1
|
Toyoda T, Wang Y, Wen Y, Tanaka Y. Fluorescence-based biochemical analysis of human hepatitis B virus reverse transcriptase activity. Anal Biochem 2020; 597:113642. [PMID: 32171777 DOI: 10.1016/j.ab.2020.113642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/04/2020] [Accepted: 02/18/2020] [Indexed: 12/14/2022]
Abstract
Although the unique mechanism by which hepatitis B virus (HBV) polymerase primes reverse transcription is now well-characterized, the subsequent elongation process remains poorly understood. Reverse transcriptase (RT)-RNase H sequences from polymerase amino acid 304 (the C-terminal part of spacer domain) to 843 were expressed in Escherichia coli and purified partially. RT elongation activity was investigated using the fluorescent-tagged primer and homopolymeric RNA templates. RT elongation activity depended on both Mg2+ and Mn2+, and had low affinity for purine deoxynucleotides, which may be related with the success of adefovir, tenofovir, and entecavir. However, the polymerization rate was lower than that of human immunodeficiency virus RT. All HBV genotypes displayed similar RT activity, except for genotype B, which demonstrated increased elongation activity.
Collapse
Affiliation(s)
- Tetsuya Toyoda
- Choju Medical Institute, Fukushimura Hospital, 19-14 Azayamanaka, Noyori-Cho, Toyohashi, Aichi, 441-8124, Japan.
| | - Yongxiang Wang
- Key Laboratory of Medical Molecular Virology, Institute of Medical Microbiology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China
| | - Yumei Wen
- Key Laboratory of Medical Molecular Virology, Institute of Medical Microbiology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China
| | - Yasuhito Tanaka
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
2
|
Wang Q, Weng L, Jiang H, Zhang S, Toyoda T. Fluorescent primer-based in vitro transcription system of viral RNA-dependent RNA polymerases. Anal Biochem 2012; 433:92-4. [PMID: 23103398 DOI: 10.1016/j.ab.2012.10.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 10/10/2012] [Accepted: 10/16/2012] [Indexed: 11/26/2022]
Abstract
Viral infection is a leading cause of disease and death. Although vaccines are the most effective method of controlling viral infections, antiviral drugs are also important. Here, we established an in vitro transcription system by using fluorescein isothiocyanate-conjugated primers for RNA polymerases of viruses that are important disease-causing human pathogens (influenza, hepatitis C, Japanese encephalitis viruses, and enterovirus 71). This technology will allow us to analyze RNA polymerase activity without using radioisotopes.
Collapse
Affiliation(s)
- Qiang Wang
- Unit of Viral Genome Regulation, Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200025, People's Republic of China
| | | | | | | | | |
Collapse
|
3
|
Different mechanisms of hepatitis C virus RNA polymerase activation by cyclophilin A and B in vitro. Biochim Biophys Acta Gen Subj 2012; 1820:1886-92. [PMID: 22954804 DOI: 10.1016/j.bbagen.2012.08.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 07/25/2012] [Accepted: 08/21/2012] [Indexed: 01/27/2023]
Abstract
BACKGROUND Cyclophilins (CyPs) are cellular proteins that are essential to hepatitis C virus (HCV) replication. Since cyclosporine A was discovered to inhibit HCV infection, the CyP pathway contributing to HCV replication is a potential attractive stratagem for controlling HCV infection. Among them, CyPA is accepted to interact with HCV nonstructural protein (NS) 5A, although interaction of CyPB and NS5B, an RNA-dependent RNA polymerase (RdRp), was proposed first. METHODS CyPA, CyPB, and HCV RdRp were expressed in bacteria and purified using combination column chromatography. HCV RdRp activity was analyzed in vitro with purified CyPA and CyPB. RESULTS CyPA at a high concentration (50× higher than that of RdRp) but not at low concentration activated HCV RdRp. CyPB had an allosteric effect on genotype 1b RdRp activation. CyPB showed genotype specificity and activated genotype 1b and J6CF (2a) RdRps but not genotype 1a or JFH1 (2a) RdRps. CyPA activated RdRps of genotypes 1a, 1b, and 2a. CyPB may also support HCV genotype 1b replication within the infected cells, although its knockdown effect on HCV 1b replicon activity was controversial in earlier reports. CONCLUSIONS CyPA activated HCV RdRp at the early stages of transcription, including template RNA binding. CyPB also activated genotype 1b RdRp. However, their activation mechanisms are different. GENERAL SIGNIFICANCE These data suggest that both CyPA and CyPB are excellent targets for the treatment of HCV 1b, which shows the greatest resistance to interferon and ribavirin combination therapy.
Collapse
|
4
|
Wang Q, Weng L, Tian X, Counor D, Sun J, Mao Y, Deubel V, Okada H, Toyoda T. Effect of the methyltransferase domain of Japanese encephalitis virus NS5 on the polymerase activity. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:411-8. [DOI: 10.1016/j.bbagrm.2012.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 12/05/2011] [Accepted: 01/06/2012] [Indexed: 12/25/2022]
|
5
|
Detergent-induced activation of the hepatitis C virus genotype 1b RNA polymerase. Gene 2012; 496:79-87. [PMID: 22306265 DOI: 10.1016/j.gene.2012.01.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 12/29/2011] [Accepted: 01/18/2012] [Indexed: 11/24/2022]
Abstract
Recently, we found that sphingomyelin bound and activated hepatitis C virus (HCV) 1b RNA polymerase (RdRp), thereby recruiting the HCV replication complex into lipid raft structures. Detergents are commonly used for resolving lipids and purifying proteins, including HCV RdRp. Here, we tested the effect of detergents on HCV RdRp activity in vitro and found that non-ionic (Triton X-100, NP-40, Tween 20, Tween 80, and Brij 35) and twitterionic (CHAPS) detergents activated HCV 1b RdRps by 8-16.6 folds, but did not affect 1a or 2a RdRps. The maximum effect of these detergents was observed at around their critical micelle concentrations. On the other hand, ionic detergents (SDS and DOC) completely inactivated polymerase activity at 0.01%. In the presence of Triton X-100, HCV 1b RdRp did not form oligomers, but recruited more template RNA and increased the speed of polymerization. Comparison of polymerase and RNA-binding activity between JFH1 RdRp and Triton X-100-activated 1b RdRp indicated that monomer RdRp showed high activity because JFH1 RdRp was a monomer in physiological conditions of transcription. Besides, 502H plays a key role on oligomerization of 1b RdRp, while 2a RdRps which have the amino acid S at position 502 are monomers. This oligomer formed by 502H was disrupted both by high salt and Triton X-100. On the contrary, HCV 1b RdRp completely lost fidelity in the presence of 0.02% Triton X-100, which suggests that caution should be exercised while using Triton X-100 in anti-HCV RdRp drug screening tests.
Collapse
|
6
|
Abstract
The reality of hepatitis C is inescapable for the estimated 130 million people worldwide chronically infected with the virus. Yet this pathogen has been notoriously difficult to move from the infected individual into experimental systems, and each advance--from the identification of the infectious agent to its culture and study--has been a significant challenge. As a result of unrelenting technical hurdles, preventative and therapeutic options have been slow to reach hepatitis C patients. More than 35 years since the recognition of the disease, there is no vaccine available, and the only approved treatment, a combination of pegylated interferon-alpha (IFN-α) and ribavirin, is frequently ineffective. Decades of research, however, have resulted in systematic progress and much is now known about this once elusive pathogen. Most importantly, key breakthroughs have stimulated drug discovery, and the first generation of specifically targeted antiviral inhibitors is poised to enter the market. This review provides a look back at progress in developing tractable model systems for this important agent of chronic hepatitis.
Collapse
Affiliation(s)
- Catherine L Murray
- The Center for the Study of Hepatitis C, The Rockefeller University, New York, New York 10065, USA.
| | | |
Collapse
|
7
|
Jiang H, Xu Y, Li L, Weng L, Wang Q, Zhang S, Jia B, Hu H, He Y, Jacob Y, Toyoda T. Inhibition of influenza virus replication by constrained peptides targeting nucleoprotein. Antivir Chem Chemother 2011; 22:119-30. [PMID: 22095520 DOI: 10.3851/imp1902] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
BACKGROUND Because of high mutation rates, new drug-resistant viruses are rapidly evolving, thus making the necessary control of influenza virus infection difficult. METHODS We screened a constrained cysteine-rich peptide library mimicking μ-conotoxins from Conus geographus and a proline-rich peptide library mimicking lebocin 1 and 2 from Bombyx mori by using influenza virus RNA polymerase (PB1, PB2 and PA) and nucleoprotein (NP) as baits. RESULTS Among the 22 peptides selected from the libraries, we found that the NP-binding proline-rich peptide, PPWCCCSPMKRASPPPAQSDLPATPKCPP, inhibited influenza replicon activity to mean±sd 40.7%±15.8% when expressed as a GFP fusion peptide in replicon cells. Moreover, when the GFP fusion peptide was transduced into cells by an HIV-TAT protein transduction domain sequence, the replication of influenza virus A/WSN/33 (WSN) at a multiplicity of infection of 0.01 was inhibited to 20% and 69% at 12 and 24 h post-infection, respectively. In addition, the TAT-GFP fusion peptide was able to slightly protect Balb/c mice from WSN infection when administrated prior to the infection. CONCLUSIONS These results suggest the potential of this peptide as the seed of an anti-influenza drug and reveal the usefulness of the constrained peptide strategy for generating inhibitors of influenza infection. The results also suggest that influenza NP, which is conserved among the influenza A viruses, is a good target for influenza inhibition, despite being the most abundant protein in infected cells.
Collapse
Affiliation(s)
- Hongbing Jiang
- Unit of Viral Genome Regulation, Institut Pasteur of Shanghai, Key Laboratory of Molecular Virology and Immunology, Chinese Academy of Sciences, Shanghai, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Wang Y, Wang Y, Xu Y, Tong W, Pan T, Li J, Sun S, Shao J, Ding H, Toyoda T, Yuan Z. Hepatitis C virus NS5B protein delays s phase progression in human hepatocyte-derived cells by relocalizing cyclin-dependent kinase 2-interacting protein (CINP). J Biol Chem 2011; 286:26603-15. [PMID: 21628470 DOI: 10.1074/jbc.m111.225672] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cell cycle dysregulation is a critical event in virus infection-associated tumorigenesis. Previous studies have suggested that hepatitis C virus NS5B modulates cell cycle progression in addition to participating in RNA synthesis as an RNA-dependent RNA polymerase. However, the molecular mechanisms have thus far remained unclear. In this study, a HepG2 Tet-On NS5B stable cell line was generated to confirm the effect of NS5B on the cell cycle. To better understand the role of NS5B in cell cycle regulation, yeast two-hybrid assays were performed using a human liver cDNA library. The cyclin-dependent kinase 2-interacting protein (CINP) was identified. The interaction between NS5B and CINP was further demonstrated by in vivo and in vitro assays, and their association was found to be indispensable for S phase delay and cell proliferation suppression. Further experiments indicated that NS5B relocalized CINP from the nucleus to the cytoplasm. Directly knocking down CINP by specific siRNA resulted in a significant alteration in the DNA damage response and expression of cell cycle checkpoint proteins, including an increase in p21 and a decrease in phosphorylated Retinoblastoma and Chk1. Similar results were observed in cells expressing NS5B, and the effects were partially reversed upon ectopic overexpression of CINP. These studies suggest that the DNA damage response might be exploited by NS5B to hinder cell cycle progression. Taken together, our data demonstrate that NS5B delays cells in S phase through interaction with CINP and relocalization of the protein from the nucleus to the cytoplasm. Such effects might contribute to hepatitis C virus persistence and pathogenesis.
Collapse
Affiliation(s)
- Yaohui Wang
- Key Laboratory of Medical Molecular Virology, Shanghai Medical College, Shanghai 200032, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Jiang H, Weng L, Zhang N, Arita M, Li R, Chen L, Toyoda T. Biochemical characterization of enterovirus 71 3D RNA polymerase. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1809:211-9. [PMID: 21220056 DOI: 10.1016/j.bbagrm.2011.01.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 12/27/2010] [Accepted: 01/03/2011] [Indexed: 11/24/2022]
Abstract
An unusual enterovirus 71 (EV71) epidemic has begun in China since 2008. EV71 RNA polymerases (3D(pol)) showed polymerase activity with an Mn(2+). Little activity was detected with Co(2+), and no activity was detected with Mg(2+), Ca(2+), Cu(2+), Ni(2+), Cd(2+), or Zn(2+). It is a primer-dependent polymerase, and the enzyme functioned with both di- and 10-nucleotide RNA primers. DNA primer, dT15, increased primer activity, similar to other enterovirus 3D(pol). However, EV71 3D(pol) initiated de novo transcription with a poly(C) template and genome RNA. Its RNA binding activity was weak. Terminal nucleotidyl transferase and reverse transcriptase activity were not detected. The Km and Vmax for EV71 3D(pol) were calculated from classic Lineweaver-Burk plots. The Km values were 2.35±0.05 (ATP), 5.40±0.93 (CTP), 1.12±0.10 (GTP) and 2.81±0.31 (UTP), and the Vmax values were 0.00078±0.00005/min (ATP), 0.011±0.0017/min (CTP), 0.050±0.0043/min (GTP) and 0.0027±0.0005/min (UTP). The Km of EV71 3D(pol) was similar to that of foot and mouth disease virus and rhinovirus. Polymerase activity of BrCr-TR strain and a strain from a clinical isolate in Beijing, 2008 were similar, indicating the potential for 3D(pol) as an antiviral drug target.
Collapse
Affiliation(s)
- Hongbing Jiang
- Unit of Viral Genome Regulation, Institut Pasteur of Shanghai, Key Laboratory of Molecular Virology & Immunology, Chinese Academy of Sciences, Shanghai, PR China
| | | | | | | | | | | | | |
Collapse
|
10
|
Inoue Y, Aizaki H, Hara H, Matsuda M, Ando T, Shimoji T, Murakami K, Masaki T, Shoji I, Homma S, Matsuura Y, Miyamura T, Wakita T, Suzuki T. Chaperonin TRiC/CCT participates in replication of hepatitis C virus genome via interaction with the viral NS5B protein. Virology 2010; 410:38-47. [PMID: 21093005 DOI: 10.1016/j.virol.2010.10.026] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2010] [Revised: 07/18/2010] [Accepted: 10/15/2010] [Indexed: 12/12/2022]
Abstract
To identify the host factors implicated in the regulation of hepatitis C virus (HCV) genome replication, we performed comparative proteome analyses of HCV replication complex (RC)-rich membrane fractions prepared from cells harboring genome-length bicistronic HCV RNA at the exponential and stationary growth phases. We found that the eukaryotic chaperonin T-complex polypeptide 1 (TCP1)-ring complex/chaperonin-containing TCP1 (TRiC/CCT) plays a role in the replication possibly through an interaction between subunit CCT5 and the viral RNA polymerase NS5B. siRNA-mediated knockdown of CCT5 suppressed RNA replication and production of the infectious virus. Gain-of-function activity was shown following co-transfection with whole eight TRiC/CCT subunits. HCV RNA synthesis was inhibited by an anti-CCT5 antibody in a cell-free assay. These suggest that recruitment of the chaperonin by the viral nonstructural proteins to the RC, which potentially facilitate folding of the RC component(s) into the mature active form, may be important for efficient replication of the HCV genome.
Collapse
Affiliation(s)
- Yasushi Inoue
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Sphingomyelin activates hepatitis C virus RNA polymerase in a genotype-specific manner. J Virol 2010; 84:11761-70. [PMID: 20844041 DOI: 10.1128/jvi.00638-10] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hepatitis C virus (HCV) replication and infection depend on the lipid components of the cell, and replication is inhibited by inhibitors of sphingomyelin biosynthesis. We found that sphingomyelin bound to and activated genotype 1b RNA-dependent RNA polymerase (RdRp) by enhancing its template binding activity. Sphingomyelin also bound to 1a and JFH1 (genotype 2a) RdRps but did not activate them. Sphingomyelin did not bind to or activate J6CF (2a) RdRp. The sphingomyelin binding domain (SBD) of HCV RdRp was mapped to the helix-turn-helix structure (residues 231 to 260), which was essential for sphingomyelin binding and activation. Helix structures (residues 231 to 241 and 247 to 260) are important for RdRp activation, and 238S and 248E are important for maintaining the helix structures for template binding and RdRp activation by sphingomyelin. 241Q in helix 1 and the negatively charged 244D at the apex of the turn are important for sphingomyelin binding. Both amino acids are on the surface of the RdRp molecule. The polarity of the phosphocholine of sphingomyelin is important for HCV RdRp activation. However, phosphocholine did not activate RdRp. Twenty sphingomyelin molecules activated one RdRp molecule. The biochemical effect of sphingomyelin on HCV RdRp activity was virologically confirmed by the HCV replicon system. We also found that the SBD was the lipid raft membrane localization domain of HCV NS5B because JFH1 (2a) replicon cells harboring NS5B with the mutation A242C/S244D moved to the lipid raft while the wild type did not localize there. This agreed with the myriocin sensitivity of the mutant replicon. This sphingomyelin interaction is a target for HCV infection because most HCV RdRps have 241Q.
Collapse
|
12
|
Murayama A, Weng L, Date T, Akazawa D, Tian X, Suzuki T, Kato T, Tanaka Y, Mizokami M, Wakita T, Toyoda T. RNA polymerase activity and specific RNA structure are required for efficient HCV replication in cultured cells. PLoS Pathog 2010; 6:e1000885. [PMID: 20442786 PMCID: PMC2861710 DOI: 10.1371/journal.ppat.1000885] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Accepted: 03/30/2010] [Indexed: 12/20/2022] Open
Abstract
We have previously reported that the NS3 helicase (N3H) and NS5B-to-3'X (N5BX) regions are important for the efficient replication of hepatitis C virus (HCV) strain JFH-1 and viral production in HuH-7 cells. In the current study, we investigated the relationships between HCV genome replication, virus production, and the structure of N5BX. We found that the Q377R, A450S, S455N, R517K, and Y561F mutations in the NS5B region resulted in up-regulation of J6CF NS5B polymerase activity in vitro. However, the activation effects of these mutations on viral RNA replication and virus production with JFH-1 N3H appeared to differ. In the presence of the N3H region and 3' untranslated region (UTR) of JFH-1, A450S, R517K, and Y561F together were sufficient to confer HCV genome replication activity and virus production ability to J6CF in cultured cells. Y561F was also involved in the kissing-loop interaction between SL3.2 in the NS5B region and SL2 in the 3'X region. We next analyzed the 3' structure of HCV genome RNA. The shorter polyU/UC tracts of JFH-1 resulted in more efficient RNA replication than J6CF. Furthermore, 9458G in the JFH-1 variable region (VR) was responsible for RNA replication activity because of its RNA structures. In conclusion, N3H, high polymerase activity, enhanced kissing-loop interactions, and optimal viral RNA structure in the 3'UTR were required for J6CF replication in cultured cells.
Collapse
Affiliation(s)
- Asako Murayama
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Leiyun Weng
- Unit of Viral Genome Regulation, Key Laboratory of Molecular Virology & Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Tomoko Date
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Daisuke Akazawa
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
- Pharmaceutical Research Lab, Toray Industries, Inc., Kanagawa, Japan
| | - Xiao Tian
- Unit of Viral Genome Regulation, Key Laboratory of Molecular Virology & Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Tetsuro Suzuki
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takanobu Kato
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yasuhito Tanaka
- Department of Clinical Molecular Informative Medicine, Nagoya City University Graduate School of Medical Sciences, Aichi, Japan
| | - Masashi Mizokami
- Research Center for Hepatitis and Immunology, Kohnodai Hospital, International Medical Center of Japan, Chiba, Japan
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tetsuya Toyoda
- Unit of Viral Genome Regulation, Key Laboratory of Molecular Virology & Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, People's Republic of China
| |
Collapse
|
13
|
Regulation of de novo-initiated RNA synthesis in hepatitis C virus RNA-dependent RNA polymerase by intermolecular interactions. J Virol 2010; 84:5923-35. [PMID: 20375156 DOI: 10.1128/jvi.02446-09] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp) has been proposed to change conformations in association with RNA synthesis and to interact with cellular proteins. In vitro, the RdRp can initiate de novo from the ends of single-stranded RNA or extend a primed RNA template. The interactions between the Delta1 loop and thumb domain in NS5B are required for de novo initiation, although it is unclear whether these interactions are within an NS5B monomer or are part of a higher-order NS5B oligomeric complex. This work seeks to address how polymerase conformation and/or oligomerization affects de novo initiation. We have shown that an increasing enzyme concentration increases de novo initiation by the genotype 1b and 2a RdRps while primer extension reactions are not affected or inhibited under similar conditions. Initiation-defective mutants of the HCV polymerase can increase de novo initiation by the wild-type (WT) polymerase. GTP was also found to stimulate de novo initiation. Our results support a model in which the de novo initiation-competent conformation of the RdRp is stimulated by oligomeric contacts between individual subunits. Using electron microscopy and single-molecule reconstruction, we attempted to visualize the low-resolution conformations of a dimer of a de novo initiation-competent HCV RdRp.
Collapse
|
14
|
Zhang S, Weng L, Geng L, Wang J, Zhou J, Deubel V, Buchy P, Toyoda T. Biochemical and kinetic analysis of the influenza virus RNA polymerase purified from insect cells. Biochem Biophys Res Commun 2009; 391:570-4. [PMID: 19932088 DOI: 10.1016/j.bbrc.2009.11.100] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 11/17/2009] [Indexed: 11/19/2022]
Abstract
The influenza virus RNA polymerase (RdRp) was purified from insect cells (around 0.2mg/l). The RdRp catalyzed all the biochemical reactions of influenza virus transcription and replication in vitro; dinucleotide ApG and globin mRNA-primed transcription, de novo initiation (replication), and polyadenylation. The optimal Mg concentration, pH and temperature were 8mM, 8.0 and 25 degrees C, respectively, which were slightly different from those measured for RdRp of virions. This system is a single-round transcription system. K(m) (microM) were 10.74+/-0.26 (GTP), 33.22+/-3.37 (ATP), 28.93+/-0.48 (CTP) and 22.01+/-1.48 (UTP), and V(max) (fmol nucleotide/pmol RdRp/min) were 2.40+/-0.032 (GTP), 1.95+/-0.17 (ATP), 2.07+/-0.17 (CTP), and 1.52+/-0.38 (UTP), which agreed with high mutation of influenza viruses.
Collapse
Affiliation(s)
- Shijian Zhang
- Unit of Viral Genome Regulation, Institut Pasteur of Shanghai, Key Laboratory of Molecular Virology & Immunology, Chinese Academy of Sciences, 411 Hefei Road, 200025 Shanghai, PR China
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Structural and functional analysis of hepatitis C virus strain JFH1 polymerase. J Virol 2009; 83:11926-39. [PMID: 19740982 DOI: 10.1128/jvi.01008-09] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The hepatitis C virus (HCV) isolate JFH1 represents the only cloned wild-type sequence capable of efficient replication in cell culture, as well as in chimpanzees. Previous reports have pointed to the viral polymerase NS5B as a major determinant for efficient replication of this isolate. To understand the underlying mechanisms, we expressed and purified NS5B of JFH1 and of the closely related isolate J6, which replicates below the limit of detection in cell culture. The JFH1 enzyme exhibited a 5- to 10-fold-higher specific activity in vitro, consistent with the polymerase activity itself contributing to efficient replication of JFH1. The higher in vitro activity of the JFH1 enzyme was not due to increased RNA binding, elongation rate, or processivity of the polymerase but to higher initiation efficiency. By using homopolymeric and heteropolymeric templates, we found that purified JFH1 NS5B was significantly more efficient in de novo initiation of RNA synthesis than the J6 counterpart, particularly at low GTP concentrations, probably representing an important prerequisite for the rapid replication kinetics of JFH1. Furthermore, we solved the crystal structure of JFH1 NS5B, which displays a very closed conformation that is expected to facilitate de novo initiation. Structural analysis shows that this closed conformation is stabilized by a sprinkle of substitutions that together promote extra hydrophobic interactions between the subdomains "thumb" and "fingers." These analyses provide deeper insights into the initiation of HCV RNA synthesis and might help to establish more efficient cell culture models for HCV using alternative isolates.
Collapse
|