1
|
Yang K, Wang Z, Wang X, Bi M, Hu S, Li K, Pan X, Wang Y, Ma D, Mo X. Epidemiological investigation and analysis of the infection of porcine circovirus in Xinjiang. Virol J 2024; 21:230. [PMID: 39334389 PMCID: PMC11428415 DOI: 10.1186/s12985-024-02504-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
Porcine circoviruses, particularly porcine circovirus type 2 (PCV2) and porcine circovirus type 3 (PCV3), significantly impact the global pig industry due to their high prevalence and pathogenicity. Conversely, porcine circovirus type 1 (PCV1) and porcine circovirus type 4 (PCV4) currently have low positivity rates. This study aimed to characterize the distribution and epidemiology of porcine circoviruses in Xinjiang, while also analyzing the genetic diversity and evolution of PCV2 and PCV3, which pose the greatest threats to the industry. In this study, we collected blood and tissue samples from 453 deceased pigs across eight regions in Xinjiang Province from 2022 to 2024. We utilized real-time PCR to detect the presence of PCV1, PCV2, PCV3, and PCV4. The positive rates were 15%, 71%, 25%, and 17%, respectively. Genetic analysis showed 9 PCV2 sequences and 12 PCV3 sequences. The capsid protein of PCV2 showed significant variability. In contrast, the amino acid sequences of capsid in PCV3 were relatively stable. Moreover, we predicted antigenic epitopes for PCV3 capsid using IEDB and ElliPro. The findings from this study provide valuable epidemiological data on PCV coinfection in the Xinjiang region and enhance the understanding of virus diversity nationwide. This research may serve as an important reference for the development of strategies to prevent and control porcine circovirus infections.
Collapse
Affiliation(s)
- Kai Yang
- College of Veterinary Medicine, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, 130062, China
| | - Zunbao Wang
- College of Veterinary Medicine, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, 130062, China
- Tecon Pharmaceutical Co., Ltd, Ürümqi, 830000, China
| | - Xinyu Wang
- College of Veterinary Medicine, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, 130062, China
| | - Mingfang Bi
- College of Veterinary Medicine, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, 130062, China
| | - Suhua Hu
- College of Veterinary Medicine, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, 130062, China
| | - Kaijie Li
- College of Veterinary Medicine, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, 130062, China
| | - Xiaomei Pan
- Tecon Pharmaceutical Co., Ltd, Ürümqi, 830000, China
| | - Yuan Wang
- Tecon Pharmaceutical Co., Ltd, Ürümqi, 830000, China
| | - Dan Ma
- College of Veterinary Medicine, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, 130062, China
| | - Xiaobing Mo
- College of Veterinary Medicine, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, 130062, China.
| |
Collapse
|
2
|
Zorko M, Jones S, Langel Ü. Cell-penetrating peptides in protein mimicry and cancer therapeutics. Adv Drug Deliv Rev 2022; 180:114044. [PMID: 34774552 DOI: 10.1016/j.addr.2021.114044] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/29/2021] [Accepted: 11/04/2021] [Indexed: 12/14/2022]
Abstract
Extensive research has been undertaken in the pursuit of anticancer therapeutics. Many anticancer drugs require specificity of delivery to cancer cells, whilst sparing healthy tissue. Cell-penetrating peptides (CPPs), now well established as facilitators of intracellular delivery, have in recent years advanced to incorporate target specificity and thus possess great potential for the targeted delivery of anticancer cargoes. Though none have yet been approved for clinical use, this novel technology has already entered clinical trials. In this review we present CPPs, discuss their classification, mechanisms of cargo internalization and highlight strategies for conjugation to anticancer moieties including their incorporation into therapeutic proteins. As the mainstay of this review, strategies to build specificity into tumor targeting CPP constructs through exploitation of the tumor microenvironment and the use of tumor homing peptides are discussed, whilst acknowledging the extensive contribution made by CPP constructs to target specific protein-protein interactions integral to intracellular signaling pathways associated with tumor cell survival and progression. Finally, antibody/antigen CPP conjugates and their potential roles in cancer immunotherapy and diagnostics are considered. In summary, this review aims to harness the potential of CPP-aided drug delivery for future cancer therapies and diagnostics whilst highlighting some of the most recent achievements in selective delivery of anticancer drugs, including cytostatic drugs, to a range of tumor cells both in vitro and in vivo.
Collapse
Affiliation(s)
- Matjaž Zorko
- University of Ljubljana, Medical Faculty, Institute of Biochemistry and Molecular Genetics, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Sarah Jones
- University of Wolverhampton, School of Pharmacy, Faculty of Science & Engineering, Wulfruna Street, Wolverhampton WV1 1LY, UK.
| | - Ülo Langel
- University of Stockholm, Department of Biochemistry and Biophysics, Svante Arrhenius väg 16, 106 91 Stockholm, Sweden; Institute of Technology, University of Tartu, Nooruse 1, Tartu, Estonia 50411, Estonia.
| |
Collapse
|
3
|
Tarvirdipour S, Skowicki M, Schoenenberger CA, Palivan CG. Peptide-Assisted Nucleic Acid Delivery Systems on the Rise. Int J Mol Sci 2021; 22:9092. [PMID: 34445799 PMCID: PMC8396486 DOI: 10.3390/ijms22169092] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 12/12/2022] Open
Abstract
Concerns associated with nanocarriers' therapeutic efficacy and side effects have led to the development of strategies to advance them into targeted and responsive delivery systems. Owing to their bioactivity and biocompatibility, peptides play a key role in these strategies and, thus, have been extensively studied in nanomedicine. Peptide-based nanocarriers, in particular, have burgeoned with advances in purely peptidic structures and in combinations of peptides, both native and modified, with polymers, lipids, and inorganic nanoparticles. In this review, we summarize advances on peptides promoting gene delivery systems. The efficacy of nucleic acid therapies largely depends on cell internalization and the delivery to subcellular organelles. Hence, the review focuses on nanocarriers where peptides are pivotal in ferrying nucleic acids to their site of action, with a special emphasis on peptides that assist anionic, water-soluble nucleic acids in crossing the membrane barriers they encounter on their way to efficient function. In a second part, we address how peptides advance nanoassembly delivery tools, such that they navigate delivery barriers and release their nucleic acid cargo at specific sites in a controlled fashion.
Collapse
Affiliation(s)
- Shabnam Tarvirdipour
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland; (S.T.); (M.S.)
- Department of Biosystem Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Michal Skowicki
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland; (S.T.); (M.S.)
- NCCR-Molecular Systems Engineering, BPR1095, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Cora-Ann Schoenenberger
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland; (S.T.); (M.S.)
- NCCR-Molecular Systems Engineering, BPR1095, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Cornelia G. Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland; (S.T.); (M.S.)
- NCCR-Molecular Systems Engineering, BPR1095, Mattenstrasse 24a, 4058 Basel, Switzerland
| |
Collapse
|
4
|
Desale K, Kuche K, Jain S. Cell-penetrating peptides (CPPs): an overview of applications for improving the potential of nanotherapeutics. Biomater Sci 2021; 9:1153-1188. [PMID: 33355322 DOI: 10.1039/d0bm01755h] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In the field of nanotherapeutics, gaining cellular entry into the cytoplasm of the target cell continues to be an ultimate challenge. There are many physicochemical factors such as charge, size and molecular weight of the molecules and delivery vehicles, which restrict their cellular entry. Hence, to dodge such situations, a class of short peptides called cell-penetrating peptides (CPPs) was brought into use. CPPs can effectively interact with the cell membrane and can assist in achieving the desired intracellular entry. Such strategy is majorly employed in the field of cancer therapy and diagnosis, but now it is also used for other purposes such as evaluation of atherosclerotic plaques, determination of thrombin levels and HIV therapy. Thus, the current review expounds on each of these mentioned aspects. Further, the review briefly summarizes the basic know-how of CPPs, their utility as therapeutic molecules, their use in cancer therapy, tumor imaging and their assistance to nanocarriers in improving their membrane penetrability. The review also discusses the challenges faced with CPPs pertaining to their stability and also mentions the strategies to overcome them. Thus, in a nutshell, this review will assist in understanding how CPPs can present novel possibilities for resolving the conventional issues faced with the present-day nanotherapeutics.
Collapse
Affiliation(s)
- Kalyani Desale
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab-160062, India.
| | - Kaushik Kuche
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab-160062, India.
| | - Sanyog Jain
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab-160062, India.
| |
Collapse
|
5
|
Structural insight into the type-specific epitope of porcine circovirus type 3. Biosci Rep 2021; 40:225017. [PMID: 32458997 PMCID: PMC7295619 DOI: 10.1042/bsr20201109] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 01/12/2023] Open
Abstract
The recently identified pathogenic Porcine circovirus type 3 (PCV3) may threaten to reduce the pig population dramatically worldwide. In our previous study, a PCV3-specific monoclonal antibody (mAb-1H11) was successfully applied in immune-histochemistry staining and ELISA, which specifically recognize PCV3 capsid protein in PCV3-positive pig tissues. In the present study, we expressed and purified the soluble sole capsid protein of PCV3. The purified capsid protein was capable of self-assembly into virus-like-particles (VLPs), which is validated by transmission electron microscopy and dynamic light scattering assays. Moreover, the epitope of mAb-1H11 was identified in the CD-loop region (a.a. 72-79) on the VLP surface, which is confirmed by PCV2-PCV3 epitope swapping assay. For the first time, we determined the cryo-EM structure of PCV3-VLP at 8.5 Å resolution that reveals the detailed structural information of PCV3-VLP. In our cryo-EM structure, PCV3-VLP is composed of 60 capsid protein subunits assembled with T = 1 icosahedral symmetry. Consistent to our bio-dot Western blot assay, the structural comparison between PCV3 and PCV2 revealed significant structural differences in the surface-exposed loops, including the CD-loop (a.a. 72-79) and the EF-loop (a.a. 109-131). Our work provides a structural framework for engineering future PCV3 vaccine and diagnosis kits development.
Collapse
|
6
|
Luisi K, Morabito KM, Burgomaster KE, Sharma M, Kong WP, Foreman BM, Patel S, Fisher B, Aleshnick MA, Laliberte J, Wallace M, Ruckwardt TJ, Gordon DN, Linton C, Ruggiero N, Cohen JL, Johnson R, Aggarwal K, Ko SY, Yang ES, Pelc RS, Dowd KA, O’Hagan D, Ulmer J, Mossman S, Sambor A, Lepine E, Mascola JR, Pierson TC, Graham BS, Yu D. Development of a potent Zika virus vaccine using self-amplifying messenger RNA. SCIENCE ADVANCES 2020; 6:eaba5068. [PMID: 32821824 PMCID: PMC7413734 DOI: 10.1126/sciadv.aba5068] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 06/26/2020] [Indexed: 05/15/2023]
Abstract
Zika virus (ZIKV) is the cause of a pandemic associated with microcephaly in newborns and Guillain-Barre syndrome in adults. Currently, there are no available treatments or vaccines for ZIKV, and the development of a safe and effective vaccine is a high priority for many global health organizations. We describe the development of ZIKV vaccine candidates using the self-amplifying messenger RNA (SAM) platform technology delivered by cationic nanoemulsion (CNE) that allows bedside mixing and is particularly useful for rapid responses to pandemic outbreaks. Two immunizations of either of the two lead SAM (CNE) vaccine candidates elicited potent neutralizing antibody responses to ZIKV in mice and nonhuman primates. Both SAM (CNE) vaccines protected these animals from ZIKV challenge, with one candidate providing complete protection against ZIKV infection in nonhuman primates. The data provide a preclinical proof of concept that a SAM (CNE) vaccine candidate can rapidly elicit protective immunity against ZIKV.
Collapse
Affiliation(s)
| | - Kaitlyn M. Morabito
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Katherine E. Burgomaster
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Wing-Pui Kong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bryant M. Foreman
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Brian Fisher
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Maya A. Aleshnick
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | - Tracy J. Ruckwardt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - David N. Gordon
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | - Sung-Youl Ko
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Eun Sung Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rebecca S. Pelc
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kimberly A. Dowd
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | - John R. Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Theodore C. Pierson
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Corresponding author. (D.Y.); (B.S.G.); (T.C.P.)
| | - Barney S. Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Corresponding author. (D.Y.); (B.S.G.); (T.C.P.)
| | - Dong Yu
- GSK Vaccines, Rockville, MD 20850, USA
- Corresponding author. (D.Y.); (B.S.G.); (T.C.P.)
| |
Collapse
|
7
|
Structural roles of PCV2 capsid protein N-terminus in PCV2 particle assembly and identification of PCV2 type-specific neutralizing epitope. PLoS Pathog 2019; 15:e1007562. [PMID: 30822338 PMCID: PMC6415871 DOI: 10.1371/journal.ppat.1007562] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 03/13/2019] [Accepted: 01/04/2019] [Indexed: 11/19/2022] Open
Abstract
Postweaning multisystemic wasting disease (PMWS) in piglets caused by porcine circovirus type 2 (PCV2) is one of the major threats to most pig farms worldwide. Among all the PCV types, PCV2 is the dominant genotype causing PMWS and associated diseases. Considerable efforts were made to study the virus-like-particle (VLP) assembly and the specific PCV2-associated epitope(s) in order to establish the solid foundation for engineered PCV2 vaccine development. Although the N-terminal fragment including Nuclear Localization Signal (NLS) sequence seems important for recombinant PCV2 capsid protein expression and VLP assembly, the detailed structural and functional information regarding this important fragment are largely unknown. In this study, we report crystal structure of PCV2 VLP assembled from N-terminal NLS truncated PCV2 capsid protein at 2.8 Å resolution and cryo-EM structure of PCV2 VLP assembled from full-length PCV2 capsid protein at 4.1Å resolution. Our in vitro PCV2 VLP assembly results show that NLS-truncated PCV2 capsid protein only forms instable VLPs which were easily disassembled in solution, whereas full-length PCV2 capsid protein forms stable VLPs due to interaction between 15PRSHLGQILRRRP27(α-helix) and 33RHRYRWRRKN42(NLS-B) in a repeated manner. In addition, our results also showed that N-terminal truncation of PCV2 capsid protein up to 27 residues still forms PCV2 particles in solution with similar size and immunogenicity, while N-terminal truncation of PCV2 capsid protein with more than 30 residues is not able to form stable PCV2 particles in solution, demonstrating the importance of interaction between the α-helix at N-terminal and NLS-B in PCV2 VLP formation. Moreover, we also report the cryo-EM structure of PCV2 VLP in complex with 3H11-Fab, a PCV2 type-specific neutralizing antibody, at 15 Å resolution. MAb-3H11 specifically recognizes one exposed epitope located on the VLP surface EF-loop (residues 128–143), which is further confirmed by PCV1-PCV2 epitope swapping assay. Hence, our results have revealed the structural roles of N-terminal fragment of PCV2 capsid protein in PCV2 particle assembly and pinpointed one PCV2 type-specific neutralizing epitope for the first time, which could provide clear clue for next generation PCV2 vaccine and diagnostic kits development. Porcine circovirus type 2 (PCV2) is considered as one of the most wide-spread pathogens threatening swine production by causing postweaning multisystemic wasting disease (PMWS) in piglets worldwide. Several VLP-based PCV2 vaccines are commercially available which significantly reduce the viral burden and virally induced lesions. However, prophylactic efficacy of VLP-based PCV2 vaccine largely relies on the correct VLP assembly from the individual PCV2 capsid protein. Notably, limited structural information of PCV2 N-terminal fragment containing arginine-rich patches significantly delays our understanding of PCV2 assembly at the molecular level, and the lack of solid evidence in identification of PCV2 type-specific epitope delays the development of PCV2 type-specific diagnosis kits. In this study, through the combination of structural and immunological approaches, we are able, for the first time, to disclose the structural details of the N-terminal Nuclear Localization Signal (NLS) region of PCV2 capsid protein. We show that the interaction between the α-helix from one capsid protein and the NLS-B from an adjacent capsid protein within the pentamer stabilizes the assembled PCV2 VLP in solution. Moreover, by the combination of structural determination and biochemical mapping, we have identified that a short linear sequence (134KATALT139) located within PCV2 EF-loop is a unique PCV2 type-specific neutralizing epitope. Therefore, our work has revealed the detailed structural information of PCV2 particle assembly and a PCV2 type-specific neutralizing epitope, which should provide insightful information for virus-host interaction studies and next-generation PCV2 vaccine and type-specific diagnostic kits development.
Collapse
|
8
|
Cerrato CP, Künnapuu K, Langel Ü. Cell-penetrating peptides with intracellular organelle targeting. Expert Opin Drug Deliv 2016; 14:245-255. [PMID: 27426871 DOI: 10.1080/17425247.2016.1213237] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION One of the major limiting steps in order to have an effective drug is the passage through one or more cell membranes to reach its site of action. To reach the action-site, the specific macromolecules are required to be delivered specifically to the cell compartment/organelle in their (pre)active form. Areas covered: In this review, we will discuss cell-penetrating peptides (CPPs) developed in the last decade to transport small RNA/DNA, plasmids, antibodies, and nanoparticles into specific sites of the cell. The article describes CPPs in complex with cargo molecules that target specific intracellular organelles and their potential for pharmacological or clinical use. Expert opinion: Organelle targeting is the ultimate goal to ensure selective delivery to the site of action in the cells. CPP technologies represent an important strategy to address drug delivery to specific intracellular compartments by covalent conjugation to targeting sequences, potentially enabling strategies to combat genomic diseases as well as infections, cancer, neurodegenerative and hereditary diseases. They have proven to be successful in delivering various therapeutic agents into cells however, further in vivo experiments and clinical trials are required to demonstrate the efficacy of this technology.
Collapse
Affiliation(s)
| | - Kadri Künnapuu
- b Laboratory of Molecular Biotechnology, Institute of Technology , University of Tartu , Tartu , Estonia
| | - Ülo Langel
- a Department of Neurochemistry , Stockholm University , Stockholm , Sweden.,b Laboratory of Molecular Biotechnology, Institute of Technology , University of Tartu , Tartu , Estonia
| |
Collapse
|
9
|
Wang F, Wang Y, Zhang X, Zhang W, Guo S, Jin F. Recent progress of cell-penetrating peptides as new carriers for intracellular cargo delivery. J Control Release 2013; 174:126-36. [PMID: 24291335 DOI: 10.1016/j.jconrel.2013.11.020] [Citation(s) in RCA: 290] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 11/22/2013] [Accepted: 11/22/2013] [Indexed: 12/13/2022]
Abstract
The plasma membrane as a selectively permeable barrier of living cells is essential to cell survival and function. In many cases, however, the efficient passage of exogenous bioactive molecules through the plasma membrane remains a major hurdle for intracellular delivery of cargoes. During the last two decades, the potential of peptides for drug delivery into cells has been highlighted by the discovery of numerous cell-penetrating peptides (CPPs). CPPs serving as carriers can successfully intracellular transport cargoes such as siRNA, nucleic acids, proteins, small molecule therapeutic agents, quantum dots and MRI contrast agents. This review mainly introduces recent advances of CPPs as new carriers for the development of cellular imaging, nuclear localization, pH-sensitive and thermally targeted delivery systems. In particular, we highlight the exploiting of the synergistic effects of targeting ligands and CPPs. What's more, the classification and cellular uptake mechanisms of CPPs are briefly discussed as well.
Collapse
Affiliation(s)
- Feihu Wang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China; Shanghai Institute of Pharmaceutical Industry, 1111 Zhongshan Beiyi Road, Shanghai 200437, PR China
| | - Yun Wang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Xiao Zhang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Wenjun Zhang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Shengrong Guo
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China.
| | - Fang Jin
- Shanghai Institute of Pharmaceutical Industry, 1111 Zhongshan Beiyi Road, Shanghai 200437, PR China.
| |
Collapse
|
10
|
Lehner R, Wang X, Marsch S, Hunziker P. Intelligent nanomaterials for medicine: Carrier platforms and targeting strategies in the context of clinical application. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2013; 9:742-57. [DOI: 10.1016/j.nano.2013.01.012] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 01/29/2013] [Accepted: 01/31/2013] [Indexed: 11/26/2022]
|
11
|
Liu BR, Lin MD, Chiang HJ, Lee HJ. Arginine-rich cell-penetrating peptides deliver gene into living human cells. Gene 2012; 505:37-45. [PMID: 22669044 DOI: 10.1016/j.gene.2012.05.053] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 04/12/2012] [Accepted: 05/28/2012] [Indexed: 10/28/2022]
Abstract
Transgenesis is a process that introduces exogenous nucleic acids into the genome of an organism to produce desired traits or evaluate function. Improvements of transgenic technologies are always important pursuit in the last decades. Recently, cell-penetrating peptides (CPPs) were studied as shuttles that can internalize into cells directly and serve as carriers to deliver different cargoes into cells. In the present study, we evaluate whether arginine-rich CPPs can be used for gene delivery into human cells in a noncovalent fashion. We demonstrate that three arginine-rich CPPs (SR9, HR9, and PR9) are able to transport plasmid DNA into human A549 cells. For the functional gene assay, the CPP-delivered plasmid DNA containing the enhanced green fluorescent protein (EGFP) coding sequence could be actively expressed in cells. The treatment of calcium chloride did not facilitate the CPP-mediated transfection efficiency, but enhance the gene expression intensity. Mechanistic studies further revealed that HR9/DNA complexes mediate the direct membrane translocation pathway for gene delivery. Our results suggest that arginine-rich CPPs, especially HR9, appear to be a high efficient and promising tool for gene transfer.
Collapse
Affiliation(s)
- Betty Revon Liu
- Department of Natural Resources and Environmental Studies, National Dong Hwa University, Hualien 97401, Taiwan
| | | | | | | |
Collapse
|
12
|
Shuai J, Fu L, Zhang X, Zhu B, Li X, He Y, Fang W. Functional exchangeability of the nuclear localization signal (NLS) of capsid protein between PCV1 and PCV2 in vitro: Implications for the role of NLS in viral replication. Virol J 2011; 8:341. [PMID: 21733152 PMCID: PMC3145596 DOI: 10.1186/1743-422x-8-341] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2011] [Accepted: 07/06/2011] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Porcine circovirus type 2 (PCV2) is believed to be the primary causative agent of postweaning multisystemic wasting syndrome (PMWS). It is supposed that capsid protein of PCV may contribute to replication control via interaction between Cap and Rep in the nucleoplasm. In this study, we described the construction and in vitro characterization of NLS-exchanged PCV DNA clones based on a PMWS-associated PCV2b isolate from China to determine the role of ORF2 NLS in PCV replication. RESULTS The PCV1, PCV2, PCV2-NLS1 and PCV1-NLS2 DNA clone were generated by ligating a copy of respective genome in tandem with a partial duplication. The PCV2-NLS1 and PCV1-NLS2 DNA clone contained a chimeric genome in which the ORF2 NLS was exchanged. The four DNA clones were all confirmed to be infectious in vitro when transfected into PK-15 cells, as PCV capsid protein were expressed in approximately 10-20% of the transfected cells. The in vitro growth characteristics of the DNA clones were then determined and compared. All the recovered progeny viruses gave rise to increasing infectious titers during passages and were genetically stable by genomic sequencing. The chimeric PCV1-NLS2 and PCV2-NLS1 viruses had the final titers of about 104.2 and 103.8 TCID50/ml, which were significantly lower than that of PCV1 and PCV2 (105.6 and 105.0 TCID50/ml, respectively). When the ORF2 NLS exchanged, the mutant PCV2 (PCV2-NLS1) still replicated less efficiently and showed lower infectious titer than did PCV1 mutant (PCV1-NLS2), which was consistent with the distinction between wild type PCV1 and PCV2. CONCLUSIONS Recovery of the chimeiric PCV1-NLS2 and PCV2-NLS1 progeny viruses indicate that the nuclear localization signal sequence of capsid protein are functionally exchangeable between PCV1 and PCV2 with respect to the role of nuclear importing and propagation. The findings also reveal that ORF2 NLS play an accessory role in the replication of PCV. However, we found that ORF2 NLS was not responsible for the distinction of in vitro growth characteristic between PCV1 and PCV2. Further studies are required to determine the in vivo viral replication and pathogenicity of the NLS chimeric DNA clones.
Collapse
Affiliation(s)
- Jiangbing Shuai
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | |
Collapse
|