1
|
Liu X, Wang M, Cheng A, Yang Q, Tian B, Ou X, Sun D, He Y, Wu Z, Zhao X, Wu Y, Zhang S, Huang J, Jia R, Chen S, Liu M, Zhu D. Functions of the UL51 protein during the herpesvirus life cycle. Front Microbiol 2024; 15:1457582. [PMID: 39252835 PMCID: PMC11381400 DOI: 10.3389/fmicb.2024.1457582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/07/2024] [Indexed: 09/11/2024] Open
Abstract
The herpesvirus UL51 protein is a multifunctional tegument protein involved in the regulation of multiple aspects of the viral life cycle. This article reviews the biological characteristics of the UL51 protein and its functions in herpesviruses, including participating in the maintenance of the viral assembly complex (cVAC) during viral assembly, affecting the production of mature viral particles and promoting primary and secondary envelopment, as well as its positive impact on viral cell-to-cell spread (CCS) through interactions with multiple viral proteins and its key role in the proliferation and pathogenicity of the virus in the later stage of infection. This paper discusses how the UL51 protein participates in the life cycle of herpesviruses and provides new ideas for further research on UL51 protein function.
Collapse
Affiliation(s)
- Xiaolan Liu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Di Sun
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yu He
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhen Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
2
|
Zhao C, He T, Xu Y, Wang M, Cheng A, Zhao X, Zhu D, Chen S, Liu M, Yang Q, Jia R, Chen X, Wu Y, Zhang S, Liu Y, Yu Y, Zhang L. Molecular characterization and antiapoptotic function analysis of the duck plague virus Us5 gene. Sci Rep 2019; 9:4851. [PMID: 30890748 PMCID: PMC6425025 DOI: 10.1038/s41598-019-41311-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 03/06/2019] [Indexed: 12/13/2022] Open
Abstract
Thus far, there have been no reports on the molecular characterization and antiapoptotic function of the DPV Us5 gene. To perform molecular characterization of DPV Us5, RT-PCR and pharmacological inhibition tests were used to ascertain the kinetic class of the Us5 gene. Western blotting and an indirect immunofluorescence assay (IFA) were used to analyze the expression level and subcellular localization of Us5 in infected cells at different time points. Us5 in purified DPV virions was identified by mass spectrometry. The results of RT-PCR, Western blotting, and pharmacological inhibition tests revealed that Us5 is transcribed mainly in the late stage of viral replication. The IFA results revealed that Us5 was localized throughout DPV-infected cells but was localized only to the cytoplasm of transfected cells. Mass spectrometry and Western blot analysis showed that Us5 was a virion component. Next, to study the antiapoptotic function of DPV Us5, we found that DPV CHv without gJ could induce more apoptosis cells than DPV-CHv BAC and rescue virus. we constructed a model of apoptosis in duck embryo fibroblasts (DEFs) induced by hydrogen peroxide (H2O2). Transfected cells expressing the Us5 gene were protected from apoptosis induced by H2O2, as measured by a TUNEL assay, a caspase activation assay and Flow Cytometry assay. The TUNEL assay and Flow Cytometry assay results showed that the recombinant plasmid pCAGGS-Us5 could inhibit apoptosis induced by H2O2 in DEF cells. However, caspase-3/7 and caspase-9 protein activity upregulated by H2O2 was significantly reduced in cells expressing the recombinant plasmid pCAGGS-Us5. Overall, these results show that the DPV Us5 gene is a late gene and that the Us5 protein is a component of the virion, is localized in the cytoplasm, and can inhibit apoptosis induced by H2O2 in DEF cells.
Collapse
Affiliation(s)
- Chuankuo Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Tianqiong He
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Yang Xu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China. .,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China. .,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.
| | - XinXin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Xiaoyue Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, People's Republic of China
| |
Collapse
|
3
|
Liu T, Cheng A, Wang M, Jia R, Yang Q, Wu Y, Sun K, Zhu D, Chen S, Liu M, Zhao X, Chen X. RNA-seq comparative analysis of Peking ducks spleen gene expression 24 h post-infected with duck plague virulent or attenuated virus. Vet Res 2017; 48:47. [PMID: 28903751 PMCID: PMC5598070 DOI: 10.1186/s13567-017-0456-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/10/2017] [Indexed: 12/11/2022] Open
Abstract
Duck plague virus (DPV), a member of alphaherpesvirus sub-family, can cause significant economic losses on duck farms in China. DPV Chinese virulent strain (CHv) is highly pathogenic and could induce massive ducks death. Attenuated DPV vaccines (CHa) have been put into service against duck plague with billions of doses in China each year. Researches on DPV have been development for many years, however, a comprehensive understanding of molecular mechanisms underlying pathogenicity of CHv strain and protection of CHa strain to ducks is still blank. In present study, we performed RNA-seq technology to analyze transcriptome profiling of duck spleens for the first time to identify differentially expressed genes (DEGs) associated with the infection of CHv and CHa at 24 h. Comparison of gene expression with mock ducks revealed 748 DEGs and 484 DEGs after CHv and CHa infection, respectively. Gene pathway analysis of DEGs highlighted valuable biological processes involved in host immune response, cell apoptosis and viral invasion. Genes expressed in those pathways were different in CHv infected duck spleens and CHa vaccinated duck spleens. The results may provide valuable information for us to explore the reasons of pathogenicity caused by CHv strain and protection activated by CHa strain.
Collapse
Affiliation(s)
- Tian Liu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 People’s Republic of China
| | - Anchun Cheng
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang, Chengdu, 611130 People’s Republic of China
| | - Mingshu Wang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang, Chengdu, 611130 People’s Republic of China
| | - Renyong Jia
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang, Chengdu, 611130 People’s Republic of China
| | - Qiao Yang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang, Chengdu, 611130 People’s Republic of China
| | - Ying Wu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang, Chengdu, 611130 People’s Republic of China
| | - Kunfeng Sun
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang, Chengdu, 611130 People’s Republic of China
| | - Dekang Zhu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang, Chengdu, 611130 People’s Republic of China
| | - Shun Chen
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang, Chengdu, 611130 People’s Republic of China
| | - Mafeng Liu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang, Chengdu, 611130 People’s Republic of China
| | - XinXin Zhao
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang, Chengdu, 611130 People’s Republic of China
| | - Xiaoyue Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130 People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang, Chengdu, 611130 People’s Republic of China
| |
Collapse
|
4
|
Liu Q, Huang J, Jia R, Wang M, Zhu D, Chen S, Liu M, Yin Z, Wang Y, Cheng A. The pregenome/C RNA of duck hepatitis B virus is not used for translation of core protein during the early phase of infection in vitro. Virus Res 2015; 196:13-9. [PMID: 25449362 DOI: 10.1016/j.virusres.2014.10.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 10/29/2014] [Accepted: 10/29/2014] [Indexed: 10/24/2022]
Abstract
Over the course of duck hepatitis B virus (DHBV) replication, one type of RNA (pregenome/C RNA, 3.5 kb) that corresponds to the whole genome of DHBV is generated from the transcription of viral cccDNA. Previous work has proposed three functions for the pregenome/C RNA: it can serve as the pregenome and be packaged into the core protein during the process of replication, and it encodes the mRNA for both the capsid protein and the viral polymerase. However, little is known about the timing of these functions during the different stages of viral infection. In this study, a reverse transcription quantitative real-time PCR assay was developed to analyze the dynamic transcription process of the pregenome/C RNA. The dynamic expression of the core protein was investigated using an indirect immunofluorescence assay (IFA) and by western blot analysis. The generation of pregenome/C RNA began at 12 h post infection and peaked at 20 h post infection; however, the core protein was not detectable until 24h post infection. These results demonstrate that the core protein appeared approximately 12h later than the pregenome/C RNA. These results suggest that the DHBV pregenome/C RNA is not used for the translation of the viral core protein during the early stages of infection.
Collapse
Affiliation(s)
- Qiang Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Avian Disease Research Center, Sichuan Agricultural University, 46 Xinkang Road, Ya'an, Sichuan 625014, PR China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Avian Disease Research Center, Sichuan Agricultural University, 46 Xinkang Road, Ya'an, Sichuan 625014, PR China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Avian Disease Research Center, Sichuan Agricultural University, 46 Xinkang Road, Ya'an, Sichuan 625014, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China).
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Avian Disease Research Center, Sichuan Agricultural University, 46 Xinkang Road, Ya'an, Sichuan 625014, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China)
| | - Dekang Zhu
- Avian Disease Research Center, Sichuan Agricultural University, 46 Xinkang Road, Ya'an, Sichuan 625014, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China)
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Avian Disease Research Center, Sichuan Agricultural University, 46 Xinkang Road, Ya'an, Sichuan 625014, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China)
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Avian Disease Research Center, Sichuan Agricultural University, 46 Xinkang Road, Ya'an, Sichuan 625014, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China)
| | - Zhongqiong Yin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China)
| | - Yin Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China)
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Avian Disease Research Center, Sichuan Agricultural University, 46 Xinkang Road, Ya'an, Sichuan 625014, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China).
| |
Collapse
|
5
|
He Q, Cheng A, Wang M, Xiang J, Zhu D, Zhou Y, Jia R, Chen S, Chen Z, Chen X. Replication kinetics of duck enteritis virus UL16 gene in vitro. Virol J 2012; 9:281. [PMID: 23171438 PMCID: PMC3560188 DOI: 10.1186/1743-422x-9-281] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2011] [Accepted: 10/23/2012] [Indexed: 05/06/2023] Open
Abstract
Background The function and kinetics of some herpsvirus UL16 gene have been reported. But there was no any report of duck enteritis virus (DEV) UL16 gene. Findings The kinetics of DEV UL16 gene was examined in DEV CHv infected duck embryo fibroblasts (DEFs) by establishment of real-time quantitative reverse transcription polymerase chain reaction assay (qRT-PCR) and western-blotting. In this study, UL16 mRNA was transcript at a low level from 0–18 h post-infection (p.i), and peaked at 36 h p.i. It can’t be detected in the presence of acyclovir (ACV). Besides, western-blotting analysis showed that UL16 gene expressed as an apparent 40-KDa in DEV infected cell lysate from 12 h p.i, and rose to peak level at 48 h p.i consistent with the qRT-PCR result. Conclusions These results provided the first evidence of the kinetics of DEV UL16 gene. DEV UL16 gene was a late gene and dependent on viral DNA synthesis.
Collapse
Affiliation(s)
- Qin He
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu city, Sichuan 611130, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Yu X, Jia R, Huang J, Shu B, Zhu D, Liu Q, Gao X, Lin M, Yin Z, Wang M, Chen S, Wang Y, Chen X, Cheng A. Attenuated Salmonella typhimurium delivering DNA vaccine encoding duck enteritis virus UL24 induced systemic and mucosal immune responses and conferred good protection against challenge. Vet Res 2012; 43:56. [PMID: 22770566 PMCID: PMC3412168 DOI: 10.1186/1297-9716-43-56] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 07/06/2012] [Indexed: 11/21/2022] Open
Abstract
Orally delivered DNA vaccines against duck enteritis virus (DEV) were developed using live attenuated Salmonella typhimurium (SL7207) as a carrier and Escherichia coli heat labile enterotoxin B subunit (LTB) as a mucosal adjuvant. DNA vaccine plasmids pVAX-UL24 and pVAX-LTB-UL24 were constructed and transformed into attenuated Salmonella typhimurium SL7207 resulting SL7207 (pVAX-UL24) and SL7207 (pVAX-LTB-UL24) respectively. After ducklings were orally inoculated with SL7207 (pVAX-UL24) or SL7207 (pVAX-LTB-UL24), the anti-DEV mucosal and systemic immune responses were recorded. To identify the optimum dose that confers maximum protection, we used different doses of the candidate vaccine SL7207 (pVAX-LTB-UL24) during oral immunization. The strongest mucosal and systemic immune responses developed in the SL7207 (pVAX-LTB-UL24) (1011 CFU) immunized group. Accordingly, oral immunization of ducklings with SL7207 (pVAX-LTB-UL24) showed superior efficacy of protection (60-80%) against a lethal DEV challenge (1000 LD50), compared with the limited survival rate (40%) of ducklings immunized with SL7207 (pVAX-UL24). Our study suggests that the SL7207 (pVAX-LTB-UL24) can be a candidate DEV vaccine.
Collapse
Affiliation(s)
- Xia Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Li L, Cheng A, Wang M, Xiang J, Yang X, Zhang S, Zhu D, Jia R, Luo Q, Zhou Y, Chen Z, Chen X. Expression and characterization of duck enteritis virus gI gene. Virol J 2011; 8:241. [PMID: 21595918 PMCID: PMC3118967 DOI: 10.1186/1743-422x-8-241] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2010] [Accepted: 05/19/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND At present, alphaherpesviruses gI gene and its encoding protein have been extensively studied. It is likely that gI protein and its homolog play similar roles in virions direct cell-to-cell spread of alphaherpesviruses. But, little is known about the characteristics of DEV gI gene. In this study, we expressed and presented the basic properties of the DEV gI protein. RESULTS The special 1221-bp fragment containing complete open reading frame(ORF) of duck enteritis virus(DEV) gI gene was extracted from plasmid pMD18-T-gI, and then cloned into prokaryotic expression vector pET-32a(+), resulting in pET-32a(+)-gI. After being confirmed by PCR, restriction endonuclease digestion and sequencing, pET-32a(+)-gI was transformed into E.coli BL21(DE3) competent cells for overexpression. DEV gI gene was successfully expressed by the addition of isopropyl-β-D-thiogalactopyranoside(IPTG). SDS-PAGE showed that the recombinant protein His6-tagged gI molecular weight was about 61 kDa. Subsequently, the expressed product was applied to generate specific antibody against gI protein. The specificity of the rabbit immuneserum was confirmed by its ability to react with the recombinant protein His6-tagged gI. In addition, real time-PCR was used to determine the the levels of the mRNA transcripts of gI gene, the results showed that the DEV gI gene was transcribed most abundantly during the late phase of infection. Furthermore, indirect immunofluorescence(IIF) was established to study the gI protein expression and localization in DEV-infected duck embryo fibroblasts (DEFs), the results confirmed that the protein was expressed and located in the cytoplasm of the infected cells, intensively. CONCLUSIONS The recombinant prokaryotic expression vector of DEV gI gene was constructed successfully. The gI protein was successfully expressed by E.coli BL21(DE3) and maintained its antigenicity very well. The basic information of the transcription and intracellular localization of gI gene were presented, that would be helpful to assess the possible role of DEV gI gene. The research will provide useful clues for further functional analysis of DEV gI gene.
Collapse
Affiliation(s)
- Lijuan Li
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu city, Sichuan, 611130, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Zhang S, Xiang J, Cheng A, Wang M, Wu Y, Yang X, Zhu D, Jia R, Luo Q, Chen Z, Chen X. Characterization of duck enteritis virus UL53 gene and glycoprotein K. Virol J 2011; 8:235. [PMID: 21586146 PMCID: PMC3120784 DOI: 10.1186/1743-422x-8-235] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2011] [Accepted: 05/17/2011] [Indexed: 12/03/2022] Open
Abstract
Background Most of the previous research work had focused on the epidemiology and prevention of duck enteritis virus (DEV). Whilst with the development of protocols in molecular biology, nowadays more and more information about the genes of DEV was reported. But little information about DEV UL53 gene and glycoprotein K(gK) was known except our reported data. Results In our paper, the fluorescent quantitative real-time PCR(FQ-RT-PCR) assay and nucleic acid inhibition test were used to study the transcription characteristic of the DEV UL53 gene. Except detecting the mRNA of DEV UL53 gene, the product gK encoded by UL53 gene was detected through the expression kinetics of UL53 gene by the purified rabbit anti-UL53 protein polyclonal antibodies. Western-blotting and indirect immunofluorescence assays were used to detect gK. From the results of these experiments, the UL53 gene and gK were respectively identified as a late gene and a really late protein. On the other hand, the indirect immunofluorescence assay provided another information that the intracellular localization of DEV gK was mainly distributed in cytoplasm. Conclusions By way of conclusions, we conceded that DEV UL53 gene is a really late gene, which is coincident with properties of UL53 homologs from other herpesvirus, such as ILTV(Infectious Laryngotracheitis virus) and HSV-1(Herpes simplex virus type 1). The properties of intracellular localization about gK protein provided a foundation for further functional analysis and further studies will be focused on constructing of the UL53 gene DEV mutant.
Collapse
Affiliation(s)
- Shunchuan Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, P.R. China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Chang H, Cheng A, Wang M, Xiang J, Xie W, Shen F, Jia R, Zhu D, Luo Q, Zhou Y, Chen X. Expression and immunohistochemical distribution of duck plague virus glycoprotein gE in infected ducks. Avian Dis 2011; 55:97-102. [PMID: 21500643 DOI: 10.1637/9487-072810-resnote.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
To determine the distribution of duck plague virus (DPV) gE protein in paraformaldehyde-fixed, paraffin-embedded tissues of experimentally DPV-infected ducks, an indirect immunoperoxidase assay was established to detect glycoprotein E (gE) protein for the first time. The rabbit anti-His-gE serum, raised against the recombinant His-gE fusion protein expressed in Escherichia coli BL21 (DE3), was prepared and purified. Western blotting and indirect immunofluorescence analysis showed that the anti-His-gE serum had a high level of reactivity and specificity and could be used as the first antibody for further experiments to study the distribution of DPV gE protein in DPV-infected tissues. A number of DPV gE proteins were distributed in the bursa of Fabricius, thymus, spleen, liver, esophagus, duodenum, jejunum, ileum, and kidney of DPV-infected ducks and a few DPV gE were distributed in the Harders glands, myocardium, cerebrum, and lung, whereas the gE was not seen in the skin, muscle, and pancreas. Moreover, DPV gE was expressed abundantly in the cytoplasm of lymphocytes, reticulum cells, macrophages, epithelial cells, and hepatocytes. The present study may be useful not only for describing the characteristics of gE expression and distribution in infected ducks but also for understanding the pathogenesis of DPV.
Collapse
Affiliation(s)
- Hua Chang
- Avian Diseases Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Yaan, Sichuan, 625014, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Lian B, Xu C, Cheng A, Wang M, Zhu D, Luo Q, Jia R, Bi F, Chen Z, Zhou Y, Yang Z, Chen X. Identification and characterization of duck plague virus glycoprotein C gene and gene product. Virol J 2010; 7:349. [PMID: 21110887 PMCID: PMC3004831 DOI: 10.1186/1743-422x-7-349] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2010] [Accepted: 11/27/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Viral envelope proteins have been proposed to play significant roles in the process of viral infection. RESULTS In this study, an envelope protein gene, gC (NCBI GenBank accession no. EU076811), was expressed and characterized from duck plague virus (DPV), a member of the family herpesviridae. The gene encodes a protein of 432 amino acids with a predicted molecular mass of 45 kDa. Sequence comparisons, multiple alignments and phylogenetic analysis showed that DPV gC has several features common to other identified herpesvirus gC, and was genetically close to the gallid herpervirus.Antibodies raised in rabbits against the pET32a-gC recombinant protein expressed in Escherichia coli BL21 (DE3) recognized a 45-KDa DPV-specific protein from infected duck embryo fibroblast (DEF) cells. Transcriptional and expression analysis, using real-time fluorescent quantitative PCR (FQ-PCR) and Western blot detection, revealed that the transcripts encoding DPV gC and the protein itself appeared late during infection of DEF cells. Immunofluorescence localization further demonstrated that the gC protein exhibited substantial cytoplasm fluorescence in DPV-infected DEF cells. CONCLUSIONS In this work, the DPV gC protein was successfully expressed in a prokaryotic expression system, and we presented the basic properties of the DPV gC product for the first time. These properties of the gC protein provided a prerequisite for further functional analysis of this gene.
Collapse
Affiliation(s)
- Bei Lian
- Avian Diseases Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Shen C, Cheng A, Wang M, Sun K, Jia R, Sun T, Zhang N, Zhu D, Luo Q, Zhou Y, Chen X. Development and evaluation of an immunochromatographic strip test based on the recombinant UL51 protein for detecting antibody against duck enteritis virus. Virol J 2010; 7:268. [PMID: 20946624 PMCID: PMC2976744 DOI: 10.1186/1743-422x-7-268] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 10/14/2010] [Indexed: 11/19/2022] Open
Abstract
Background Duck enteritis virus (DEV) infection causes substantial economic losses to the worldwide duck-producing areas. The monitoring of DEV-specific antibodies is a key to evaluate the effect of DEV vaccine and develop rational immunization programs. Thus, in this study, an immunochromatographic strip (ICS) test was developed for detecting DEV serum antibodies. Results The ICS test is based on membrane chromatography, and uses both the purified recombinant UL51 protein conjugated with colloidal gold and goat anti-rabbit IgG conjugated with colloidal gold as tracers, the purified recombinant UL51 protein as the capture reagent at the test line, and rabbit IgG as the capture reagent at the control line. The specificity of the ICS was evaluated by sera against DEV, Duck hepatitis virus (DHV), Riemerella anatipestifer (RA), Duck E. coli, Muscovy duck parvovirus (MPV), or Duck Influenza viruses (DIV). Only sera against DEV showed the strong positive results. In order to determine the sensitivity of the ICS, anti-DEV serum diluted serially was tested, and the minimum detection limit of 1:128 was obtained. The ICS components, which are provided in a sealed package, require no refrigeration and are stable for 12 months. To evaluate the effect of the ICS, 110 duck serum samples collected from several non-immune duck flocks were simultaneously tested by the ICS test, enzyme-linked immunosorbent assay (ELISA) and neutralization test (NT). The results showed that the sensitivity of the ICS test was almost consistent with ELISA and much higher than NT, has low cost, and is rapid (15 min) and easy to perform with no requirement of specialized equipment, reagent or technicians. Conclusions In this work, we successfully developed a simple and rapid ICS test for detecting DEV serum antibodies for the first time. The ICS test was high specific and sensitive for the rapid detection of anti-DEV antibodies, and has great potential to be used for the serological surveillance of DEV infection in the field.
Collapse
Affiliation(s)
- Chanjuan Shen
- Avian Diseases Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Ya'an, Sichuan, 625014, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Zhang S, Ma G, Xiang J, Cheng A, Wang M, Zhu D, Jia R, Luo Q, Chen Z, Chen X. Expressing gK gene of duck enteritis virus guided by bioinformatics and its applied prospect in diagnosis. Virol J 2010; 7:168. [PMID: 20663161 PMCID: PMC2921365 DOI: 10.1186/1743-422x-7-168] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Accepted: 07/21/2010] [Indexed: 11/29/2022] Open
Abstract
Background Duck viral enteritis, which is caused by duck enteritis virus (DEV), causes significant economic losses in domestic and wild waterfowls because of the high mortality and low egg production rates. With the purpose of eliminating this disease and decreasing economic loss in the commercial duck industry, researching on glycoprotein K (gK) of DEV may be a new kind of method for preventing and curing this disease. Because glycoproteins project from the virus envelope as spikes and are directly involved in the host immune system and elicitation of the host immune responses, and also play an important role in mediating infection of target cells, the entry into cell for free virus and the maturation or egress of virus. The gK is one of the major envelope glycoproteins of DEV. However, little information correlated with gK is known, such as antigenic and functional characterization. Results Bioinformatic predictions revealed that the expression of the full-length gK gene (fgK) in a prokaryotic system is difficult because of the presence of suboptimal exon and transmembrane domains at the C-terminal. In this study, we found that the fgK gene might not be expressed in a prokaryotic system in accordance with the bioinformatic predictions. Further, we successfully used bioinformatics tools to guide the prokaryotic expression of the gK gene by designing a novel truncated gK gene (tgK). These findings indicated that bioinformatics provides theoretical data for target gene expression and saves time for our research. The recombinant tgK protein (tgK) was expressed and purified by immobilized metal affinity chromatography (IMAC). Western blotting and indirect enzyme-linked immunosorbent assay (ELISA) showed that the tgK possessed antigenic characteristics similar to native DEV-gK. Conclusions In this work, the DEV-tgK was expressed successfully in prokaryotic system for the first time, which will provide usefull information for prokaryotic expression of alphaherpesvirus gK homologs, and the recombinant truncated gK possessed antigenic characteristics similar to native DEV gK. Because of the good reactionogenicity, specificity and sensitivity, the purified tgK could be useful for developing a sensitive serum diagnostic kit to monitor DEV outbreaks.
Collapse
Affiliation(s)
- Shunchuan Zhang
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, 46# Xinkang Road, Ya'an, Sichuan 625014, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Xiang J, Ma G, Zhang S, Cheng A, Wang M, Zhu D, Jia R, Luo Q, Chen Z, Chen X. Expression and intracellular localization of duck enteritis virus pUL38 protein. Virol J 2010; 7:162. [PMID: 20637115 PMCID: PMC2918563 DOI: 10.1186/1743-422x-7-162] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2010] [Accepted: 07/17/2010] [Indexed: 11/10/2022] Open
Abstract
Knowledge of the intracellular location of a protein can provide useful insights into its function. Bioinformatic studies have predicted that the DEV pUL38 mainly targets the cytoplasm and nucleus. In this study, we obtained anti-pUL38 polyclonal sera. These antibodies were functional in western blotting and immunofluorescence in DEV-infected duck embryo fibroblasts (DEFs). pUL38 was expressed as a 51-kDa protein from 8 h post-infection onward, initially showing a diffuse distribution throughout the cytoplasm, and later in the nucleus. Furthermore, pUL38 was found in purified virus. These results provide the first evidence of the kinetics of expression and intracellular localization of DEV pUL38.
Collapse
Affiliation(s)
- Jun Xiang
- Avian Diseases Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Yaan, Sichuan, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Chang H, Cheng A, Wang M, Zhu D, Jia R, Liu F, Chen Z, Luo Q, Chen X, Zhou Y. Cloning, expression and characterization of gE protein of duck plague virus. Virol J 2010; 7:120. [PMID: 20529349 PMCID: PMC2897786 DOI: 10.1186/1743-422x-7-120] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 06/08/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The gE protein of duck plague virus is the important membrane glycoprotein, its protein characterization has not been reported. In this study, we expressed and presented the characterization of the DPV gE product. RESULTS According to the sequence of the gE gene, a pair of primers were designed, and the DNA product with 1490bp in size was amplified by using the polymerase chain reaction (PCR). The PCR product was cloned into pMD18-T vector, and subcloned into pET32a(+), generating the recombinant plasmid pET32a/DPV-gE. SDS-PAGE analysis showed that the fusion pET32a/DPV-gE protein was highly expressed after induction by 0.2 mM IPTG at 30 degrees C for 4.5 h in Rosseta host cells. Over expressed 6xHis-gE fusion protein was purified by nickel affinity chromatography, and used to immunize the rabbits for the preparation of polyclonal antibody. The result of the intracellular localization revealed that the gE protein was appeared to be in the cytoplasm region. The real time PCR, RT-PCR analysis and Western blotting revealed that the gE gene was produced most abundantly during the late phase of replication in DPV-infected cells. CONCLUSIONS In this work, the DPV gE protein was successfully expressed in a prokaryotic expression system, and we presented the basic properties of the DPV gE product for the first time. These properties of the gE protein provided a prerequisite for further functional analysis of this gene.
Collapse
Affiliation(s)
- Hua Chang
- Avian Diseases Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Yaan, Sichuan, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|