1
|
Shim W, Lee A, Lee JH. The Role of Extracellular Vesicles in Pandemic Viral Infections. J Microbiol 2024; 62:419-427. [PMID: 38916789 DOI: 10.1007/s12275-024-00144-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/05/2024] [Accepted: 05/07/2024] [Indexed: 06/26/2024]
Abstract
Extracellular vesicles (EVs), of diverse origin and content, are membranous structures secreted by a broad range of cell types. Recent advances in molecular biology have highlighted the pivotal role of EVs in mediating intercellular communication, facilitated by their ability to transport a diverse range of biomolecules, including proteins, lipids, DNA, RNA and metabolites. A striking feature of EVs is their ability to exert dual effects during viral infections, involving both proviral and antiviral effects. This review explores the dual roles of EVs, particularly in the context of pandemic viruses such as HIV-1 and SARS-CoV-2. On the one hand, EVs can enhance viral replication and exacerbate pathogenesis by transferring viral components to susceptible cells. On the other hand, they have intrinsic antiviral properties, including activation of immune responses and direct inhibition of viral infection. By exploring these contrasting functions, our review emphasizes the complexity of EV-mediated interactions in viral pathogenesis and highlights their potential as targets for therapeutic intervention. The insights obtained from investigating EVs in the context of HIV-1 and SARS-CoV-2 provide a deeper understanding of viral mechanisms and pathologies, and offer a new perspective on managing and mitigating the impact of these global health challenges.
Collapse
Affiliation(s)
- Woosung Shim
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Anjae Lee
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Jung-Hyun Lee
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea.
| |
Collapse
|
2
|
Liang T, Li G, Lu Y, Hu M, Ma X. The Involvement of Ubiquitination and SUMOylation in Retroviruses Infection and Latency. Viruses 2023; 15:v15040985. [PMID: 37112965 PMCID: PMC10144533 DOI: 10.3390/v15040985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/15/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
Retroviruses, especially the pathogenic human immunodeficiency virus type 1 (HIV-1), have severely threatened human health for decades. Retroviruses can form stable latent reservoirs via retroviral DNA integration into the host genome, and then be temporarily transcriptional silencing in infected cells, which makes retroviral infection incurable. Although many cellular restriction factors interfere with various steps of the life cycle of retroviruses and the formation of viral latency, viruses can utilize viral proteins or hijack cellular factors to evade intracellular immunity. Many post-translational modifications play key roles in the cross-talking between the cellular and viral proteins, which has greatly determined the fate of retroviral infection. Here, we reviewed recent advances in the regulation of ubiquitination and SUMOylation in the infection and latency of retroviruses, focusing on both host defense- and virus counterattack-related ubiquitination and SUMOylation system. We also summarized the development of ubiquitination- and SUMOylation-targeted anti-retroviral drugs and discussed their therapeutic potential. Manipulating ubiquitination or SUMOylation pathways by targeted drugs could be a promising strategy to achieve a "sterilizing cure" or "functional cure" of retroviral infection.
Collapse
Affiliation(s)
- Taizhen Liang
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 511400, China
- Guangzhou Laboratory, Guangzhou International Bio-Island, Guangzhou 510005, China
| | - Guojie Li
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 511400, China
- Guangzhou Laboratory, Guangzhou International Bio-Island, Guangzhou 510005, China
| | - Yunfei Lu
- Guangzhou Laboratory, Guangzhou International Bio-Island, Guangzhou 510005, China
| | - Meilin Hu
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 511400, China
- Guangzhou Laboratory, Guangzhou International Bio-Island, Guangzhou 510005, China
| | - Xiancai Ma
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 511400, China
- Guangzhou Laboratory, Guangzhou International Bio-Island, Guangzhou 510005, China
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
3
|
Identification of Clinically Relevant HIV Vif Protein Motif Mutations through Machine Learning and Undersampling. Cells 2023; 12:cells12050772. [PMID: 36899908 PMCID: PMC10001277 DOI: 10.3390/cells12050772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/08/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
Human Immunodeficiency virus (HIV) and its clinical entity, the Acquired Immunodeficiency Syndrome (AIDS) continue to represent an important health burden worldwide. Although great advances have been made towards determining the way viral genetic diversity affects clinical outcome, genetic association studies have been hindered by the complexity of their interactions with the human host. This study provides an innovative approach for the identification and analysis of epidemiological associations between HIV Viral Infectivity Factor (Vif) protein mutations and four clinical endpoints (Viral load and CD4 T cell numbers at time of both clinical debut and on historical follow-up of patients. Furthermore, this study highlights an alternative approach to the analysis of imbalanced datasets, where patients without specific mutations outnumber those with mutations. Imbalanced datasets are still a challenge hindering the development of classification algorithms through machine learning. This research deals with Decision Trees, Naïve Bayes (NB), Support Vector Machines (SVMs), and Artificial Neural Networks (ANNs). This paper proposes a new methodology considering an undersampling approach to deal with imbalanced datasets and introduces two novel and differing approaches (MAREV-1 and MAREV-2). As theses approaches do not involve human pre-determined and hypothesis-driven combinations of motifs having functional or clinical relevance, they provide a unique opportunity to discover novel complex motif combinations of interest. Moreover, the motif combinations found can be analyzed through traditional statistical approaches avoiding statistical corrections for multiple tests.
Collapse
|
4
|
Moens U, Prezioso C, Pietropaolo V. Functional Domains of the Early Proteins and Experimental and Epidemiological Studies Suggest a Role for the Novel Human Polyomaviruses in Cancer. Front Microbiol 2022; 13:834368. [PMID: 35250950 PMCID: PMC8894888 DOI: 10.3389/fmicb.2022.834368] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
As their name indicates, polyomaviruses (PyVs) can induce tumors. Mouse PyV, hamster PyV and raccoon PyV have been shown to cause tumors in their natural host. During the last 30 years, 15 PyVs have been isolated from humans. From these, Merkel cell PyV is classified as a Group 2A carcinogenic pathogen (probably carcinogenic to humans), whereas BKPyV and JCPyV are class 2B (possibly carcinogenic to humans) by the International Agency for Research on Cancer. Although the other PyVs recently detected in humans (referred to here as novel HPyV; nHPyV) share many common features with PyVs, including the viral oncoproteins large tumor antigen and small tumor antigen, as their role in cancer is questioned. This review discusses whether the nHPyVs may play a role in cancer based on predicted and experimentally proven functions of their early proteins in oncogenic processes. The functional domains that mediate the oncogenic properties of early proteins of known PyVs, that can cause cancer in their natural host or animal models, have been well characterized and we examined whether these functional domains are conserved in the early proteins of the nHPyVs and presented experimental evidence that these conserved domains are functional. Furthermore, we reviewed the literature describing the detection of nHPyV in human tumors.
Collapse
Affiliation(s)
- Ugo Moens
- Faculty of Health Sciences, Department of Medical Biology, University of Tromsø – The Arctic University of Norway, Tromsø, Norway
- *Correspondence: Ugo Moens,
| | - Carla Prezioso
- Microbiology of Chronic Neuro-Degenerative Pathologies, IRCSS San Raffaele Roma, Rome, Italy
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Valeria Pietropaolo
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
- Valeria Pietropaolo,
| |
Collapse
|
5
|
In-Vitro Subtype-Specific Modulation of HIV-1 Trans-Activator of Transcription (Tat) on RNAi Silencing Suppressor Activity and Cell Death. Viruses 2019; 11:v11110976. [PMID: 31652847 PMCID: PMC6893708 DOI: 10.3390/v11110976] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 10/06/2019] [Accepted: 10/09/2019] [Indexed: 01/22/2023] Open
Abstract
Human immunodeficiency virus (HIV) is a global health concern affecting millions of individuals with a wide variety of currently circulating subtypes affecting various regions of the globe. HIV relies on multiple regulatory proteins to modify the host cell to promote replication in infected T cells, and these regulatory proteins can have subtle phenotypic differences between subtypes. One of these proteins, HIV-1 Trans-Activator of Transcription (Tat), is capable of RNA interference (RNAi) Silencing Suppressor (RSS) activity and induction of cell death in T cells. However, the subtype-specific RSS activity and induction of cell death have not been explored. We investigated the ability of Tat subtypes and variants to induce RSS activity and cell death. TatB, from HIV-1 subtype B, was found to be a potent RSS activator by 40% whereas TatC, from HIV-1 subtype C, showed 15% RSS activity while subtype TatC variants exhibited varying levels. A high level of cell death (50–53%) was induced by subtype TatB when compared to subtype TatC (25–28%) and varying levels were observed with subtype TatC variants. These differential activities could be due to variations in the functional domains of Tat. These observations further our understanding of subtype-specific augmentation of Tat in HIV-1 replication and pathogenesis.
Collapse
|
6
|
Fisher AJ, Beal PA. Structural basis for eukaryotic mRNA modification. Curr Opin Struct Biol 2018; 53:59-68. [PMID: 29913347 DOI: 10.1016/j.sbi.2018.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 12/19/2022]
Abstract
All messenger RNAs in eukaryotes are modified co-transcriptionally and post-transcriptionally. They are all capped at the 5'-end and polyadenylated at the 3'-end. However, many mRNAs are also found to be chemically modified internally for regulation of mRNA processing, translation, stability, and to recode the message. This review will briefly summarize the structural basis for formation of the two most common modifications found at internal sites in mRNAs; methylation and deamination. The structures of the enzymes that catalyze these modifications show structural similarity to other family members within each modifying enzyme class. RNA methyltransferases, including METTL3/METTL14 responsible for N6-methyladensosine (m6A) formation, share a common structural core and utilize S-adenosyl methionine as a methyl donor. RNA deaminases, including adenosine deaminases acting on RNA (ADARs), also share a common structural core and similar signature sequence motif with conserved residues used for binding zinc and catalyzing the deamination reaction. In spite of recent reports of high resolution structures for members of these two RNA-modifying enzyme families, a great deal remains to be uncovered for a complete understanding of the structural basis for mRNA modification. Of particular interest is the definition of factors that control modification site specificity.
Collapse
Affiliation(s)
- Andrew J Fisher
- Department of Chemistry, University of California, One Shields Ave, Davis, CA 95616, USA; Department of Molecular and Cellular Biology, University of California, One Shields Ave, Davis, CA 95616, USA.
| | - Peter A Beal
- Department of Chemistry, University of California, One Shields Ave, Davis, CA 95616, USA.
| |
Collapse
|
7
|
Temerozo JR, de Azevedo SSD, Insuela DBR, Vieira RC, Ferreira PLC, Carvalho VF, Bello G, Bou-Habib DC. The Neuropeptides Vasoactive Intestinal Peptide and Pituitary Adenylate Cyclase-Activating Polypeptide Control HIV-1 Infection in Macrophages Through Activation of Protein Kinases A and C. Front Immunol 2018; 9:1336. [PMID: 29951068 PMCID: PMC6008521 DOI: 10.3389/fimmu.2018.01336] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 05/29/2018] [Indexed: 12/19/2022] Open
Abstract
Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) are highly similar neuropeptides present in several tissues, endowed with immunoregulatory functions and other systemic effects. We previously reported that both neuropeptides reduce viral production in HIV-1-infected primary macrophages, with the participation of β-chemokines and IL-10, and now we describe molecular mechanisms engaged in this activity. Macrophages exposed to VIP or PACAP before HIV-1 infection showed resistance to viral replication, comparable to that observed when the cells were treated after infection. Also, multiple treatments with a suboptimal dose of VIP or PACAP after macrophage infection resulted in a decline of virus production similar to the inhibition promoted by a single exposure to the optimal inhibitory concentration. Cellular signaling pathways involving cAMP production and activation of protein kinases A and C were critical components of the VIP and PACAP anti-HIV-1 effects. Analysis of the transcription factors and the transcriptional/cell cycle regulators showed that VIP and PACAP induced cAMP response element-binding protein activation, inhibited NF-kB, and reduced Cyclin D1 levels in HIV-1-infected cells. Remarkably, VIP and PACAP promoted G-to-A mutations in the HIV-1 provirus, matching those derived from the activity of the APOBEC family of viral restriction factors, and reduced viral infectivity. In conclusion, our findings strengthen the antiretroviral potential of VIP and PACAP and point to new therapeutic approaches to control the progression of HIV-1 infection.
Collapse
Affiliation(s)
- Jairo R Temerozo
- Laboratory on Thymus Research, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, Brazil
| | - Suwellen S D de Azevedo
- Laboratory of AIDS and Molecular Immunology, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, Brazil
| | - Daniella B R Insuela
- Laboratory of Inflammation, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, Brazil
| | - Rhaíssa C Vieira
- Laboratory on Thymus Research, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, Brazil
| | - Pedro L C Ferreira
- Laboratory on Thymus Research, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, Brazil
| | - Vinícius F Carvalho
- National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, Brazil.,Laboratory of Inflammation, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, Brazil
| | - Gonzalo Bello
- Laboratory of AIDS and Molecular Immunology, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, Brazil
| | - Dumith Chequer Bou-Habib
- Laboratory on Thymus Research, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, Brazil
| |
Collapse
|
8
|
Borzooee F, Asgharpour M, Quinlan E, Grant MD, Larijani M. Viral subversion of APOBEC3s: Lessons for anti-tumor immunity and tumor immunotherapy. Int Rev Immunol 2018; 37:151-164. [PMID: 29211501 DOI: 10.1080/08830185.2017.1403596] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
APOBEC3s (A3) are endogenous DNA-editing enzymes that are expressed in immune cells including T lymphocytes. A3s target and mutate the genomes of retroviruses that infect immune tissues such as the human immunodeficiency virus (HIV). Therefore, A3s were classically defined as host anti-viral innate immune factors. In contrast, we and others showed that A3s can also benefit the virus by mediating escape from adaptive immune recognition and drugs. Crucially, whether A3-mediated mutations help or hinder HIV, is not up to chance. Rather, the virus has evolved multiple mechanisms to actively and maximally subvert A3 activity. More recently, extensive A3 mutational footprints in tumor genomes have been observed in many different cancers. This suggests a role for A3s in cancer initiation and progression. On the other hand, multiple anti-tumor activities of A3s have also come to light, including impact on immune checkpoint molecules and possible generation of tumor neo-antigens. Here, we review the studies that reshaped the view of A3s from anti-viral innate immune agents to host factors exploited by HIV to escape from immune recognition. Viruses and tumors share many attributes, including rapid evolution and adeptness at exploiting mutations. Given this parallel, we then discuss the pro- and anti-tumor roles of A3s, and suggest that lessons learned from studying A3s in the context of anti-viral immunity can be applied to tumor immunotherapy.
Collapse
Affiliation(s)
- Faezeh Borzooee
- a Program in Immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine , Memorial University of Newfoundland , St. John's, Newfoundland A1B 3V6 , Canada
| | - Mahdi Asgharpour
- a Program in Immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine , Memorial University of Newfoundland , St. John's, Newfoundland A1B 3V6 , Canada
| | - Emma Quinlan
- a Program in Immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine , Memorial University of Newfoundland , St. John's, Newfoundland A1B 3V6 , Canada
| | - Michael D Grant
- a Program in Immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine , Memorial University of Newfoundland , St. John's, Newfoundland A1B 3V6 , Canada
| | - Mani Larijani
- a Program in Immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine , Memorial University of Newfoundland , St. John's, Newfoundland A1B 3V6 , Canada
| |
Collapse
|
9
|
Phakaratsakul S, Sirihongthong T, Boonarkart C, Suptawiwat O, Auewarakul P. Codon usage of HIV regulatory genes is not determined by nucleotide composition. Arch Virol 2017; 163:337-348. [PMID: 29067529 DOI: 10.1007/s00705-017-3597-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 08/30/2017] [Indexed: 11/27/2022]
Abstract
Codon usage bias can be a result of either mutational bias or selection for translational efficiency and/or accuracy. Previous data has suggested that nucleotide composition constraint was the main determinant of HIV codon usage, and that nucleotide composition and codon usage were different between the regulatory genes, tat and rev, and other viral genes. It is not clear whether translational selection contributed to the codon usage difference and how nucleotide composition and translational selection interact to determine HIV codon usage. In this study, a model of codon bias due to GC composition with modification for the A-rich third codon position was used to calculate predicted HIV codon frequencies based on its nucleotide composition. The predicted codon usage of each gene was compared with the actual codon frequency. The predicted codon usage based on GC composition matched well with the actual codon frequencies for the structural genes (gag, pol and env). However, the codon usage of the regulatory genes (tat and rev) could not be predicted. Codon usage of the regulatory genes was also relatively unbiased showing the highest effective number of codons (ENC). Moreover, the codon adaptation index (CAI) of the regulatory genes showed better adaptation to human codons when compared to other HIV genes. Therefore, the early expressed genes responsible for regulation of the replication cycle, tat and rev, were more similar to humans in terms of codon usage and GC content than other HIV genes. This may help these genes to be expressed efficiently during the early stages of infection.
Collapse
Affiliation(s)
- Supinya Phakaratsakul
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Thanyaporn Sirihongthong
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Chompunuch Boonarkart
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Ornpreya Suptawiwat
- Research and International Relations Division, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, 10210, Thailand
| | - Prasert Auewarakul
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
| |
Collapse
|
10
|
Hepatitis B virus X protein is capable of down-regulating protein level of host antiviral protein APOBEC3G. Sci Rep 2017; 7:40783. [PMID: 28098260 PMCID: PMC5241686 DOI: 10.1038/srep40783] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 12/09/2016] [Indexed: 12/17/2022] Open
Abstract
The apolipoprotein B mRNA editing catalytic polypeptide-like (APOBEC) family proteins bind RNA and single-stranded DNA, and create C-to-U base modifications through cytidine deaminase activity. APOBEC3G restricts human immunodeficiency virus 1 (HIV-1) infection by creating hypermutations in proviral DNA, while HIV-1-encoded vif protein antagonizes such restriction by targeting APOBEC3G for degradation. APOBEC3G also inhibits hepatitis B virus (HBV): APOBEC3G co-expression inhibits HBV replication and evidences exist indicating APOBEC3G-mediated HBV hypermutations in patients. HBV encodes a small non-structural X protein (HBx) with a recognized activating effect on HBV life cycle. In this work, we report the discovery that HBx selectively and dose-dependently decreases the protein level of co-expressed APOBEC3G in transfected Huh-7 cells. The effect was shown to take place post-translationally, but does not rely on protein degradation via proteasome or lysosome. Further work demonstrated that intracellular APOBEC3G is normally exported via exosome secretion and inhibition of exosome biogenesis causes retention of intracellular APOBEC3G. Finally, HBx co-expression specifically enhanced externalization of APOBEC3G via exosomes, resulting in decrease of intracellular APOBEC3G protein level. These data suggest the possibility that in addition to other mechanisms, HBx-mediated activation of HBV might also involve antagonizing of intracellular restriction factor APOBEC3G through promotion of its export.
Collapse
|
11
|
Rossenkhan R, MacLeod IJ, Brumme ZL, Magaret CA, Sebunya TK, Musonda R, Gashe BA, Edlefsen PT, Novitsky V, Essex M. Transmitted/Founder HIV-1 Subtype C Viruses Show Distinctive Signature Patterns in Vif, Vpr, and Vpu That Are Under Subsequent Immune Pressure During Early Infection. AIDS Res Hum Retroviruses 2016; 32:1031-1045. [PMID: 27349335 DOI: 10.1089/aid.2015.0330] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Viral variants that predominate during early infection may exhibit constrained diversity compared with those found during chronic infection and could contain amino acid signature patterns that may enhance transmission, establish productive infection, and influence early events that modulate the infection course. We compared amino acid distributions in 17 patients recently infected with HIV-1C with patients with chronic infection. We found significantly lower entropy in inferred transmitted/founder (t/f) compared with chronic viruses and identified signature patterns in Vif and Vpr from inferred t/f viruses. We investigated sequence evolution longitudinally up to 500 days postseroconversion and compared the impact of selected substitutions on predicted human leukocyte antigen (HLA) binding affinities of published and predicted cytotoxic T-lymphocyte epitopes. Polymorphisms in Vif and Vpr during early infection occurred more frequently at epitope-HLA anchor residues and significantly decreased predicted epitope-HLA binding. Transmission-associated sequence signatures may have implications for novel strategies to prevent HIV-1 transmission.
Collapse
Affiliation(s)
- Raabya Rossenkhan
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Botswana Harvard AIDS Institute, Gaborone, Botswana
- Department of Biological Sciences, University of Botswana, Gaborone, Botswana
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Iain J. MacLeod
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Botswana Harvard AIDS Institute, Gaborone, Botswana
| | - Zabrina L. Brumme
- Faculty of Health Sciences, Simon Fraser University, Burnaby, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada
| | - Craig A. Magaret
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Theresa K. Sebunya
- Department of Biological Sciences, University of Botswana, Gaborone, Botswana
| | - Rosemary Musonda
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Botswana Harvard AIDS Institute, Gaborone, Botswana
| | - Berhanu A. Gashe
- Department of Biological Sciences, University of Botswana, Gaborone, Botswana
| | - Paul T. Edlefsen
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Vlad Novitsky
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Botswana Harvard AIDS Institute, Gaborone, Botswana
| | - M. Essex
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Botswana Harvard AIDS Institute, Gaborone, Botswana
| |
Collapse
|
12
|
Nascimento-Brito S, Paulo Zukurov J, Maricato JT, Volpini AC, Salim ACM, Araújo FMG, Coimbra RS, Oliveira GC, Antoneli F, Janini LMR. HIV-1 Tropism Determines Different Mutation Profiles in Proviral DNA. PLoS One 2015; 10:e0139037. [PMID: 26413773 PMCID: PMC4587555 DOI: 10.1371/journal.pone.0139037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 09/07/2015] [Indexed: 01/19/2023] Open
Abstract
In order to establish new infections HIV-1 particles need to attach to receptors expressed on the cellular surface. HIV-1 particles interact with a cell membrane receptor known as CD4 and subsequently with another cell membrane molecule known as a co-receptor. Two major different co-receptors have been identified: C-C chemokine Receptor type 5 (CCR5) and C-X-C chemokine Receptor type 4 (CXCR4) Previous reports have demonstrated cellular modifications upon HIV-1 binding to its co-receptors including gene expression modulations. Here we investigated the effect of viral binding to either CCR5 or CXCR4 co-receptors on viral diversity after a single round of reverse transcription. CCR5 and CXCR4 pseudotyped viruses were used to infect non-stimulated and stimulated PBMCs and purified CD4 positive cells. We adopted the SOLiD methodology to sequence virtually the entire proviral DNA from all experimental infections. Infections with CCR5 and CXCR4 pseudotyped virus resulted in different patterns of genetic diversification. CCR5 virus infections produced extensive proviral diversity while in CXCR4 infections a more localized substitution process was observed. In addition, we present pioneering results of a recently developed method for the analysis of SOLiD generated sequencing data applicable to the study of viral quasi-species. Our findings demonstrate the feasibility of viral quasi-species evaluation by NGS methodologies. We presented for the first time strong evidence for a host cell driving mechanism acting on the HIV-1 genetic variability under the control of co-receptor stimulation. Additional investigations are needed to further clarify this question, which is relevant to viral diversification process and consequent disease progression.
Collapse
Affiliation(s)
- Sieberth Nascimento-Brito
- Departamento de Microbiologia e Imunologia Veterinária, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Rio de Janeiro, Brazil
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | | | - Juliana T. Maricato
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Angela C. Volpini
- Genomics and Computational Biology Group, Research Center René Rachou (CPqRR), Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Brazil
| | - Anna Christina M. Salim
- Genomics and Computational Biology Group, Research Center René Rachou (CPqRR), Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Brazil
| | - Flávio M. G. Araújo
- Genomics and Computational Biology Group, Research Center René Rachou (CPqRR), Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Brazil
| | - Roney S. Coimbra
- Biosystems Informatics Group, CPqRR, FIOCRUZ, Belo Horizonte, Brazil
| | - Guilherme C. Oliveira
- Genomics and Computational Biology Group, Research Center René Rachou (CPqRR), Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Brazil
| | - Fernando Antoneli
- Departamento de Informática em Saúde, EPM, UNIFESP, São Paulo, Brazil
- Laboratório de Biocomplexidade e Genômica Evolutiva, EPM, UNIFESP, São Paulo, Brazil
| | - Luiz Mário R. Janini
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Departamento de Medicina, EPM, UNIFESP, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
13
|
DNA cytosine and methylcytosine deamination by APOBEC3B: enhancing methylcytosine deamination by engineering APOBEC3B. Biochem J 2015. [PMID: 26195824 PMCID: PMC4613526 DOI: 10.1042/bj20150382] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
APOBEC (apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like) is a family of enzymes that deaminates cytosine (C) to uracil (U) on nucleic acid. APOBEC3B (A3B) functions in innate immunity against intrinsic and invading retroelements and viruses. A3B can also induce genomic DNA mutations to cause cancer. A3B contains two cytosine deaminase domains (CD1, CD2), and there are conflicting reports about whether both domains are active. Here we demonstrate that only CD2 of A3B (A3BCD2) has C deamination activity. We also reveal that both A3B and A3BCD2 can deaminate methylcytosine (mC). Guided by structural and functional analysis, we successfully engineered A3BCD2 to gain over two orders of magnitude higher activity for mC deamination. Important determinants that contribute to the activity and selectivity for mC deamination have been identified, which reveals that multiple elements, rather than single ones, contribute to the mC deamination activity and selectivity in A3BCD2 and possibly other APOBECs.
Collapse
|
14
|
Romani B, Shaykh Baygloo N, Aghasadeghi MR, Allahbakhshi E. HIV-1 Vpr Protein Enhances Proteasomal Degradation of MCM10 DNA Replication Factor through the Cul4-DDB1[VprBP] E3 Ubiquitin Ligase to Induce G2/M Cell Cycle Arrest. J Biol Chem 2015; 290:17380-9. [PMID: 26032416 DOI: 10.1074/jbc.m115.641522] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Indexed: 11/06/2022] Open
Abstract
Human immunodeficiency virus type 1 Vpr is an accessory protein that induces G2/M cell cycle arrest. It is well documented that interaction of Vpr with the Cul4-DDB1[VprBP] E3 ubiquitin ligase is essential for the induction of G2/M arrest. In this study, we show that HIV-1 Vpr indirectly binds MCM10, a eukaryotic DNA replication factor, in a Vpr-binding protein (VprBP) (VprBP)-dependent manner. Binding of Vpr to MCM10 enhanced ubiquitination and proteasomal degradation of MCM10. G2/M-defective mutants of Vpr were not able to deplete MCM10, and we show that Vpr-induced depletion of MCM10 is related to the ability of Vpr to induce G2/M arrest. Our study demonstrates that MCM10 is the natural substrate of the Cul4-DDB1[VprBP] E3 ubiquitin ligase whose degradation is regulated by VprBP, but Vpr enhances the proteasomal degradation of MCM10 by interacting with VprBP.
Collapse
Affiliation(s)
- Bizhan Romani
- From the Department of Biology, Faculty of Science, University of Isfahan, Isfahan 81746-73441, the Cellular and Molecular Research Center (CMRC), Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences (AJUMS), Ahvaz 61357-15794, and
| | - Nima Shaykh Baygloo
- From the Department of Biology, Faculty of Science, University of Isfahan, Isfahan 81746-73441
| | | | - Elham Allahbakhshi
- the Cellular and Molecular Research Center (CMRC), Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences (AJUMS), Ahvaz 61357-15794, and
| |
Collapse
|
15
|
Hughes DJ, Wood JJ, Jackson BR, Baquero-Pérez B, Whitehouse A. NEDDylation is essential for Kaposi's sarcoma-associated herpesvirus latency and lytic reactivation and represents a novel anti-KSHV target. PLoS Pathog 2015; 11:e1004771. [PMID: 25794275 PMCID: PMC4368050 DOI: 10.1371/journal.ppat.1004771] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 02/28/2015] [Indexed: 01/12/2023] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV) is the causative agent of Kaposi's sarcoma (KS) and primary effusion lymphoma (PEL), which are aggressive malignancies associated with immunocompromised patients. For many non-viral malignancies, therapeutically targeting the ubiquitin proteasome system (UPS) has been successful. Likewise, laboratory studies have demonstrated that inhibition of the UPS might provide a promising avenue for the treatment of KSHV-associated diseases. The largest class of E3 ubiquitin ligases are the cullin-RING ligases (CRLs) that are activated by an additional ubiquitin-like protein, NEDD8. We show that pharmacological inhibition of NEDDylation (using the small molecule inhibitor MLN4924) is cytotoxic to PEL cells by inhibiting NF-κB. We also show that CRL4B is a novel regulator of latency as its inhibition reactivated lytic gene expression. Furthermore, we uncovered a requirement for NEDDylation during the reactivation of the KSHV lytic cycle. Intriguingly, inhibition prevented viral DNA replication but not lytic cycle-associated gene expression, highlighting a novel mechanism that uncouples these two features of KSHV biology. Mechanistically, we show that MLN4924 treatment precluded the recruitment of the viral pre-replication complex to the origin of lytic DNA replication (OriLyt). These new findings have revealed novel mechanisms that regulate KSHV latency and reactivation. Moreover, they demonstrate that inhibition of NEDDylation represents a novel approach for the treatment of KSHV-associated malignancies. Kaposi’s sarcoma-associated herpesvirus (KSHV) causes Kaposi’s sarcoma (KS) and primary effusion lymphoma (PEL), often fatal malignancies afflicting HIV-infected patients. Previous research has shown that blockade of the ubiquitin proteasome system (UPS, a normal quality control pathway that degrades cellular proteins) is able to kill KSHV-infected lymphoma cells. A large component of the UPS is made up by the protein family known as the cullin-RING ubiquitin ligases (CRLs), which are activated by NEDD8 (a process known as NEDDylation). Recently, an inhibitor of NEDDylation (MLN4924) was developed and is currently in clinical trials as an anti-cancer drug. As NEDDylation has not been investigated for many viruses, we used this to compound examine its importance in KSHV biology. Firstly we show that NEDDylation is essential for the viability of KSHV-infected lymphoma cells, and MLN4924 treatment killed these cells by blocking NF-κB activity (required for KSHV latency gene expression and KSHV-associated cancer). Furthermore, we show that NEDDylation is required for KSHV to replicate its genome, a critical step in the production of new virus particles. Therefore, this research has identified a novel molecular mechanism that governs KSHV replication. Furthermore, it demonstrates that NEDDylation is a viable target for the treatment of KSHV-associated malignancies.
Collapse
Affiliation(s)
- David J. Hughes
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- * E-mail: (DJH); (AW)
| | - Jennifer J. Wood
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Brian R. Jackson
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Belinda Baquero-Pérez
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Adrian Whitehouse
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- * E-mail: (DJH); (AW)
| |
Collapse
|
16
|
Gekonge B, Bardin MC, Montaner LJ. Short communication: Nitazoxanide inhibits HIV viral replication in monocyte-derived macrophages. AIDS Res Hum Retroviruses 2015; 31:237-41. [PMID: 25303025 PMCID: PMC4313412 DOI: 10.1089/aid.2014.0015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We document the anti-HIV activity of nitazoxanide (NTZ), the first member of the thiazolide class of antiinfective drugs, originally effective against enteritis caused by Cryptosporidium parvum and Giardia lamblia. NTZ has been administered extensively worldwide, with no severe toxicities associated with its use. Here, we show for the first time that NTZ decreases HIV-1 replication in monocyte-derived macrophages (MDM) if present before or during HIV-1 infection. This NTZ effect is associated with downregulation of HIV-1 receptors CD4 and CCR5, and increasing gene expression of host cell anti-HIV resistance factors APOBEC3A/3G and tetherin. As NTZ is already in clinical use for other conditions, this newly described anti-HIV activity in MDM may facilitate innovative intensification strategies against HIV-1 when combined with current antiretroviral drug regimens.
Collapse
Affiliation(s)
- Bethsebah Gekonge
- HIV Immunopathogenesis Laboratory, Wistar Institute, Philadelphia, Pennsylvania
| | | | - Luis J. Montaner
- HIV Immunopathogenesis Laboratory, Wistar Institute, Philadelphia, Pennsylvania
| |
Collapse
|
17
|
Rodriguez Garcia M, Patel MV, Shen Z, Fahey JV, Biswas N, Mestecky J, Wira CR. Mucosal Immunity in the Human Female Reproductive Tract. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00108-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
18
|
Zhang J, Wu J, Wang W, Wu H, Yu B, Wang J, Lv M, Wang X, Zhang H, Kong W, Yu X. Role of cullin-elonginB-elonginC E3 complex in bovine immunodeficiency virus and maedi-visna virus Vif-mediated degradation of host A3Z2-Z3 proteins. Retrovirology 2014; 11:77. [PMID: 25213124 PMCID: PMC4172784 DOI: 10.1186/s12977-014-0077-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Accepted: 08/23/2014] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND All lentiviruses except equine infectious anemia virus (EIVA) antagonize antiviral family APOBEC3 (A3) proteins of the host through viral Vif proteins. The mechanism by which Vif of human, simian or feline immunodeficiency viruses (HIV/SIV/FIV) suppresses the corresponding host A3s has been studied extensively. RESULTS Here, we determined that bovine immunodeficiency virus (BIV) and maedi-visna virus (MVV) Vif proteins utilize the Cullin (Cul)-ElonginB (EloB)-ElonginC (EloC) complex (BIV Vif recruits Cul2, while MVV Vif recruits Cul5) to degrade Bos taurus (bt)A3Z2-Z3 and Ovis aries (oa)A3Z2-Z3, respectively, via a proteasome-dependent but a CBF-β-independent pathway. Mutation of the BC box in BIV and MVV Vif, C-terminal hydrophilic replacement of btEloC and oaEloC and dominant-negative mutants of btCul2 and oaCul5 could disrupt the activity of BIV and MVV Vif, respectively. While the membrane-permeable zinc chelator TPEN could block BIV Vif-mediated degradation of btA3Z2-Z3, it had minimal effects on oaA3Z2-Z3 degradation induced by MVV Vif, indicating that Zn is important for the activity of BIV Vif but not MVV Vif. Furthermore, we identified a previously unreported zinc binding loop [C-x1-C-x1-H-x19-C] in the BIV Vif upstream BC box which is critical for its degradation activity. CONCLUSIONS A novel zinc binding loop was identified in the BIV Vif protein that is important for the E3 ubiquination activity, suggesting that the degradation of btA3Z2-Z3 by BIV and that of oaA3Z2-Z3 by MVV Vif may need host factors other than CBF-β.
Collapse
Affiliation(s)
- Jingyao Zhang
- />National Engineering Laboratory for AIDS Vaccine, Changchun, Jilin Province People’s Republic of China
| | - Jiaxin Wu
- />National Engineering Laboratory for AIDS Vaccine, Changchun, Jilin Province People’s Republic of China
- />Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, No. 2699 Qianjin Street, Changchun, Jilin Province People’s Republic of China
| | - Weiran Wang
- />National Engineering Laboratory for AIDS Vaccine, Changchun, Jilin Province People’s Republic of China
| | - Hui Wu
- />National Engineering Laboratory for AIDS Vaccine, Changchun, Jilin Province People’s Republic of China
- />Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, No. 2699 Qianjin Street, Changchun, Jilin Province People’s Republic of China
| | - Bin Yu
- />National Engineering Laboratory for AIDS Vaccine, Changchun, Jilin Province People’s Republic of China
- />Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, No. 2699 Qianjin Street, Changchun, Jilin Province People’s Republic of China
| | - Jiawen Wang
- />National Engineering Laboratory for AIDS Vaccine, Changchun, Jilin Province People’s Republic of China
| | - Mingyu Lv
- />National Engineering Laboratory for AIDS Vaccine, Changchun, Jilin Province People’s Republic of China
| | - Xiaodan Wang
- />National Engineering Laboratory for AIDS Vaccine, Changchun, Jilin Province People’s Republic of China
| | - Haihong Zhang
- />National Engineering Laboratory for AIDS Vaccine, Changchun, Jilin Province People’s Republic of China
- />Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, No. 2699 Qianjin Street, Changchun, Jilin Province People’s Republic of China
| | - Wei Kong
- />National Engineering Laboratory for AIDS Vaccine, Changchun, Jilin Province People’s Republic of China
- />Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, No. 2699 Qianjin Street, Changchun, Jilin Province People’s Republic of China
| | - Xianghui Yu
- />National Engineering Laboratory for AIDS Vaccine, Changchun, Jilin Province People’s Republic of China
- />Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, No. 2699 Qianjin Street, Changchun, Jilin Province People’s Republic of China
| |
Collapse
|
19
|
Recent patents and emerging therapeutics for HIV infections: a focus on protease inhibitors. Pharm Pat Anal 2014; 2:513-38. [PMID: 24237127 DOI: 10.4155/ppa.13.33] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The inclusion of protease inhibitors (PIs) in highly active antiretroviral therapy has significantly improved clinical outcomes in HIV-1-infected patients. To date, PIs are considered to be the most important therapeutic agents for the treatment of HIV infections. Despite high anti-HIV-1 potency, poor oral bioavailability of PIs has been a major concern. For achieving therapeutic concentrations, large doses of PIs are administered, which results in unacceptable systemic toxicities. Such severe and long-term toxicities necessitate the development of safer and potentially promising PIs. Recently, considerable attention has been paid to the development of newer compounds capable of inhibiting wild-type and resistant HIV-1 protease. Some of these PIs have displayed potent HIV-1 protease inhibitory activity. In this review, we have made an attempt to provide an overview on clinically approved and newly developing PIs, and related recent patents in the development of novel PIs.
Collapse
|
20
|
Souza TML, Temerozo JR, Giestal-de-Araujo E, Bou-Habib DC. The effects of neurotrophins and the neuropeptides VIP and PACAP on HIV-1 infection: histories with opposite ends. Neuroimmunomodulation 2014; 21:268-82. [PMID: 24603065 DOI: 10.1159/000357434] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 11/15/2013] [Indexed: 11/19/2022] Open
Abstract
The nerve growth factor (NGF) and other neurotrophins, and the neuropeptides vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating peptide (PACAP) are largely present in human tissue and can exert modulatory activities on nervous, endocrine and immune system functions. NGF, VIP and PACAP receptors are expressed systemically in organisms, and thus these mediators exhibit pleiotropic natures. The human immunodeficiency virus type 1 (HIV-1), the causal agent of the acquired immunodeficiency syndrome (AIDS), infects immune cells, and its replication is modulated by a number of endogenous factors that interact with HIV-1-infected cells. NGF, VIP and PACAP can also affect HIV-1 virus particle production upon binding to their receptors on the membranes of infected cells, which triggers cell signaling pathways that modify the HIV-1 replicative cycle. These molecules exert opposite effects on HIV-1 replication, as NGF and other neurotrophins enhance and VIP and PACAP reduce viral production in HIV-1-infected human primary macrophages. The understanding of AIDS pathogenesis should consider the mechanisms by which the replication of HIV-1, a pathogen that causes chronic morbidity, is influenced by neurotrophins, VIP and PACAP, i.e. molecules that exert a broad spectrum of physiological activities on the neuroimmunoendocrine axis. In this review, we will present the main effects of these two groups of mediators on the HIV-1 replicative cycle, as well as the mechanisms that underlie their abilities to modulate HIV-1 production in infected immune cells, and discuss the possible repercussion of the cross talk between NGF and both neuropeptides on the pathogenesis of HIV-1 infection.
Collapse
Affiliation(s)
- Thiago Moreno L Souza
- Laboratory of Respiratory Viruses, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|
21
|
Wang X, Wang X, Zhang H, Lv M, Zuo T, Wu H, Wang J, Liu D, Wang C, Zhang J, Li X, Wu J, Yu B, Kong W, Yu X. Interactions between HIV-1 Vif and human ElonginB-ElonginC are important for CBF-β binding to Vif. Retrovirology 2013; 10:94. [PMID: 23988114 PMCID: PMC3765967 DOI: 10.1186/1742-4690-10-94] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 08/26/2013] [Indexed: 01/18/2023] Open
Abstract
Background The HIV-1 accessory factor Vif is necessary for efficient viral infection in non-permissive cells. Vif antagonizes the antiviral activity of human cytidine deaminase APOBEC3 proteins that confer the non-permissive phenotype by tethering them (APOBEC3DE/3F/3G) to the Vif-CBF-β-ElonginB-ElonginC-Cullin5-Rbx (Vif-CBF-β-EloB-EloC-Cul5-Rbx) E3 complex to induce their proteasomal degradation. EloB and EloC were initially reported as positive regulatory subunits of the Elongin (SIII) complex. Thereafter, EloB and EloC were found to be components of Cul-E3 complexes, contributing to proteasomal degradation of specific substrates. CBF-β is a newly identified key regulator of Vif function, and more information is needed to further clarify its regulatory mechanism. Here, we comprehensively investigated the functions of EloB (together with EloC) in the Vif-CBF-β-Cul5 E3 ligase complex. Results The results revealed that: (1) EloB (and EloC) positively affected the recruitment of CBF-β to Vif. Both knockdown of endogenous EloB and over-expression of its mutant with a 34-residue deletion in the COOH-terminal tail (EloBΔC34/EBΔC34) impaired the Vif-CBF-β interaction. (2) Introduction of both the Vif SLQ → AAA mutant (VifΔSLQ, which dramatically impairs Vif-EloB-EloC binding) and the Vif PPL → AAA mutant (VifΔPPL, which is thought to reduce Vif-EloB binding) could reduce CBF-β binding. (3) EloB-EloC but not CBF-β could greatly enhance the folding of full-length Vif in Escherichia coli. (4) The over-expression of EloB or the N-terminal ubiquitin-like (UbL) domain of EloB could significantly improve the stability of Vif/VifΔSLQ/VifΔPPL through the region between residues 9 and 14. Conclusion Our results indicate that the Vif interaction with EloB-EloC may contribute to recruitment of CBF-β to Vif, demonstrating that the EloB C-teminus may play a role in improving Vif function and that the over-expression of EloB results in Vif stabilization.
Collapse
Affiliation(s)
- Xiaodan Wang
- National Engineering Laboratory for AIDS Vaccine, College of Life Science, Jilin University, Changchun, Jilin Province, People's Republic of China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Poptsova M, Banerjee S, Gokcumen O, Rubin MA, Demichelis F. Impact of constitutional copy number variants on biological pathway evolution. BMC Evol Biol 2013; 13:19. [PMID: 23342974 PMCID: PMC3563492 DOI: 10.1186/1471-2148-13-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 01/18/2013] [Indexed: 11/10/2022] Open
Abstract
Background Inherited Copy Number Variants (CNVs) can modulate the expression levels of individual genes. However, little is known about how CNVs alter biological pathways and how this varies across different populations. To trace potential evolutionary changes of well-described biological pathways, we jointly queried the genomes and the transcriptomes of a collection of individuals with Caucasian, Asian or Yoruban descent combining high-resolution array and sequencing data. Results We implemented an enrichment analysis of pathways accounting for CNVs and genes sizes and detected significant enrichment not only in signal transduction and extracellular biological processes, but also in metabolism pathways. Upon the estimation of CNV population differentiation (CNVs with different polymorphism frequencies across populations), we evaluated that 22% of the pathways contain at least one gene that is proximal to a CNV (CNV-gene pair) that shows significant population differentiation. The majority of these CNV-gene pairs belong to signal transduction pathways and 6% of the CNV-gene pairs show statistical association between the copy number states and the transcript levels. Conclusions The analysis suggested possible examples of positive selection within individual populations including NF-kB, MAPK signaling pathways, and Alu/L1 retrotransposition factors. Altogether, our results suggest that constitutional CNVs may modulate subtle pathway changes through specific pathway enzymes, which may become fixed in some populations.
Collapse
Affiliation(s)
- Maria Poptsova
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA
| | | | | | | | | |
Collapse
|
23
|
van der Kuyl AC, Berkhout B. The biased nucleotide composition of the HIV genome: a constant factor in a highly variable virus. Retrovirology 2012; 9:92. [PMID: 23131071 PMCID: PMC3511177 DOI: 10.1186/1742-4690-9-92] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 10/14/2012] [Indexed: 01/09/2023] Open
Abstract
Viruses often deviate from their hosts in the nucleotide composition of their genomes. The RNA genome of the lentivirus family of retroviruses, including human immunodeficiency virus (HIV), contains e.g. an above average percentage of adenine (A) nucleotides, while being extremely poor in cytosine (C). Such a deviant base composition has implications for the amino acids that are encoded by the open reading frames (ORFs), both in the requirement of specific tRNA species and in the preference for amino acids encoded by e.g. A-rich codons. Nucleotide composition does obviously affect the secondary and tertiary structure of the RNA genome and its biological functions, but it does also influence phylogenetic analysis of viral genome sequences, and possibly the activity of the integrated DNA provirus. Over time, the nucleotide composition of the HIV-1 genome is exceptionally conserved, varying by less than 1% per base position per isolate within either group M, N, or O during 1983–2009. This extreme stability of the nucleotide composition may possibly be achieved by negative selection, perhaps conserving semi-stable RNA secondary structure as reverse transcription would be significantly affected for a less A-rich genome where secondary structures are expected to be more stable and thus more difficult to unfold. This review will discuss all aspects of the lentiviral genome composition, both of the RNA and of its derived double-stranded DNA genome, with a focus on HIV-1, the nucleotide composition over time, the effects of artificially humanized codons as well as contributions of immune system pressure on HIV nucleotide bias.
Collapse
Affiliation(s)
- Antoinette C van der Kuyl
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam, Academic Medical Center of the University of Amsterdam, Meibergdreef 15, Amsterdam, AZ 1105, The Netherlands.
| | | |
Collapse
|
24
|
Ducloux C, Mougel M, Goldschmidt V, Didierlaurent L, Marquet R, Isel C. A pyrophosphatase activity associated with purified HIV-1 particles. Biochimie 2012; 94:2498-507. [PMID: 22766015 DOI: 10.1016/j.biochi.2012.06.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 06/22/2012] [Indexed: 01/17/2023]
Abstract
Treatment of HIV-1 with nucleoside reverse transcription inhibitors leads to the emergence of resistance mutations in the reverse transcriptase (RT) gene. Resistance to 3'-azido-3'-deoxythymidine (AZT) and to a lesser extent to 2'-3'-didehydro-2'-3'-dideoxythymidine is mediated by phosphorolytic excision of the chain terminator. Wild-type RT excises AZT by pyrophosphorolysis, while thymidine-associated resistance mutations in RT (TAMs) favour ATP as the donor substrate. However, in vitro, resistant RT still uses pyrophosphate more efficiently than ATP. We performed in vitro (-) strong-stop DNA synthesis experiments, with wild-type and AZT-resistant HIV-1 RTs, in the presence of physiologically relevant pyrophosphate and/or ATP concentrations and found that in the presence of pyrophosphate, ATP and AZTTP, TAMs do not enhance in vitro (-) strong-stop DNA synthesis. We hypothesized that utilisation of ATP in vivo is driven by intrinsic low pyrophosphate concentrations within the reverse transcription complex, which could be explained by the packaging of a cellular pyrophosphatase. We showed that over-expressed flagged-pyrophosphatase was associated with HIV-1 viral-like particles. In addition, we demonstrated that when HIV-1 particles were purified in order to avoid cellular microvesicle contamination, a pyrophosphatase activity was specifically associated to them. The presence of a pyrophosphatase activity in close proximity to the reverse transcription complex is most likely advantageous to the virus, even in the absence of any drug pressure.
Collapse
Affiliation(s)
- Céline Ducloux
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, 15 Rue René Descartes, 67084 Strasbourg, France.
| | | | | | | | | | | |
Collapse
|
25
|
Chang MO, Suzuki T, Yamamoto N, Watanabe M, Takaku H. HIV-1 Gag-virus-like particles inhibit HIV-1 replication in dendritic cells and T cells through IFN-α-dependent upregulation of APOBEC3G and 3F. J Innate Immun 2012; 4:579-90. [PMID: 22739040 DOI: 10.1159/000339402] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 05/10/2012] [Indexed: 12/17/2022] Open
Abstract
Human immunodeficiency virus-1 (HIV-1) infection and the acquired immune deficiency syndrome (AIDS) pandemic remain global threats in the absence of a protective or a therapeutic vaccine. HIV-1 replication is reportedly inhibited by some cellular factors, including APOBEC3G (A3G) and APOBEC3F (A3F), which are well known inhibitors of HIV-1. Recently, HIV-1 Gag-virus-like particles (Gag-VLPs) have been shown to be safe and potent HIV-1 vaccine candidates that can elicit strong cellular and humoral immunity without need of any adjuvant. In this report, we stimulated human monocyte-derived dendritic cells (DCs) with Gag-VLPs and we demonstrated that Gag-VLP-treated DCs (VLP-DCs) produced interferon alpha (IFN-α), along with an increase in mRNA and protein expression of A3G and A3F. Gag-VLPs inhibited HIV-1 replication not only in DCs themselves, but also in cocultured T cells in an IFN-α-dependent manner. In addition, A3G/3F content in HIV virions released from VLP-DCs increased. Both the increase in A3G/3F expression and the inhibition of HIV-1 replication were reversed by anti-IFN-α or anti-IFNAR antibodies. Our findings in this study provide insight into the mechanism of Gag-VLP-induced inhibition of HIV-1 replication in DCs and T cells.
Collapse
Affiliation(s)
- Myint Oo Chang
- Department of Life and Environmental Sciences, Chiba Institute of Technology, Chiba, Japan.
| | | | | | | | | |
Collapse
|
26
|
Deshmane SL, Amini S, Sen S, Khalili K, Sawaya BE. Regulation of the HIV-1 promoter by HIF-1α and Vpr proteins. Virol J 2011; 8:477. [PMID: 22023789 PMCID: PMC3210103 DOI: 10.1186/1743-422x-8-477] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 10/24/2011] [Indexed: 01/02/2023] Open
Abstract
We previously demonstrated the ability of HIV-1 Vpr protein to activate the oxidative stress pathway, thus leading to the induction of the hypoxia inducible factor 1 alpha (HIF-1α). Therefore, we sought to examine the interplay between the two proteins and the impact of HIF-1α activation on HIV-1 transcription. Using transient transfection assays, we identified the optimal concentration of HIF-1α necessary for the activation of the HIV-1 promoter as well as the domain within HIF-1α responsible for this activation. Our findings indicated that activation of the HIV-1 LTR by Vpr is HIF-1α dependent. Furthermore, we showed that both Vpr and HIF-1α activate the HIV-1 promoter through the GC-rich binding domain within the LTR. Taken together, these data shed more light on the mechanisms used by Vpr to activate the HIV-1 promoter and placed HIF-1α as a major participant in this activation.
Collapse
Affiliation(s)
- Satish L Deshmane
- Center for Neurovirology, Department of Neuroscience, Temple University School of Medicine, 3500 N. Broad Street, Philadelphia, PA 19140, USA
| | | | | | | | | |
Collapse
|
27
|
Albin JS, LaRue RS, Weaver JA, Brown WL, Shindo K, Harjes E, Matsuo H, Harris RS. A single amino acid in human APOBEC3F alters susceptibility to HIV-1 Vif. J Biol Chem 2010; 285:40785-92. [PMID: 20971849 PMCID: PMC3003379 DOI: 10.1074/jbc.m110.173161] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 10/21/2010] [Indexed: 11/06/2022] Open
Abstract
Human APOBEC3F (huA3F) potently restricts the infectivity of HIV-1 in the absence of the viral accessory protein virion infectivity factor (Vif). Vif functions to preserve viral infectivity by triggering the degradation of huA3F but not rhesus macaque A3F (rhA3F). Here, we use a combination of deletions, chimeras, and systematic mutagenesis between huA3F and rhA3F to identify Glu(324) as a critical determinant of huA3F susceptibility to HIV-1 Vif-mediated degradation. A structural model of the C-terminal deaminase domain of huA3F indicates that Glu(324) is a surface residue within the α4 helix adjacent to residues corresponding to other known Vif susceptibility determinants in APOBEC3G and APOBEC3H. This structural clustering suggests that Vif may bind a conserved surface present in multiple APOBEC3 proteins.
Collapse
Affiliation(s)
- John S. Albin
- From the Department of Biochemistry, Molecular Biology, and Biophysics
- Institute for Molecular Virology, and
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota 55455
| | - Rebecca S. LaRue
- From the Department of Biochemistry, Molecular Biology, and Biophysics
- Institute for Molecular Virology, and
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota 55455
| | - Jessalyn A. Weaver
- From the Department of Biochemistry, Molecular Biology, and Biophysics
- Institute for Molecular Virology, and
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota 55455
| | - William L. Brown
- From the Department of Biochemistry, Molecular Biology, and Biophysics
- Institute for Molecular Virology, and
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota 55455
| | - Keisuke Shindo
- From the Department of Biochemistry, Molecular Biology, and Biophysics
- Institute for Molecular Virology, and
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota 55455
| | - Elena Harjes
- From the Department of Biochemistry, Molecular Biology, and Biophysics
- Institute for Molecular Virology, and
| | - Hiroshi Matsuo
- From the Department of Biochemistry, Molecular Biology, and Biophysics
- Institute for Molecular Virology, and
| | - Reuben S. Harris
- From the Department of Biochemistry, Molecular Biology, and Biophysics
- Institute for Molecular Virology, and
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|