Institute for Chronobiology, Foundation for Advancement of International Science (FAIS), 3-24-16 Kasuga, Tsukuba, Ibaraki, 305-0812, Japan
| | - Haruhisa Kawasaki
- Institute for Chronobiology, Foundation for Advancement of International Science (FAIS), 3-24-16 Kasuga, Tsukuba, Ibaraki, 305-0812, Japan
| | - Eiji Inoue
- Institute for Chronobiology, Foundation for Advancement of International Science (FAIS), 3-24-16 Kasuga, Tsukuba, Ibaraki, 305-0812, Japan
- Tokyo Research Center, Kyushin Pharmaceutical Co., Ltd., 1-22-10 Wada, Suginami-ku, Tokyo, 166-0012, Japan
| | - Takahiro Suzuki
- Institute for Chronobiology, Foundation for Advancement of International Science (FAIS), 3-24-16 Kasuga, Tsukuba, Ibaraki, 305-0812, Japan
- SHIGRAY Inc., 14-4-A2 Kitaarakawaoki, Tsuchiura, Ibaraki, 300-0876, Japan
| | - Yuzo Nakagawa-Yagi
- Hakuju Institute for Health Science Co., Ltd., 1-37-5 Tomigaya, Shibuya-ku, Tokyo, 151-0063, Japan
| | - Norio Ishida
- Institute for Chronobiology, Foundation for Advancement of International Science (FAIS), 3-24-16 Kasuga, Tsukuba, Ibaraki, 305-0812, Japan
- Tokyo Kasei University, 1-18-1 Kaga, Itabashi-ku, Tokyo, 173-8602, Japan
| |
Collapse
|
3
|
Magistrelli L, Brumana M, Rimoldi V, Poggi‐Longostrevi S, Contaldi E, Pezzoli G, Straniero L, Isaias IU, Asselta R. The RAB32 p.Ser71Arg Variant in Parkinsonisms: Insights from a Large Italian Cohort. Mov Disord 2025; 40:511-516. [PMID: 39737595 PMCID: PMC11926488 DOI: 10.1002/mds.30103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 01/01/2025] Open
Abstract
BACKGROUND AND OBJECTIVE Recently, RAB32 has been identified as possibly linked to Parkinson's disease. We studied the prevalence and clinical correlates of the p.Ser71Arg variant in the RAB32 gene in a large case series of Italian patients with Parkinson's disease or atypical parkinsonism. METHODS A single-center cohort with a case-control component (consecutively collected at the Parkinson Institute of Milan between 2002 and 2023) was screened for the RAB32 p.Ser71Arg variant. Detailed clinical characteristics of carriers were reviewed. Healthy control subjects were partners or unrelated caregivers. The variant was detected by a TaqMan polymerase chain reaction assay. RESULTS A total of 4600 patients (3762 with PD and 838 with atypical parkinsonisms) and 1722 healthy control subjects were consecutively included in the study. We identified 20 new variant carriers that, together with the 8 previously identified, had younger age at onset than noncarriers (51.0 ± 10.7 vs. 58.3 ± 11.0 years, respectively; P = 0.01). All carriers had a good response to dopaminergic therapy and device-aided therapies. Carriers had mild or no cognitive decline and mild or no depressive symptoms; six had impulse control disorders and one a REM behavior disorder. Family history was positive in 55.5% of cases versus 22.0% of patients without the variant (P < 0.001) and was compatible with a dominant pattern of inheritance. The variant was not identified in patients with atypical parkinsonisms. CONCLUSIONS This study confirms that RAB32 is associated with a relatively young adult-onset PD with a favorable therapeutic response. This variant should be included in genetic panels used for the diagnosis of familial and/or relatively young-onset PD. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
| | - Marta Brumana
- Department of Biomedical SciencesHumanitas UniversityMilanItaly
- IRCCS Humanitas Research HospitalMilanItaly
| | - Valeria Rimoldi
- Department of Biomedical SciencesHumanitas UniversityMilanItaly
- IRCCS Humanitas Research HospitalMilanItaly
| | - Sofia Poggi‐Longostrevi
- Department of Biomedical SciencesHumanitas UniversityMilanItaly
- IRCCS Humanitas Research HospitalMilanItaly
| | | | - Gianni Pezzoli
- ASST G. Pini‐CTOParkinson Institute of MilanMilanItaly
- Fondazione Pezzoli per il Morbo di ParkinsonMilanItaly
| | - Letizia Straniero
- Department of Biomedical SciencesHumanitas UniversityMilanItaly
- IRCCS Humanitas Research HospitalMilanItaly
| | - Ioannis U. Isaias
- ASST G. Pini‐CTOParkinson Institute of MilanMilanItaly
- Fondazione Pezzoli per il Morbo di ParkinsonMilanItaly
- Department of NeurologyUniversity Hospital WürzburgWürzburgGermany
| | - Rosanna Asselta
- Department of Biomedical SciencesHumanitas UniversityMilanItaly
- IRCCS Humanitas Research HospitalMilanItaly
| |
Collapse
|
4
|
Cotrin JC, Piergiorge RM, Gonçalves AP, Spitz M, Gerber AL, Guimarães APDC, Vasconcelos ATR, Santos-Rebouças CB. Early-onset Parkinson's disease in a patient with a rare homozygous pathogenic GBA1 variant and no Gaucher disease symptoms. Neurogenetics 2025; 26:28. [PMID: 39954136 DOI: 10.1007/s10048-025-00810-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/04/2025] [Indexed: 02/17/2025]
Abstract
Parkinson's disease (PD) is a multifaceted neurodegenerative disorder with both non-motor and motor symptoms. Variants in the glucosylceramidase beta 1 (GBA1) gene are the strongest genetic risk factor for PD, while homozygous or compound heterozygous variants in this gene classically cause Gaucher disease (GD). This study presents an early-onset PD patient with a homozygous GBA1 deletion. Whole-exome sequencing (WES) was performed, and the identified variant was validated via Sanger sequencing. The variant was classified according to ACMG guidelines and ClinGen updates. The patient, a Brazilian female of mixed ethnicity, exhibited the full spectrum of classical motor and non-motor PD symptoms without evident hallmarks of GD. The identified homozygous GBA1 variant (NM_000157.4:c.222_224del; p.T75del; rs761621516) has a very low global allele frequency (0.00003284) and is associated with reduced enzymatic activity. This variant exhibits a founder effect among individuals of African descent. This case highlights an intricate genotype-phenotype landscape for GBA1 variants, underscoring the role of homozygous GBA1 variants in PD pathogenesis.
Collapse
Affiliation(s)
- Juliana Cordovil Cotrin
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University, Rua São Francisco Xavier, 524, PHLC - sala 501F, Maracanã, Rio de Janeiro, 20550-013, RJ, Brazil
| | - Rafael Mina Piergiorge
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University, Rua São Francisco Xavier, 524, PHLC - sala 501F, Maracanã, Rio de Janeiro, 20550-013, RJ, Brazil
| | - Andressa Pereira Gonçalves
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University, Rua São Francisco Xavier, 524, PHLC - sala 501F, Maracanã, Rio de Janeiro, 20550-013, RJ, Brazil
| | - Mariana Spitz
- Movement Disorders Clinic, Neurology Service, Pedro Ernesto University Hospital, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Alexandra Lehmkuhl Gerber
- Bioinformatics Laboratory (LABINFO), National Laboratory for Scientific Computing (LNCC), Petrópolis, Brazil
| | | | | | - Cíntia Barros Santos-Rebouças
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University, Rua São Francisco Xavier, 524, PHLC - sala 501F, Maracanã, Rio de Janeiro, 20550-013, RJ, Brazil.
| |
Collapse
|
5
|
Buco F, Clemente F, Morrone A, Vanni C, Moya SE, Cardona F, Goti A, Marradi M, Matassini C. Multivalent GCase Enhancers: Synthesis and Evaluation of Glyco-Gold Nanoparticles Decorated with Trihydroxypiperidine Iminosugars. Bioconjug Chem 2025; 36:92-103. [PMID: 39700399 DOI: 10.1021/acs.bioconjchem.4c00496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
The present study reports the preparation of the first multivalent iminosugars built onto a glyco-gold nanoparticle core (glyco-AuNPs) capable of stabilizing or enhancing the activity of the lysosomal enzyme GCase, which is defective in Gaucher disease. An N-nonyltrihydroxypiperidine was selected as the bioactive iminosugar unit and further functionalized, via copper-catalyzed alkyne-azide cycloaddition, with a thiol-ending linker that allowed the conjugation to the gold core. These bioactive ligands were obtained with either a linear monomeric or dendritic trimeric arrangement of the iminosugar. The concentration of the bioactive iminosugar on the gold surface was modulated with different amounts of a glucoside bearing a short thiol-ending spacer as the inner ligand. The new mixed-ligand coated glyco-AuNPs were fully characterized, and those with the highest colloidal stability in aqueous medium were subjected to biological evaluation. Glyco-AuNPs with trimeric iminosugar bioactive units showed the ability to stabilize recombinant GCase in a thermal denaturation assay, while Glyco-AuNPs with monomeric iminosugar bioactive units were able to enhance the activity of mutant GCase in Gaucher patient's fibroblasts by 1.9-fold at 2.2 μM.
Collapse
Affiliation(s)
- Francesca Buco
- Department of Chemistry "Ugo Schiff" (DICUS), University of Florence, Via della Lastruccia 3-13, Sesto Fiorentino, FI 50019, Italy
| | - Francesca Clemente
- Department of Chemistry "Ugo Schiff" (DICUS), University of Florence, Via della Lastruccia 3-13, Sesto Fiorentino, FI 50019, Italy
| | - Amelia Morrone
- Laboratory of Molecular Genetics of Neurometabolic Diseases, Department of Neuroscience and Medical Genetics, Meyer Children's Hospital IRCCS, Florence 50139, Italy
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Viale Pieraccini 24, Firenze 50139, Italy
| | - Costanza Vanni
- Department of Chemistry "Ugo Schiff" (DICUS), University of Florence, Via della Lastruccia 3-13, Sesto Fiorentino, FI 50019, Italy
| | - Sergio E Moya
- Soft Matter Nanotechnology Group, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo Miramón 182, Donostia-San Sebastián, Guipúzcoa 20014, Spain
| | - Francesca Cardona
- Department of Chemistry "Ugo Schiff" (DICUS), University of Florence, Via della Lastruccia 3-13, Sesto Fiorentino, FI 50019, Italy
| | - Andrea Goti
- Department of Chemistry "Ugo Schiff" (DICUS), University of Florence, Via della Lastruccia 3-13, Sesto Fiorentino, FI 50019, Italy
| | - Marco Marradi
- Department of Chemistry "Ugo Schiff" (DICUS), University of Florence, Via della Lastruccia 3-13, Sesto Fiorentino, FI 50019, Italy
| | - Camilla Matassini
- Department of Chemistry "Ugo Schiff" (DICUS), University of Florence, Via della Lastruccia 3-13, Sesto Fiorentino, FI 50019, Italy
| |
Collapse
|
6
|
La Vitola P, Szegö EM, Pinto-Costa R, Rollar A, Harbachova E, Schapira AH, Ulusoy A, Di Monte DA. Mitochondrial oxidant stress promotes α-synuclein aggregation and spreading in mice with mutated glucocerebrosidase. NPJ Parkinsons Dis 2024; 10:233. [PMID: 39663354 PMCID: PMC11634889 DOI: 10.1038/s41531-024-00842-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 11/19/2024] [Indexed: 12/13/2024] Open
Abstract
In this study, heterozygous expression of a common Parkinson-associated GBA1 variant, the L444P mutation, was found to exacerbate α-synuclein aggregation and spreading in a mouse model of Parkinson-like pathology targeting neurons of the medullary vagal system. These neurons were also shown to become more vulnerable to oxidative and nitrative stress after L444P expression. The latter paralleled neuronal formation of reactive oxygen species and led to a pronounced accumulation of nitrated α-synuclein. A causal relationship linked mutation-induced oxidative/nitrative stress to enhanced α-synuclein aggregation and spreading that could indeed be rescued by neuronal overexpression of mitochondrial superoxide dismutase 2. Further evidence supported a key involvement of mitochondria as sources of reactive oxygen species as well as targets of oxidative and nitrative damage within L444P-expressing neurons. These findings support the conclusion that enhanced vulnerability to mitochondrial oxidative stress should be considered an important mechanism predisposing to pathology conversion in carriers of GBA1 mutations.
Collapse
Affiliation(s)
- Pietro La Vitola
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Eva M Szegö
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Rita Pinto-Costa
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Angela Rollar
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Eugenia Harbachova
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Anthony Hv Schapira
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, Royal Free Campus, London, UK
| | - Ayse Ulusoy
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Donato A Di Monte
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
7
|
Liang Y, Zhong G, Li Y, Ren M, Wang A, Ying M, Liu C, Guo Y, Zhang D. Comprehensive Analysis and Experimental Validation of the Parkinson's Disease Lysosomal Gene ACP2 and Pan-cancer. Biochem Genet 2024; 62:4408-4431. [PMID: 38310198 DOI: 10.1007/s10528-023-10652-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/27/2023] [Indexed: 02/05/2024]
Abstract
The pivotal role of lysosomal function in preserving neuronal homeostasis is recognized, with its dysfunction being implicated in neurodegenerative processes, notably in Parkinson's disease (PD). Yet, the molecular underpinnings of lysosome-related genes (LRGs) in the context of PD remain partially elucidated. We collected RNA-seq data from the brain substantia nigra of 30 PD patients and 20 normal subjects from the GEO database. We obtained molecular classification clusters from the screened lysosomal expression patterns. The lysosome-related diagnostic model of Parkinson's disease was constructed by XGBoost and Random Forest. And we validated the expression patterns of signature LRGs in the diagnostic model by constructing a PD rat model. Finally, the linkage between PD and cancer through signature genes was explored. The expression patterns of the 33 LRGs screened can be divided into two groups of PD samples, enabling exploration of the variance in biological processes and immune elements. Cluster A had a higher disease severity. Subsequently, critical genes were sieved through the application of machine learning methodologies culminating in the identification of two intersecting feature genes (ACP2 and LRP2). A PD risk prediction model was constructed grounded on these signature genes. The model's validity was assessed through nomogram evaluation, which demonstrated robust confidence validity. Then we analyzed the correlation analysis, immune in-filtration, biological function, and rat expression validation of the two genes with common pathogenic genes in Parkinson's disease, indicating that these two genes play an important role in the pathogenesis of PD. We then selected ACP2, which had a significant immune infiltration correlation, as the entry gene for the pan-cancer analysis. The pan-cancer analysis revealed that ACP2 has profound associations with prognostic indicators, immune infiltration, and tumor-related regulatory processes across various neoplasms, suggesting its potential as a therapeutic target in a range of human diseases, including PD and cancers. Our study comprehensively analyzed the molecular grouping of LRGs expression patterns in Parkinson's disease, and the disease progression was more severe in cluster A. And the PD diagnosis model related to LRGs is constructed. Finally, ACP2 is a potential target for the relationship between Parkinson's disease and tumor.
Collapse
Affiliation(s)
- Yu Liang
- School of Clinical Medicine, School of Laboratory Medicine, Bengbu Medical College, Bengbu, 233000, China
| | - Guangshang Zhong
- School of Clinical Medicine, School of Laboratory Medicine, Bengbu Medical College, Bengbu, 233000, China
| | - Yangyang Li
- School of Life Sciences, Bengbu Medical College, Bengbu, 233000, China
| | - Mingxin Ren
- School of Clinical Medicine, School of Laboratory Medicine, Bengbu Medical College, Bengbu, 233000, China
| | - Ao Wang
- School of Clinical Medicine, School of Laboratory Medicine, Bengbu Medical College, Bengbu, 233000, China
| | - Mengjiao Ying
- School of Life Sciences, Bengbu Medical College, Bengbu, 233000, China
| | - Changqing Liu
- School of Life Sciences, Bengbu Medical College, Bengbu, 233000, China.
| | - Yu Guo
- School of Clinical Medicine, School of Laboratory Medicine, Bengbu Medical College, Bengbu, 233000, China.
- School of Life Sciences, Bengbu Medical College, Bengbu, 233000, China.
| | - Ding Zhang
- School of Life Sciences, Bengbu Medical College, Bengbu, 233000, China.
| |
Collapse
|
8
|
Zhang X, Wu H, Tang B, Guo J. Clinical, mechanistic, biomarker, and therapeutic advances in GBA1-associated Parkinson's disease. Transl Neurodegener 2024; 13:48. [PMID: 39267121 PMCID: PMC11391654 DOI: 10.1186/s40035-024-00437-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 08/17/2024] [Indexed: 09/14/2024] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease. The development of PD is closely linked to genetic and environmental factors, with GBA1 variants being the most common genetic risk. Mutations in the GBA1 gene lead to reduced activity of the coded enzyme, glucocerebrosidase, which mediates the development of PD by affecting lipid metabolism (especially sphingolipids), lysosomal autophagy, endoplasmic reticulum, as well as mitochondrial and other cellular functions. Clinically, PD with GBA1 mutations (GBA1-PD) is characterized by particular features regarding the progression of symptom severity. On the therapeutic side, the discovery of the relationship between GBA1 variants and PD offers an opportunity for targeted therapeutic interventions. In this review, we explore the genotypic and phenotypic correlations, etiologic mechanisms, biomarkers, and therapeutic approaches of GBA1-PD and summarize the current state of research and its challenges.
Collapse
Affiliation(s)
- Xuxiang Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Heng Wu
- Department of Neurology, Multi-Omics Research Center for Brain Disorders, The First Affiliated Hospital, University of South China, Hengyang, 421001, China
- Clinical Research Center for Immune-Related Encephalopathy of Hunan Province, Hengyang, 421001, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Neurology, Multi-Omics Research Center for Brain Disorders, The First Affiliated Hospital, University of South China, Hengyang, 421001, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, 410008, China
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China.
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, 410008, China.
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China.
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
9
|
Dos Santos JCC, Mano GBC, da Cunha Barreto-Vianna AR, Garcia TFM, de Vasconcelos AV, Sá CSG, de Souza Santana SL, Farias AGP, Seimaru B, Lima MPP, Goes JVC, Gusmão CTP, Junior HLR. The Molecular Impact of Glucosylceramidase Beta 1 (Gba1) in Parkinson's Disease: a New Genetic State of the Art. Mol Neurobiol 2024; 61:6754-6770. [PMID: 38347286 DOI: 10.1007/s12035-024-04008-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/29/2024] [Indexed: 08/22/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder affecting 2-3% of those aged over 65, characterized by motor symptoms like slow movement, tremors, and muscle rigidity, along with non-motor symptoms such as anxiety and dementia. Lewy bodies, clumps of misfolded proteins, contribute to neuron loss in PD. Mutations in the GBA1 gene are considered the primary genetic risk factor of PD. GBA1 mutations result in decreased activity of the lysosomal enzyme glucocerebrosidase (GCase) resulting in α-synuclein accumulation. We know that α-synuclein aggregation, lysosomal dysfunction, and endoplasmic reticulum disturbance are recognized factors to PD susceptibility; however, the molecular mechanisms connecting GBA1 gene mutations to increased PD risk remain partly unknown. Thus, in this narrative review conducted according to a systematic review method, we aimed to present the main contributions arising from the molecular impact of the GBA1 gene to the pathogenesis of PD providing new insights into potential impacts for advances in the clinical care of people with PD, a neurological disorder that has contributed to the substantial increase in the global burden of disease accentuated by the aging population. In summary, this narrative review highlights the multifaceted impact of GBA1 mutations in PD, exploring their role in clinical manifestations, genetic predispositions, and molecular mechanisms. The review emphasizes the importance of GBA1 mutations in both motor and non-motor symptoms of PD, suggesting broader therapeutic and management strategies. It also discusses the potential of CRISPR/Cas9 technology in advancing PD treatment and the need for future research to integrate these diverse aspects for improved diagnostics and therapies.
Collapse
Affiliation(s)
- Júlio César Claudino Dos Santos
- Christus University Center, UNICHRISTUS, Fortaleza, Ceara, Brazil.
- Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil.
- Postgraduate Program in Morphofunctional Sciences, Federal University of Ceará, Fortaleza, Ceara, Brazil.
| | | | | | - Tulia Fernanda Meira Garcia
- Multicampi School of Medical Sciences, Federal University of Rio Grande Do Norte, Caico, Rio Grande Do Norte, Brazil
| | | | | | | | - Ana Gabriela Ponte Farias
- Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Beatriz Seimaru
- Barão de Mauá University Center, CBM, Ribeirão Preto, São Paulo, Brazil
| | | | - João Vitor Caetano Goes
- Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil
- Post-Graduate Program of Pathology, Federal University of Ceara, Fortaleza, Ceara, Brazil
| | | | - Howard Lopes Ribeiro Junior
- Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil
- Post-Graduate Program of Pathology, Federal University of Ceara, Fortaleza, Ceara, Brazil
- Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil
| |
Collapse
|
10
|
Perez-Abshana LP, Mendivil-Perez M, Jimenez-Del-Rio M, Velez-Pardo C. The GBA1 K198E Variant Is Associated with Suppression of Glucocerebrosidase Activity, Autophagy Impairment, Oxidative Stress, Mitochondrial Damage, and Apoptosis in Skin Fibroblasts. Int J Mol Sci 2024; 25:9220. [PMID: 39273169 PMCID: PMC11394901 DOI: 10.3390/ijms25179220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
Parkinson's disease (PD) is a multifactorial, chronic, and progressive neurodegenerative disorder inducing movement alterations as a result of the loss of dopaminergic (DAergic) neurons of the pars compacta in the substantia nigra and protein aggregates of alpha synuclein (α-Syn). Although its etiopathology agent has not yet been clearly established, environmental and genetic factors have been suggested as the major contributors to the disease. Mutations in the glucosidase beta acid 1 (GBA1) gene, which encodes the lysosomal glucosylceramidase (GCase) enzyme, are one of the major genetic risks for PD. We found that the GBA1 K198E fibroblasts but not WT fibroblasts showed reduced catalytic activity of heterozygous mutant GCase by -70% but its expression levels increased by 3.68-fold; increased the acidification of autophagy vacuoles (e.g., autophagosomes, lysosomes, and autolysosomes) by +1600%; augmented the expression of autophagosome protein Beclin-1 (+133%) and LC3-II (+750%), and lysosomal-autophagosome fusion protein LAMP-2 (+107%); increased the accumulation of lysosomes (+400%); decreased the mitochondrial membrane potential (∆Ψm) by -19% but the expression of Parkin protein remained unperturbed; increased the oxidized DJ-1Cys106-SOH by +900%, as evidence of oxidative stress; increased phosphorylated LRRK2 at Ser935 (+1050%) along with phosphorylated α-synuclein (α-Syn) at pathological residue Ser129 (+1200%); increased the executer apoptotic protein caspase 3 (cleaved caspase 3) by +733%. Although exposure of WT fibroblasts to environmental neutoxin rotenone (ROT, 1 μM) exacerbated the autophagy-lysosomal system, oxidative stress, and apoptosis markers, ROT moderately increased those markers in GBA1 K198E fibroblasts. We concluded that the K198E mutation endogenously primes skin fibroblasts toward autophagy dysfunction, OS, and apoptosis. Our findings suggest that the GBA1 K198E fibroblasts are biochemically and molecularly equivalent to the response of WT GBA1 fibroblasts exposed to ROT.
Collapse
Affiliation(s)
- Laura Patricia Perez-Abshana
- Neuroscience Research Group, University of Antioquia, University Research Headquarters, Calle 62#52-59, Building 1, Laboratory 411/412, Medellin 050010, Colombia
- Faculty of Medicine, University of Antioquia, University Research Headquarters, Calle 62#52-59, Building 1, Laboratory 411/412, Medellin 050010, Colombia
| | - Miguel Mendivil-Perez
- Neuroscience Research Group, University of Antioquia, University Research Headquarters, Calle 62#52-59, Building 1, Laboratory 411/412, Medellin 050010, Colombia
- Faculty of Nursing, University of Antioquia, University Research Headquarters, Calle 62#52-59, Building 1, Laboratory 411/412, Medellin 050010, Colombia
| | - Marlene Jimenez-Del-Rio
- Neuroscience Research Group, University of Antioquia, University Research Headquarters, Calle 62#52-59, Building 1, Laboratory 411/412, Medellin 050010, Colombia
- Faculty of Medicine, University of Antioquia, University Research Headquarters, Calle 62#52-59, Building 1, Laboratory 411/412, Medellin 050010, Colombia
- Institute of Medical Research, University of Antioquia, University Research Headquarters, Calle 62#52-59, Building 1, Laboratory 411/412, Medellin 050010, Colombia
| | - Carlos Velez-Pardo
- Neuroscience Research Group, University of Antioquia, University Research Headquarters, Calle 62#52-59, Building 1, Laboratory 411/412, Medellin 050010, Colombia
- Faculty of Medicine, University of Antioquia, University Research Headquarters, Calle 62#52-59, Building 1, Laboratory 411/412, Medellin 050010, Colombia
- Institute of Medical Research, University of Antioquia, University Research Headquarters, Calle 62#52-59, Building 1, Laboratory 411/412, Medellin 050010, Colombia
| |
Collapse
|
11
|
Agostini F, Sgalletta B, Bisaglia M. Iron Dyshomeostasis in Neurodegeneration with Brain Iron Accumulation (NBIA): Is It the Cause or the Effect? Cells 2024; 13:1376. [PMID: 39195264 PMCID: PMC11352641 DOI: 10.3390/cells13161376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024] Open
Abstract
Iron is an essential metal ion implicated in several cellular processes. However, the reactive nature of iron renders this metal ion potentially dangerous for cells, and its levels need to be tightly controlled. Alterations in the intracellular concentration of iron are associated with different neuropathological conditions, including neurodegeneration with brain iron accumulation (NBIA). As the name suggests, NBIA encompasses a class of rare and still poorly investigated neurodegenerative disorders characterized by an abnormal accumulation of iron in the brain. NBIA is mostly a genetic pathology, and to date, 10 genes have been linked to familial forms of NBIA. In the present review, after the description of the principal mechanisms implicated in iron homeostasis, we summarize the research data concerning the pathological mechanisms underlying the genetic forms of NBIA and discuss the potential involvement of iron in such processes. The picture that emerges is that, while iron overload can contribute to the pathogenesis of NBIA, it does not seem to be the causal factor in most forms of the pathology. The onset of these pathologies is rather caused by a combination of processes involving the interplay between lipid metabolism, mitochondrial functions, and autophagic activity, eventually leading to iron dyshomeostasis.
Collapse
Affiliation(s)
- Francesco Agostini
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy;
| | - Bibiana Sgalletta
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy;
| | - Marco Bisaglia
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy;
- Centro Studi per la Neurodegenerazione (CESNE), University of Padova, 35121 Padova, Italy
| |
Collapse
|
12
|
Rubilar JC, Outeiro TF, Klein AD. The lysosomal β-glucocerebrosidase strikes mitochondria: implications for Parkinson's therapeutics. Brain 2024; 147:2610-2620. [PMID: 38437875 DOI: 10.1093/brain/awae070] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/31/2024] [Accepted: 02/14/2024] [Indexed: 03/06/2024] Open
Abstract
Parkinson's disease is a neurodegenerative disorder primarily known for typical motor features that arise due to the loss of dopaminergic neurons in the substantia nigra. However, the precise molecular aetiology of the disease is still unclear. Several cellular pathways have been linked to Parkinson's disease, including the autophagy-lysosome pathway, α-synuclein aggregation and mitochondrial function. Interestingly, the mechanistic link between GBA1, the gene that encodes for lysosomal β-glucocerebrosidase (GCase), and Parkinson's disease lies in the interplay between GCase functions in the lysosome and mitochondria. GCase mutations alter mitochondria-lysosome contact sites. In the lysosome, reduced GCase activity leads to glycosphingolipid build-up, disrupting lysosomal function and autophagy, thereby triggering α-synuclein accumulation. Additionally, α-synuclein aggregates reduce GCase activity, creating a self-perpetuating cycle of lysosomal dysfunction and α-synuclein accumulation. GCase can also be imported into the mitochondria, where it promotes the integrity and function of mitochondrial complex I. Thus, GCase mutations that impair its normal function increase oxidative stress in mitochondria, the compartment where dopamine is oxidized. In turn, the accumulation of oxidized dopamine adducts further impairs GCase activity, creating a second cycle of GCase dysfunction. The oxidative state triggered by GCase dysfunction can also induce mitochondrial DNA damage which, in turn, can cause dopaminergic cell death. In this review, we highlight the pivotal role of GCase in Parkinson's disease pathogenesis and discuss promising examples of GCase-based therapeutics, such as gene and enzyme replacement therapies, small molecule chaperones and substrate reduction therapies, among others, as potential therapeutic interventions.
Collapse
Affiliation(s)
- Juan Carlos Rubilar
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7780272, Chile
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37073, Göttingen, Germany
- Max Planck Institute for Natural Sciences, 37073, Göttingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
- Scientific Employee with an Honorary Contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 37075, Göttingen, Germany
| | - Andrés D Klein
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7780272, Chile
| |
Collapse
|
13
|
Dobert JP, Bub S, Mächtel R, Januliene D, Steger L, Regensburger M, Wilfling S, Chen J, Dejung M, Plötz S, Hehr U, Moeller A, Arnold P, Zunke F. Activation and Purification of ß-Glucocerebrosidase by Exploiting its Transporter LIMP-2 - Implications for Novel Treatment Strategies in Gaucher's and Parkinson's Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401641. [PMID: 38666485 PMCID: PMC11220700 DOI: 10.1002/advs.202401641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/15/2024] [Indexed: 07/04/2024]
Abstract
Genetic variants of GBA1 can cause the lysosomal storage disorder Gaucher disease and are among the highest genetic risk factors for Parkinson's disease (PD). GBA1 encodes the lysosomal enzyme beta-glucocerebrosidase (GCase), which orchestrates the degradation of glucosylceramide (GluCer) in the lysosome. Recent studies have shown that GluCer accelerates α-synuclein aggregation, exposing GCase deficiency as a major risk factor in PD pathology and as a promising target for treatment. This study investigates the interaction of GCase and three disease-associated variants (p.E326K, p.N370S, p.L444P) with their transporter, the lysosomal integral membrane protein 2 (LIMP-2). Overexpression of LIMP-2 in HEK 293T cells boosts lysosomal abundance of wt, E326K, and N370S GCase and increases/rescues enzymatic activity of the wt and E326K variant. Using a novel purification approach, co-purification of untagged wt, E326K, and N370S GCase in complex with His-tagged LIMP-2 from cell supernatant of HEK 293F cells is achieved, confirming functional binding and trafficking for these variants. Furthermore, a single helix in the LIMP-2 ectodomain is exploited to design a lysosome-targeted peptide that enhances lysosomal GCase activity in PD patient-derived and control fibroblasts. These findings reveal LIMP-2 as an allosteric activator of GCase, suggesting a possible therapeutic potential of targeting this interaction.
Collapse
Affiliation(s)
- Jan Philipp Dobert
- Department of Molecular NeurologyUniversity Hospital ErlangenFriedrich‐Alexander‐University Erlangen‐Nürnberg (FAU)91054ErlangenGermany
| | - Simon Bub
- Department of Molecular NeurologyUniversity Hospital ErlangenFriedrich‐Alexander‐University Erlangen‐Nürnberg (FAU)91054ErlangenGermany
| | - Rebecca Mächtel
- Department of Molecular NeurologyUniversity Hospital ErlangenFriedrich‐Alexander‐University Erlangen‐Nürnberg (FAU)91054ErlangenGermany
| | - Dovile Januliene
- Department of Structural BiologyOsnabrueck University49076OsnabrueckGermany
| | - Lisa Steger
- Department of Molecular NeurologyUniversity Hospital ErlangenFriedrich‐Alexander‐University Erlangen‐Nürnberg (FAU)91054ErlangenGermany
| | - Martin Regensburger
- Department of Molecular NeurologyUniversity Hospital ErlangenFriedrich‐Alexander‐University Erlangen‐Nürnberg (FAU)91054ErlangenGermany
- Deutsches Zentrum Immuntherapie (DZI)Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)91054ErlangenGermany
| | | | - Jia‐Xuan Chen
- Institute of Molecular Biology (IMB)55128MainzGermany
| | - Mario Dejung
- Institute of Molecular Biology (IMB)55128MainzGermany
| | - Sonja Plötz
- Department of Molecular NeurologyUniversity Hospital ErlangenFriedrich‐Alexander‐University Erlangen‐Nürnberg (FAU)91054ErlangenGermany
| | - Ute Hehr
- Center for Human Genetics Regensburg93059RegensburgGermany
| | - Arne Moeller
- Department of Structural BiologyOsnabrueck University49076OsnabrueckGermany
| | - Philipp Arnold
- Institute of AnatomyFunctional and Clinical AnatomyFriedrich‐Alexander‐University Erlangen‐Nürnberg (FAU)91054ErlangenGermany
| | - Friederike Zunke
- Department of Molecular NeurologyUniversity Hospital ErlangenFriedrich‐Alexander‐University Erlangen‐Nürnberg (FAU)91054ErlangenGermany
| |
Collapse
|
14
|
Beaton B, Hughes DA. Soluble mannose receptor: A potential biomarker in Gaucher disease. Eur J Haematol 2024; 112:794-801. [PMID: 38200687 DOI: 10.1111/ejh.14171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024]
Abstract
PURPOSE Soluble mannose receptor (sMR) relates to mannose receptor expression on macrophages, and is elevated in inflammatory disorders. Gaucher disease (GD) has altered macrophage function and utilises mannose receptors for enzyme replacement therapy (ERT) endocytosis. sMR has not previously been studied in GD. METHODS sMR was measured by ELISA and correlated with GD clinical features including spleen and liver volume, haemoglobin and platelet count, bone marrow burden (BMB) scores and immunoglobulin levels. sMR was compared with biomarkers of GD: chitotriosidase, lyso-GL1, PARC, CCL3, CCL4, osteoactivin, serum ACE and ferritin. RESULTS Median sMR in untreated GD patients was 303.0 ng/mL compared to post-treatment 190.9 ng/mL (p = .02) and healthy controls 202 ng/mL. Median sMR correlated with median spleen volume 455 mL (r = .70, p = .04), liver volume 2025 mL (r = .64, p = .04), BMB 7 (r = .8, p = .03), IgA 1.9 g/L (r = .54, p = .036), IgG 9.2 g/L (r = .57, p = .027), IgM 1.45 g/L (r = .86, p < .0001), with inverse correlation to median platelet count of 125 × 109/L (r = -.47, p = .08) and haemoglobin of 137 g/L (r = -.77, p = .0008). sMR correlated with established biomarkers: osteoactivin 107.8 ng/mL (r = .58, p = .0006), chitotriosidase 3042 nmol/mL/h (r = .52, p = .0006), PARC 800 ng/mL (r = .67, p = .0068), ferritin 547 μg/L (r = .72, p = .002) and CCL3 50 pg/mL (r = .67, p = .007). CONCLUSIONS sMR correlates with clinical features and biomarkers of GD and reduces following therapy.
Collapse
Affiliation(s)
- Brendan Beaton
- Department of Haematology, Royal Free NHS Trust, London, UK
- University College London, London, UK
- Department of Haematology, Liverpool Hospital, Sydney, Australia
| | - Derralynn A Hughes
- Department of Haematology, Royal Free NHS Trust, London, UK
- University College London, London, UK
| |
Collapse
|
15
|
Walton RL, Koga S, Beasley AI, White LJ, Griesacker T, Murray ME, Kasanuki K, Hou X, Fiesel FC, Springer W, Uitti RJ, Fields JA, Botha H, Ramanan VK, Kantarci K, Lowe VJ, Jack CR, Ertekin-Taner N, Savica R, Graff-Radford J, Petersen RC, Parisi JE, Reichard RR, Graff-Radford NR, Ferman TJ, Boeve BF, Wszolek ZK, Dickson DW, Ross OA, Heckman MG. Role of GBA variants in Lewy body disease neuropathology. Acta Neuropathol 2024; 147:54. [PMID: 38472443 PMCID: PMC11049671 DOI: 10.1007/s00401-024-02699-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/26/2024] [Accepted: 01/27/2024] [Indexed: 03/14/2024]
Abstract
Rare and common GBA variants are risk factors for both Parkinson's disease (PD) and dementia with Lewy bodies (DLB). However, the degree to which GBA variants are associated with neuropathological features in Lewy body disease (LBD) is unknown. Herein, we assessed 943 LBD cases and examined associations of 15 different neuropathological outcomes with common and rare GBA variants. Neuropathological outcomes included LBD subtype, presence of a high likelihood of clinical DLB (per consensus guidelines), LB counts in five cortical regions, tyrosine hydroxylase immunoreactivity in the dorsolateral and ventromedial putamen, ventrolateral substantia nigra neuronal loss, Braak neurofibrillary tangle (NFT) stage, Thal amyloid phase, phospho-ubiquitin (pS65-Ub) level, TDP-43 pathology, and vascular disease. Sequencing of GBA exons revealed a total of 42 different variants (4 common [MAF > 0.5%], 38 rare [MAF < 0.5%]) in our series, and 165 cases (17.5%) had a copy of the minor allele for ≥ 1 variant. In analysis of common variants, p.L483P was associated with a lower Braak NFT stage (OR = 0.10, P < 0.001). In gene-burden analysis, presence of the minor allele for any GBA variant was associated with increased odds of a high likelihood of DLB (OR = 2.00, P < 0.001), a lower Braak NFT stage (OR = 0.48, P < 0.001), a lower Thal amyloid phase (OR = 0.55, P < 0.001), and a lower pS65-Ub level (β: -0.37, P < 0.001). Subgroup analysis revealed that GBA variants were most common in LBD cases with a combination of transitional/diffuse LBD and Braak NFT stage 0-II or Thal amyloid phase 0-1, and correspondingly that the aforementioned associations of GBA gene-burden with a decreased Braak NFT stage and Thal amyloid phase were observed only in transitional or diffuse LBD cases. Our results indicate that in LBD, GBA variants occur most frequently in cases with greater LB pathology and low AD pathology, further informing disease-risk associations of GBA in PD, PD dementia, and DLB.
Collapse
Affiliation(s)
- Ronald L Walton
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Shunsuke Koga
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Launia J White
- Division of Clinical Trials and Biostatistics, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, USA
| | | | | | - Koji Kasanuki
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Xu Hou
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | | | - Ryan J Uitti
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | - Julie A Fields
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA
| | - Hugo Botha
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | - Kejal Kantarci
- Department of Neuroradiology, Mayo Clinic, Rochester, MN, USA
| | - Val J Lowe
- Department of Nuclear Medicine, Mayo Clinic, Rochester, MN, USA
| | - Clifford R Jack
- Department of Neuroradiology, Mayo Clinic, Rochester, MN, USA
| | - Nilufer Ertekin-Taner
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | - Rodolfo Savica
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Joseph E Parisi
- Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - R Ross Reichard
- Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | - Tanis J Ferman
- Department of Psychiatry and Psychology, Mayo Clinic, Jacksonville, FL, USA
| | | | | | | | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL, USA
| | - Michael G Heckman
- Division of Clinical Trials and Biostatistics, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, USA.
| |
Collapse
|
16
|
Weinreb NJ. The international cooperative Gaucher group (ICCG) Gaucher registry. Best Pract Res Clin Haematol 2023; 36:101522. [PMID: 38092479 DOI: 10.1016/j.beha.2023.101522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 10/17/2023] [Indexed: 12/18/2023]
Abstract
Gaucher disease GD), is a rare lysosomal storage disorder caused by deficient acid β-glucosylceramidase activity and accumulation of glucosylceramide in tissue macrophages. With the 1991 advent of alglucerase enzyme replenishment therapy (ERT), the manufacturer (Genzyme Corporation) created the ICGG Gaucher Registry to collect longitudinal observational "real word" information about GD world-wide in heterogeneous patient populations, to annotate phenotypes and genotypes that define the natural history of GD in untreated patients, and to document and analyze treatment outcomes for alglucerase and any other future treatments. For 32 years, the ICGG Gaucher Registry has functioned as an educational tool for patients, clinicians, and other stakeholders to increase scientific knowledge of GD, to provide practical management guidance, and to positively impact patient care. This paper illustrates how an industry sponsored registry guided by a company independent scientific advisory board has successfully addressed its mission and evolved in step with technologic and scientific advances.
Collapse
Affiliation(s)
- Neal J Weinreb
- University Research Foundation for Lysosomal Storage Diseases, 7367 Wexford Terrace, Boca Raton, Florida, USA.
| |
Collapse
|
17
|
Pachchek S, Landoulsi Z, Pavelka L, Schulte C, Buena-Atienza E, Gross C, Hauser AK, Reddy Bobbili D, Casadei N, May P, Krüger R. Accurate long-read sequencing identified GBA1 as major risk factor in the Luxembourgish Parkinson's study. NPJ Parkinsons Dis 2023; 9:156. [PMID: 37996455 PMCID: PMC10667262 DOI: 10.1038/s41531-023-00595-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 10/24/2023] [Indexed: 11/25/2023] Open
Abstract
Heterozygous variants in the glucocerebrosidase GBA1 gene are an increasingly recognized risk factor for Parkinson's disease (PD). Due to the GBAP1 pseudogene, which shares 96% sequence homology with the GBA1 coding region, accurate variant calling by array-based or short-read sequencing methods remains a major challenge in understanding the genetic landscape of GBA1-associated PD. We analyzed 660 patients with PD, 100 patients with Parkinsonism and 808 healthy controls from the Luxembourg Parkinson's study, sequenced using amplicon-based long-read DNA sequencing technology. We found that 12.1% (77/637) of PD patients carried GBA1 variants, with 10.5% (67/637) of them carrying known pathogenic variants (including severe, mild, risk variants). In comparison, 5% (34/675) of the healthy controls carried GBA1 variants, and among them, 4.3% (29/675) were identified as pathogenic variant carriers. We found four GBA1 variants in patients with atypical parkinsonism. Pathogenic GBA1 variants were 2.6-fold more frequently observed in PD patients compared to controls (OR = 2.6; CI = [1.6,4.1]). Three novel variants of unknown significance (VUS) were identified. Using a structure-based approach, we defined a potential risk prediction method for VUS. This study describes the full landscape of GBA1-related parkinsonism in Luxembourg, showing a high prevalence of GBA1 variants as the major genetic risk for PD. Although the long-read DNA sequencing technique used in our study may be limited in its effectiveness to detect potential structural variants, our approach provides an important advancement for highly accurate GBA1 variant calling, which is essential for providing access to emerging causative therapies for GBA1 carriers.
Collapse
Grants
- FNR/NCER13/BM/11264123 Fonds National de la Recherche Luxembourg (National Research Fund)
- funded by the Luxembourg National Research (FNR/NCER13/BM/11264123), the PEARL program (FNR/P13/6682797 to RK), MotaSYN (12719684 to RK), MAMaSyn (to RK), MiRisk‐PD (C17/BM/11676395 to RK, PM), the FNR/DFG Core INTER (ProtectMove, FNR11250962 to PM), and the PARK-QC DTU (PRIDE17/12244779/PARK-QC to RK, SP)
- Luxembourg National Research Fund (FNR/NCER13/BM/11264123), the PEARL program (FNR/P13/6682797), MotaSYN (12719684), MAMaSyn, MiRisk‐PD (C17/BM/11676395), and the PARK-QC DTU (PRIDE17/12244779/PARK-QC)
Collapse
Affiliation(s)
- Sinthuja Pachchek
- LCSB, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-Sur-Alzette, Luxembourg.
| | - Zied Landoulsi
- LCSB, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-Sur-Alzette, Luxembourg
| | - Lukas Pavelka
- Parkinson Research Clinic, Centre Hospitalier de Luxembourg (CHL), Luxembourg, Luxembourg
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Strassen, Luxembourg
| | - Claudia Schulte
- Department of Neurodegeneration, Center of Neurology, Hertie Institute for Clinical Brain Research, German Center for Neurodegenerative Diseases, University of Tübingen, Tübingen, Germany
| | - Elena Buena-Atienza
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- NGS Competence Center Tübingen (NCCT), University of Tübingen, Tübingen, Germany
| | - Caspar Gross
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- NGS Competence Center Tübingen (NCCT), University of Tübingen, Tübingen, Germany
| | - Ann-Kathrin Hauser
- Department of Neurodegeneration, Center of Neurology, Hertie Institute for Clinical Brain Research, German Center for Neurodegenerative Diseases, University of Tübingen, Tübingen, Germany
| | - Dheeraj Reddy Bobbili
- LCSB, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-Sur-Alzette, Luxembourg
| | - Nicolas Casadei
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- NGS Competence Center Tübingen (NCCT), University of Tübingen, Tübingen, Germany
| | - Patrick May
- LCSB, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-Sur-Alzette, Luxembourg.
| | - Rejko Krüger
- LCSB, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-Sur-Alzette, Luxembourg.
- Parkinson Research Clinic, Centre Hospitalier de Luxembourg (CHL), Luxembourg, Luxembourg.
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Strassen, Luxembourg.
| |
Collapse
|
18
|
Zhu S, Deen MC, Zhu Y, Gilormini PA, Chen X, Davis OB, Chin MY, Henry AG, Vocadlo DJ. A Fixable Fluorescence-Quenched Substrate for Quantitation of Lysosomal Glucocerebrosidase Activity in Both Live and Fixed Cells. Angew Chem Int Ed Engl 2023; 62:e202309306. [PMID: 37582679 DOI: 10.1002/anie.202309306] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 08/17/2023]
Abstract
Fluorogenic substrates are emerging tools that enable studying enzymatic processes within their native cellular environments. However, fluorogenic substrates that function within live cells are generally incompatible with cellular fixation, preventing their tandem application with fundamental cell biology methods such as immunocytochemistry. Here we report a simple approach to enable the chemical fixation of a dark-to-light substrate, LysoFix-GBA, which enables quantification of glucocerebrosidase (GCase) activity in both live and fixed cells. LysoFix-GBA enables measuring responses to both chemical and genetic perturbations to lysosomal GCase activity. Further, LysoFix-GBA permits simple multiplexed co-localization studies of GCase activity with subcellular protein markers. This tool will aid studying the role of GCase activity in Parkinson's Disease, creating new therapeutic approaches targeting the GCase pathway. This approach also lays the foundation for an approach to create fixable substrates for other lysosomal enzymes.
Collapse
Affiliation(s)
- Sha Zhu
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Matthew C Deen
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Yanping Zhu
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Pierre-André Gilormini
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Xi Chen
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Oliver B Davis
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Marcus Y Chin
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Anastasia G Henry
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - David J Vocadlo
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| |
Collapse
|
19
|
Silva J, Alves C, Soledade F, Martins A, Pinteus S, Gaspar H, Alfonso A, Pedrosa R. Marine-Derived Components: Can They Be a Potential Therapeutic Approach to Parkinson's Disease? Mar Drugs 2023; 21:451. [PMID: 37623732 PMCID: PMC10455662 DOI: 10.3390/md21080451] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023] Open
Abstract
The increase in the life expectancy average has led to a growing elderly population, thus leading to a prevalence of neurodegenerative disorders, such as Parkinson's disease (PD). PD is the second most common neurodegenerative disorder and is characterized by a progressive degeneration of the dopaminergic neurons in the substantia nigra pars compacta (SNpc). The marine environment has proven to be a source of unique and diverse chemical structures with great therapeutic potential to be used in the treatment of several pathologies, including neurodegenerative impairments. This review is focused on compounds isolated from marine organisms with neuroprotective activities on in vitro and in vivo models based on their chemical structures, taxonomy, neuroprotective effects, and their possible mechanism of action in PD. About 60 compounds isolated from marine bacteria, fungi, mollusk, sea cucumber, seaweed, soft coral, sponge, and starfish with neuroprotective potential on PD therapy are reported. Peptides, alkaloids, quinones, terpenes, polysaccharides, polyphenols, lipids, pigments, and mycotoxins were isolated from those marine organisms. They can act in several PD hallmarks, reducing oxidative stress, preventing mitochondrial dysfunction, α-synuclein aggregation, and blocking inflammatory pathways through the inhibition translocation of NF-kB factor, reduction of human tumor necrosis factor α (TNF-α), and interleukin-6 (IL-6). This review gathers the marine natural products that have shown pharmacological activities acting on targets belonging to different intracellular signaling pathways related to PD development, which should be considered for future pre-clinical studies.
Collapse
Affiliation(s)
- Joana Silva
- MARE—Marine and Environmental Sciences Centre, ARNET—Aquatic Research Network, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (F.S.); (A.M.); (S.P.); (H.G.)
| | - Celso Alves
- MARE—Marine and Environmental Sciences Centre, ARNET—Aquatic Research Network, ESTM, Polytechnic of Leiria, 2520-614 Peniche, Portugal;
| | - Francisca Soledade
- MARE—Marine and Environmental Sciences Centre, ARNET—Aquatic Research Network, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (F.S.); (A.M.); (S.P.); (H.G.)
| | - Alice Martins
- MARE—Marine and Environmental Sciences Centre, ARNET—Aquatic Research Network, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (F.S.); (A.M.); (S.P.); (H.G.)
| | - Susete Pinteus
- MARE—Marine and Environmental Sciences Centre, ARNET—Aquatic Research Network, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (F.S.); (A.M.); (S.P.); (H.G.)
| | - Helena Gaspar
- MARE—Marine and Environmental Sciences Centre, ARNET—Aquatic Research Network, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (F.S.); (A.M.); (S.P.); (H.G.)
- BioISI—Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisboa, Portugal
| | - Amparo Alfonso
- Department of Pharmacology, Faculty of Veterinary, University of Santiago de Compostela, 27002 Lugo, Spain;
| | - Rui Pedrosa
- MARE—Marine and Environmental Sciences Centre, ARNET—Aquatic Research Network, ESTM, Polytechnic of Leiria, 2520-614 Peniche, Portugal;
| |
Collapse
|
20
|
Leyns CEG, Prigent A, Beezhold B, Yao L, Hatcher NG, Tao P, Kang J, Suh E, Van Deerlin VM, Trojanowski JQ, Lee VMY, Kennedy ME, Fell MJ, Henderson MX. Glucocerebrosidase activity and lipid levels are related to protein pathologies in Parkinson's disease. NPJ Parkinsons Dis 2023; 9:74. [PMID: 37169750 PMCID: PMC10175254 DOI: 10.1038/s41531-023-00517-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/28/2023] [Indexed: 05/13/2023] Open
Abstract
Parkinson's disease (PD) and dementia with Lewy bodies (DLB) are progressive neurodegenerative diseases characterized by the accumulation of misfolded α-synuclein in the form of Lewy pathology. While most cases are sporadic, there are rare genetic mutations that cause disease and more common variants that increase incidence of disease. The most prominent genetic mutations for PD and DLB are in the GBA1 and LRRK2 genes. GBA1 mutations are associated with decreased glucocerebrosidase activity and lysosomal accumulation of its lipid substrates, glucosylceramide and glucosylsphingosine. Previous studies have shown a link between this enzyme and lipids even in sporadic PD. However, it is unclear how the protein pathologies of disease are related to enzyme activity and glycosphingolipid levels. To address this gap in knowledge, we examined quantitative protein pathology, glucocerebrosidase activity and lipid substrates in parallel from 4 regions of 91 brains with no neurological disease, idiopathic, GBA1-linked, or LRRK2-linked PD and DLB. We find that several biomarkers are altered with respect to mutation and progression to dementia. We found mild association of glucocerebrosidase activity with disease, but a strong association of glucosylsphingosine with α-synuclein pathology, irrespective of genetic mutation. This association suggests that Lewy pathology precipitates changes in lipid levels related to progression to dementia.
Collapse
Affiliation(s)
- Cheryl E G Leyns
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Alice Prigent
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, 49503, USA
| | - Brenna Beezhold
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, 49503, USA
| | - Lihang Yao
- Merck & Co., Inc., 770 Sumneytown Pk, West Point, PA, 19486, USA
| | - Nathan G Hatcher
- Merck & Co., Inc., 770 Sumneytown Pk, West Point, PA, 19486, USA
| | - Peining Tao
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - John Kang
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - EunRan Suh
- Institute on Aging and Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Vivianna M Van Deerlin
- Institute on Aging and Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - John Q Trojanowski
- Institute on Aging and Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Virginia M Y Lee
- Institute on Aging and Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | | | - Matthew J Fell
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Michael X Henderson
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, 49503, USA.
| |
Collapse
|
21
|
Yahya V, Di Fonzo A, Monfrini E. Genetic Evidence for Endolysosomal Dysfunction in Parkinson’s Disease: A Critical Overview. Int J Mol Sci 2023; 24:ijms24076338. [PMID: 37047309 PMCID: PMC10094484 DOI: 10.3390/ijms24076338] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/23/2023] [Accepted: 03/26/2023] [Indexed: 03/30/2023] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disorder in the aging population, and no disease-modifying therapy has been approved to date. The pathogenesis of PD has been related to many dysfunctional cellular mechanisms, however, most of its monogenic forms are caused by pathogenic variants in genes involved in endolysosomal function (LRRK2, VPS35, VPS13C, and ATP13A2) and synaptic vesicle trafficking (SNCA, RAB39B, SYNJ1, and DNAJC6). Moreover, an extensive search for PD risk variants revealed strong risk variants in several lysosomal genes (e.g., GBA1, SMPD1, TMEM175, and SCARB2) highlighting the key role of lysosomal dysfunction in PD pathogenesis. Furthermore, large genetic studies revealed that PD status is associated with the overall “lysosomal genetic burden”, namely the cumulative effect of strong and weak risk variants affecting lysosomal genes. In this context, understanding the complex mechanisms of impaired vesicular trafficking and dysfunctional endolysosomes in dopaminergic neurons of PD patients is a fundamental step to identifying precise therapeutic targets and developing effective drugs to modify the neurodegenerative process in PD.
Collapse
Affiliation(s)
- Vidal Yahya
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy;
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit, 20122 Milan, Italy;
| | - Alessio Di Fonzo
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit, 20122 Milan, Italy;
| | - Edoardo Monfrini
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy;
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit, 20122 Milan, Italy;
- Correspondence:
| |
Collapse
|
22
|
Genetics of Multiple System Atrophy and Progressive Supranuclear Palsy: A Systemized Review of the Literature. Int J Mol Sci 2023; 24:ijms24065281. [PMID: 36982356 PMCID: PMC10048872 DOI: 10.3390/ijms24065281] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/25/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Multiple system atrophy (MSA) and progressive supranuclear palsy (PSP) are uncommon multifactorial atypical Parkinsonian syndromes, expressed by various clinical features. MSA and PSP are commonly considered sporadic neurodegenerative disorders; however, our understanding is improving of their genetic framework. The purpose of this study was to critically review the genetics of MSA and PSP and their involvement in the pathogenesis. A systemized literature search of PubMed and MEDLINE was performed up to 1 January 2023. Narrative synthesis of the results was undertaken. In total, 43 studies were analyzed. Although familial MSA cases have been reported, the hereditary nature could not be demonstrated. COQ2 mutations were involved in familial and sporadic MSA, without being reproduced in various clinical populations. In terms of the genetics of the cohort, synuclein alpha (SNCA) polymorphisms were correlated with an elevated likelihood of manifesting MSA in Caucasians, but a causal effect relationship could not be demonstrated. Fifteen MAPT mutations were linked with PSP. Leucine-rich repeat kinase 2 (LRRK2) is an infrequent monogenic mutation of PSP. Dynactin subunit 1 (DCTN1) mutations may imitate the PSP phenotype. GWAS have noted many risk loci of PSP (STX6 and EIF2AK3), suggesting pathogenetic mechanisms related to PSP. Despite the limited evidence, it seems that genetics influence the susceptibility to MSA and PSP. MAPT mutations result in the MSA and PSP pathologies. Further studies are crucial to elucidate the pathogeneses of MSA and PSP, which will support efforts to develop novel drug options.
Collapse
|
23
|
Shadrina MI, Slominsky PA. Genetic Architecture of Parkinson's Disease. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:417-433. [PMID: 37076287 DOI: 10.1134/s0006297923030100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 03/28/2023]
Abstract
Year 2022 marks 25 years since the first mutation in familial autosomal dominant Parkinson's disease was identified. Over the years, our understanding of the role of genetic factors in the pathogenesis of familial and idiopathic forms of Parkinson's disease has expanded significantly - a number of genes for the familial form of the disease have been identified, and DNA markers for an increased risk of developing its sporadic form have been found. But, despite all the success achieved, we are far from an accurate assessment of the contribution of genetic and, even more so, epigenetic factors to the disease development. The review summarizes the information accumulated to date on the genetic architecture of Parkinson's disease and formulates issues that need to be addressed, which are primarily related to the assessment of epigenetic factors in the disease pathogenesis.
Collapse
Affiliation(s)
- Maria I Shadrina
- Institute of Molecular Genetics, Kurchatov Institute National Research Centre, Moscow, 123182, Russia.
| | - Petr A Slominsky
- Institute of Molecular Genetics, Kurchatov Institute National Research Centre, Moscow, 123182, Russia
| |
Collapse
|
24
|
Mahoney-Crane CL, Viswanathan M, Russell D, Curtiss RAC, Freire J, Bobba SS, Coyle SD, Kandebo M, Yao L, Wan BL, Hatcher NG, Smith SM, Marcus JN, Volpicelli-Daley LA. Neuronopathic GBA1L444P Mutation Accelerates Glucosylsphingosine Levels and Formation of Hippocampal Alpha-Synuclein Inclusions. J Neurosci 2023; 43:501-521. [PMID: 36639889 PMCID: PMC9864632 DOI: 10.1523/jneurosci.0680-22.2022] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 09/09/2022] [Accepted: 11/10/2022] [Indexed: 12/12/2022] Open
Abstract
The most common genetic risk factor for Parkinson's disease (PD) is heterozygous mutations GBA1, which encodes for the lysosomal enzyme, glucocerebrosidase. Reduced glucocerebrosidase activity associates with an accumulation of abnormal α-synuclein (α-syn) called Lewy pathology, which characterizes PD. PD patients heterozygous for the neuronotypic GBA1L444P mutation (GBA1+/L444P) have a 5.6-fold increased risk of cognitive impairments. In this study, we used GBA1+/L444P mice of either sex to determine its effects on lipid metabolism, expression of synaptic proteins, behavior, and α-syn inclusion formation. At 3 months of age, GBA1+/L444P mice demonstrated impaired contextual fear conditioning, and increased motor activity. Hippocampal levels of vGLUT1 were selectively reduced in GBA1+/L444P mice. We show, using mass spectrometry, that GBA1L444P expression increased levels of glucosylsphingosine, but not glucosylceramide, in the brains and serum of GBA1+/L444P mice. Templated induction of α-syn pathology in mice showed an increase in α-syn inclusion formation in the hippocampus of GBA1+/L444P mice compared with GBA1+/+ mice, but not in the cortex, or substantia nigra pars compacta. Pathologic α-syn reduced SNc dopamine neurons by 50% in both GBA1+/+ and GBA1+/L444P mice. Treatment with a GlcCer synthase inhibitor did not affect abundance of α-syn inclusions in the hippocampus or rescue dopamine neuron loss. Overall, these data suggest the importance of evaluating the contribution of elevated glucosylsphingosine to PD phenotypes. Further, our data suggest that expression of neuronotypic GBA1L444P may cause defects in the hippocampus, which may be a mechanism by which cognitive decline is more prevalent in individuals with GBA1-PD.SIGNIFICANCE STATEMENT Parkinson's disease (PD) and dementia with Lewy bodies (DLB) are both pathologically characterized by abnormal α-synuclein (α-syn). Mutant GBA1 is a risk factor for both PD and DLB. Our data show the expression of neuronotypic GBA1L444P impairs behaviors related to hippocampal function, reduces expression of a hippocampal excitatory synaptic protein, and that the hippocampus is more susceptible to α-syn inclusion formation. Further, our data strengthen support for the importance of evaluating the contribution of glucosylsphingosine to PD phenotypes. These outcomes suggest potential mechanisms by which GBA1L444P contributes to the cognitive symptoms clinically observed in PD and DLB. Our findings also highlight the importance of glucosylsphingosine as a relevant biomarker for future therapeutics.
Collapse
Affiliation(s)
- Casey L Mahoney-Crane
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Megha Viswanathan
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Dreson Russell
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Rachel A C Curtiss
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Jennifer Freire
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Sai Sumedha Bobba
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Sean D Coyle
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Monika Kandebo
- Neuroscience Discovery, Merck & Company, Inc, West Point, Pennsylvania 19486
| | - Lihang Yao
- Neuroscience Discovery, Merck & Company, Inc, West Point, Pennsylvania 19486
| | - Bang-Lin Wan
- Neuroscience Discovery, Merck & Company, Inc, West Point, Pennsylvania 19486
| | - Nathan G Hatcher
- Neuroscience Discovery, Merck & Company, Inc, West Point, Pennsylvania 19486
| | - Sean M Smith
- Neuroscience Discovery, Merck & Company, Inc, West Point, Pennsylvania 19486
| | - Jacob N Marcus
- Neuroscience Discovery, Merck & Company, Inc, West Point, Pennsylvania 19486
| | - Laura A Volpicelli-Daley
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama 35294
| |
Collapse
|
25
|
The Consequences of GBA Deficiency in the Autophagy-Lysosome System in Parkinson's Disease Associated with GBA. Cells 2023; 12:cells12010191. [PMID: 36611984 PMCID: PMC9818455 DOI: 10.3390/cells12010191] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/27/2022] [Accepted: 12/31/2022] [Indexed: 01/05/2023] Open
Abstract
GBA gene variants were the first genetic risk factor for Parkinson's disease. GBA encodes the lysosomal enzyme glucocerebrosidase (GBA), which is involved in sphingolipid metabolism. GBA exhibits a complex physiological function that includes not only the degradation of its substrate glucosylceramide but also the metabolism of other sphingolipids and additional lipids such as cholesterol, particularly when glucocerebrosidase activity is deficient. In the context of Parkinson's disease associated with GBA, the loss of GBA activity has been associated with the accumulation of α-synuclein species. In recent years, several hypotheses have proposed alternative and complementary pathological mechanisms to explain why lysosomal enzyme mutations lead to α-synuclein accumulation and become important risk factors in Parkinson's disease etiology. Classically, loss of GBA activity has been linked to a dysfunctional autophagy-lysosome system and to a subsequent decrease in autophagy-dependent α-synuclein turnover; however, several other pathological mechanisms underlying GBA-associated parkinsonism have been proposed. This review summarizes and discusses the different hypotheses with a special focus on autophagy-dependent mechanisms, as well as autophagy-independent mechanisms, where the role of other players such as sphingolipids, cholesterol and other GBA-related proteins make important contributions to Parkinson's disease pathogenesis.
Collapse
|
26
|
Dagda RK, Dagda RY, Vazquez-Mayorga E, Martinez B, Gallahue A. Intranasal Administration of Forskolin and Noopept Reverses Parkinsonian Pathology in PINK1 Knockout Rats. Int J Mol Sci 2022; 24:690. [PMID: 36614135 PMCID: PMC9820624 DOI: 10.3390/ijms24010690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
Parkinson's Disease (PD) is a brain-degenerative disorder characterized by a progressive loss of midbrain dopamine neurons. Current standard-of-care includes oral administration of Levodopa to address motor symptoms, but this treatment is not disease-modifying. A reduction in Protein Kinase A (PKA) signaling and neurotrophic support contributes to PD pathology. We previously showed that enhancing PKA activity in the brain via intraperitoneal administration of Forskolin in Parkinsonian rats (PINK1 knockout) abrogate motor symptoms and loss of midbrain dopamine neurons. Given that intraperitoneal administration is invasive, we hypothesized that intranasal administration of Forskolin and a second nootropic agent (Noopept) could reverse PD pathology efficiently. Results show that intranasal administration of a formulation (CNS/CT-001) containing Forskolin (10 µM) and Noopept (20 nM) significantly reversed motor symptoms, loss of hind limb strength, and neurodegeneration of midbrain dopamine neurons in PINK1-KO rats and is indistinguishable from wild-type (WT) rats; therapeutic effects associated with increased PKA activity and levels of BDNF and NGF in the brain. Intranasal administration of CNS/CT-001, but not Forskolin, significantly decreased the number of α-synuclein aggregates in the cortex of PINK1-KO rats, and is indistinguishable from WT rats. Overall, we show proof of concept that intranasal administration of CNS/CT-001 is a non-invasive, disease-modifying formulation for PD.
Collapse
Affiliation(s)
- Ruben K. Dagda
- Department of Pharmacology, Reno School of Medicine, University of Nevada, Reno, NV 89557, USA
- CNS Curative Technologies LLC, 450 Sinclair Street, Reno, NV 89501, USA
| | - Raul Y. Dagda
- Department of Pharmacology, Reno School of Medicine, University of Nevada, Reno, NV 89557, USA
- CNS Curative Technologies LLC, 450 Sinclair Street, Reno, NV 89501, USA
| | | | - Bridget Martinez
- Department of Pharmacology, Reno School of Medicine, University of Nevada, Reno, NV 89557, USA
| | - Aine Gallahue
- Department of Pharmacology, Reno School of Medicine, University of Nevada, Reno, NV 89557, USA
- CNS Curative Technologies LLC, 450 Sinclair Street, Reno, NV 89501, USA
| |
Collapse
|
27
|
Müller T. Perspective: Is a Closer Interaction between Experimental and Clinical Research Paradigms in Chronic Neurodegeneration, Such as Parkinson's Disease, Necessary Again? Cells 2022; 12:cells12010157. [PMID: 36611955 PMCID: PMC9818841 DOI: 10.3390/cells12010157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023] Open
Abstract
This editorial discusses the current standstill in research in Parkinson's disease from a clinician's point of view [...].
Collapse
Affiliation(s)
- Thomas Müller
- Department of Neurology, St. Joseph Hospital Berlin-Weissensee, Gartenstr. 1, 13088 Berlin, Germany
| |
Collapse
|