1
|
Andreason SA, McKenzie-Reynolds P, Whitley KM, Coffey J, Simmons AM, Wadl PA. Tracking Sweet Potato Leaf Curl Virus through Field Production: Implications for Sustainable Sweetpotato Production and Breeding Practices. PLANTS (BASEL, SWITZERLAND) 2024; 13:1267. [PMID: 38732482 PMCID: PMC11085579 DOI: 10.3390/plants13091267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/15/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024]
Abstract
Sweet potato leaf curl virus (SPLCV) is a whitefly-transmitted begomovirus infecting sweetpotato and other morning glory (Convolvulaceae) species worldwide. The virus is widespread at the USDA, ARS, U.S. Vegetable Laboratory (USVL), and testing of germplasm maintained in the breeding program indicates nearly 100% infection in storage roots of materials propagated for at least four years. Prior to the public release of new germplasm, viruses must be eliminated via laborious and time-consuming meristem-tip culture. The identification of virus-free seedlings early in the selection process can offer an alternative to meristem-tip culture. In this study, we investigated the transmission of SPLCV over two years of consecutive field plantings (early and late) of sweetpotato. While SPLCV is endemic at the USVL, virus transmission pressure over the typical cultivation season is unknown, and avoidance of virus transmission paired with the selection and maintenance of clean material may be a viable alternative to virus elimination. In 2022, the storage roots of 39 first-year seedling (FYS) selections were tested for SPLCV after early-season cultivation, revealing a single selection (2.6%) with a positive test. Similar testing was conducted in 2023 with no SPLCV-positive FYS selections detected. To further assess SPLCV acquisition in the field, replicated late-season plantings of each selected FYS (n = 37) were monitored from planting to harvest. Testing was conducted at 60 and 120 days after planting (DAP). Approximately 35% of the bulk samples were infected at 60 DAP, and infection increased to 52.3% by 120 DAP. Testing of individuals within selected positive bulked samples did not support 100% infection at harvest. Altogether, these results demonstrate that SPLCV transmission during early planting is sufficiently low to facilitate the maintenance of virus-free selections, offering an alternative to virus cleaning and a cultivation strategy that may be leveraged for production.
Collapse
Affiliation(s)
- Sharon A. Andreason
- United States Department of Agriculture, Agricultural Research Service, U.S. Vegetable Laboratory, 2700 Savannah Hwy., Charleston, SC 29414, USA; (P.M.-R.); (K.M.W.); (J.C.); (A.M.S.)
| | | | | | | | | | - Phillip A. Wadl
- United States Department of Agriculture, Agricultural Research Service, U.S. Vegetable Laboratory, 2700 Savannah Hwy., Charleston, SC 29414, USA; (P.M.-R.); (K.M.W.); (J.C.); (A.M.S.)
| |
Collapse
|
2
|
Wanjala BW, Ateka EM, Miano DW, Fuentes S, Perez A, Low JW, Kreuze JF. Loop-Mediated Isothermal Amplification assays for on-site detection of the main sweetpotato infecting viruses. J Virol Methods 2021; 298:114301. [PMID: 34560111 PMCID: PMC8543070 DOI: 10.1016/j.jviromet.2021.114301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 09/20/2021] [Accepted: 09/20/2021] [Indexed: 11/22/2022]
Abstract
Globally, Sweet potato feathery mottle virus (SPFMV) and Sweet potato chlorotic stunt virus (SPCSV) occur frequently and in combination cause sweetpotato virus disease (SPVD). Many viral diseases are economically important and negatively impact the production and movement of germplasm across regions. Rapid detection of viruses is critical for effective control. Detection and quantification of viruses directly from sweetpotato remains a challenge. Current diagnostic tests are not sensitive enough to reliably detect viruses directly from the plant or require expensive laboratory equipment and expertise to perform. We developed a simple and rapid loop-mediated isothermal amplification (LAMP) assay for the detection of SPFMV, SPCSV and begomoviruses related to sweet potato leaf curl virus (SPLCV). Laboratory validation recorded 100 % diagnostic sensitivity for all the three viruses. The LAMP assays were customized for field testing using a lyophilized thermostable isothermal master mix in a ready-to-use form that required no cold chain. The average time to positivity (TTP) was: SPFMV 5-30 min, SPCSV 15-43 min s and begomoviruses 28-45 mins. LAMP on-site testing results were comparable to PCR and RT-PCR confirmatory laboratory tests. The LAMP assay is a powerful tool for rapid sweetpotato virus detection at a reasonable cost and thus could serve as quality control systems for planting materials.
Collapse
Affiliation(s)
- Bramwel W Wanjala
- International Potato Center, SSA Regional Office, PO Box 25171, 00603, Nairobi, Kenya; Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000, 00200, Nairobi, Kenya.
| | - Elijah M Ateka
- Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000, 00200, Nairobi, Kenya.
| | - Douglas W Miano
- University of Nairobi, P.O. Box: 30197, 00100, Nairobi, Kenya.
| | - Segundo Fuentes
- International Potato Center, Avenida La Molina 1895, La Molina, Apartado Postal 1558, Lima, Peru.
| | - Ana Perez
- International Potato Center, Avenida La Molina 1895, La Molina, Apartado Postal 1558, Lima, Peru.
| | - Jan W Low
- International Potato Center, SSA Regional Office, PO Box 25171, 00603, Nairobi, Kenya.
| | - Jan F Kreuze
- International Potato Center, Avenida La Molina 1895, La Molina, Apartado Postal 1558, Lima, Peru.
| |
Collapse
|
3
|
Andreason SA, Olaniyi OG, Gilliard AC, Wadl PA, Williams LH, Jackson DM, Simmons AM, Ling KS. Large-Scale Seedling Grow-Out Experiments Do Not Support Seed Transmission of Sweet Potato Leaf Curl Virus in Sweet Potato. PLANTS 2021; 10:plants10010139. [PMID: 33445460 PMCID: PMC7827154 DOI: 10.3390/plants10010139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 11/25/2022]
Abstract
Sweet potato leaf curl virus (SPLCV) threatens global sweet potato production. SPLCV is transmitted by Bemisia tabaci or via infected vegetative planting materials; however, SPLCV was suggested to be seed transmissible, which is a characteristic that is disputed for geminiviruses. The objective of this study was to revisit the validity of seed transmission of SPLCV in sweet potato. Using large-scale grow-out of sweet potato seedlings from SPLCV-contaminated seeds over 4 consecutive years, approximately 23,034 sweet potato seedlings of 118 genotype entries were evaluated. All seedlings germinating in a greenhouse under insect-proof conditions or in a growth chamber were free of SPLCV; however, a few seedlings grown in an open bench greenhouse lacking insect exclusion tested positive for SPLCV. Inspection of these seedlings revealed that B. tabaci had infiltrated the greenhouse. Therefore, transmission experiments were conducted using B. tabaci MEAM1, demonstrating successful vector transmission of SPLCV to sweet potato. Additionally, tests on contaminated seed coats and germinating cotyledons demonstrated that SPLCV contaminated a high percentage of seed coats collected from infected maternal plants, but SPLCV was never detected in emerging cotyledons. Based on the results of grow-out experiments, seed coat and cotyledon tests, and vector transmission experiments, we conclude that SPLCV is not seed transmitted in sweet potato.
Collapse
|
4
|
Jeske H. Barcoding of Plant Viruses with Circular Single-Stranded DNA Based on Rolling Circle Amplification. Viruses 2018; 10:E469. [PMID: 30200312 PMCID: PMC6164888 DOI: 10.3390/v10090469] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 08/28/2018] [Accepted: 08/30/2018] [Indexed: 01/10/2023] Open
Abstract
The experience with a diagnostic technology based on rolling circle amplification (RCA), restriction fragment length polymorphism (RFLP) analyses, and direct or deep sequencing (Circomics) over the past 15 years is surveyed for the plant infecting geminiviruses, nanoviruses and associated satellite DNAs, which have had increasing impact on agricultural and horticultural losses due to global transportation and recombination-aided diversification. Current state methods for quarantine measures are described to identify individual DNA components with great accuracy and to recognize the crucial role of the molecular viral population structure as an important factor for sustainable plant protection.
Collapse
Affiliation(s)
- Holger Jeske
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Pfaffenwaldring 57, 70550 Stuttgart, Germany.
| |
Collapse
|
5
|
Liu Q, Wang Y, Zhang Z, Lv H, Qiao Q, Qin Y, Zhang D, Tian Y, Wang S, Li J. Diversity of Sweepoviruses Infecting Sweet Potato in China. PLANT DISEASE 2017; 101:2098-2103. [PMID: 30677378 DOI: 10.1094/pdis-04-17-0524-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Sweepoviruses (a group of begomoviruses that infect plants in the family Convolvulaceae) have monopartite genomes that consist of a circular, single-stranded DNA molecule. Seventy-three complete genomic sequences of sweepoviruses were characterized from the sweet potato samples collected in China. Eight sweepovirus species, including two novel species with proposed names of Sweet potato leaf curl China virus 2 and Sweet potato leaf curl Sichuan virus 2, were identified among these samples. One species, Sweet potato leaf curl Canary virus, was first identified in China. Among the 13 identified strains of Chinese sweepoviruses, 4 were newly discovered. Sweet potato leaf curl virus had the highest frequency (53.4%) of occurrence in the sweet potato samples from China. The similarities among the 73 sweepovirus genomic sequences were between 77.6 and 100.0%. Multiple recombination events were identified, and 16 recombinant sequences were determined. Recombination was observed between different species and between different strains of the same species. Recombination breakpoints were mainly localized on the intergenic region and in three open reading frames (AC1, AV1, and AV2). This study is the first comprehensive report on the genetic diversity of sweepoviruses in China.
Collapse
Affiliation(s)
- Qili Liu
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou 450002, P. R. China; College of Plant Protection, China Agricultural University, Beijing 100193; and College of Resources & Environmental Science, Henan Institute of Science and Technology, Xinxiang, P. R. China
| | - Yongjiang Wang
- Institute of Plant Protection, Henan Academy of Agricultural Sciences; and IPM Key Laboratory in Southern Part of North China for Ministry of Agriculture, Zhengzhou 450002, P. R. China
| | - Zhenchen Zhang
- Institute of Plant Protection, Henan Academy of Agricultural Sciences; and IPM Key Laboratory in Southern Part of North China for Ministry of Agriculture, Zhengzhou 450002, P. R. China
| | - Hui Lv
- Institute of Plant Protection, Henan Academy of Agricultural Sciences; and IPM Key Laboratory in Southern Part of North China for Ministry of Agriculture, Zhengzhou 450002, P. R. China
| | - Qi Qiao
- Institute of Plant Protection, Henan Academy of Agricultural Sciences; and IPM Key Laboratory in Southern Part of North China for Ministry of Agriculture, Zhengzhou 450002, P. R. China
| | - Yanhong Qin
- Institute of Plant Protection, Henan Academy of Agricultural Sciences; and IPM Key Laboratory in Southern Part of North China for Ministry of Agriculture, Zhengzhou 450002, P. R. China
| | - Desheng Zhang
- Institute of Plant Protection, Henan Academy of Agricultural Sciences; and IPM Key Laboratory in Southern Part of North China for Ministry of Agriculture, Zhengzhou 450002, P. R. China
| | - Yuting Tian
- Institute of Plant Protection, Henan Academy of Agricultural Sciences; and IPM Key Laboratory in Southern Part of North China for Ministry of Agriculture, Zhengzhou 450002, P. R. China
| | - Shuang Wang
- Institute of Plant Protection, Henan Academy of Agricultural Sciences; and IPM Key Laboratory in Southern Part of North China for Ministry of Agriculture, Zhengzhou 450002, P. R. China
| | - Jianqiang Li
- College of Plant Protection, China Agricultural University, Beijing
| |
Collapse
|
6
|
Bi H, Zhang P. Agroinfection of sweet potato by vacuum infiltration of an infectious sweepovirus. Virol Sin 2014; 29:148-54. [PMID: 24903591 DOI: 10.1007/s12250-014-3430-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 05/04/2014] [Indexed: 10/25/2022] Open
Abstract
Sweepovirus is an important monopartite begomovirus that infects plants of the genus Ipomoea worldwide. Development of artificial infection methods for sweepovirus using agroinoculation is a highly efficient means of studying infectivity in sweet potato. Unlike other begomoviruses, it has proven difficult to infect sweet potato plants with sweepoviruses using infectious clones. A novel sweepovirus, called Sweet potato leaf curl virus-Jiangsu (SPLCV-JS), was recently identified in China. In addition, the infectivity of the SPLCV-JS clone has been demonstrated in Nicotiana benthamiana. Here we describe the agroinfection of the sweet potato cultivar Xushu 22 with the SPLCV-JS infectious clone using vacuum infiltration. Yellowing symptoms were observed in newly emerged leaves. Molecular analysis confirmed successful inoculation by the detection of viral DNA. A synergistic effect of SPLCV-JS and the heterologous betasatellite DNA-β of Tomato yellow leaf curl China virus isolate Y10 (TYLCCNV-Y10) on enhanced symptom severity and viral DNA accumulation was confirmed. The development of a routine agroinoculation system in sweet potato with SPLCV-JS using vacuum infiltration should facilitate the molecular study of sweepovirus in this host and permit the evaluation of virus resistance of sweet potato plants in breeding programs.
Collapse
Affiliation(s)
- Huiping Bi
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | | |
Collapse
|
7
|
Natural association of two different betasatellites with Sweet potato leaf curl virus in wild morning glory (Ipomoea purpurea) in India. Virus Genes 2013; 47:184-8. [PMID: 23529301 DOI: 10.1007/s11262-013-0901-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 03/11/2013] [Indexed: 10/27/2022]
Abstract
Wild morning glory (Ipomoea purpurea) was observed to be affected by leaf curl and yellow vein diseases during summer-rainy season of 2009 in New Delhi, India. The virus was experimentally transmitted through whitefly, Bemisia tabaci to I. purpurea that reproduced the two distinct symptoms. Sequence analysis of multiple full-length clones obtained through rolling circle amplification from the leaf curl and yellow vein samples showed 91.8-95.3% sequence identity with Sweet potato leaf curl virus (SPLCV) and the isolates were phylogenetically distinct from those reported from Brazil, China, Japan and USA. Interestingly, two different betasatellites, croton yellow vein mosaic betasatellite and papaya leaf curl betasatellite were found with SPLCV in leaf curl and yellow vein diseases of I. purpurea, respectively. This study is the first report of occurrence of SPLCV in wild morning glory in India. SPLCV was known to infect other species of morning glory; our study revealed that I. purpurea, a new species of morning glory was a natural host of SPLCV. To date, betasatellite associated with SPLCV in Ipomoea spp. is not known. Our study provides evidence of natural association of two different betasatellites with SPLCV in leaf curl and yellow vein diseases of I. purpurea.
Collapse
|
8
|
Albuquerque LC, Inoue-Nagata AK, Pinheiro B, Resende RO, Moriones E, Navas-Castillo J. Genetic diversity and recombination analysis of sweepoviruses from Brazil. Virol J 2012; 9:241. [PMID: 23082767 PMCID: PMC3485178 DOI: 10.1186/1743-422x-9-241] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 10/17/2012] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Monopartite begomoviruses (genus Begomovirus, family Geminiviridae) that infect sweet potato (Ipomoea batatas) around the world are known as sweepoviruses. Because sweet potato plants are vegetatively propagated, the accumulation of viruses can become a major constraint for root production. Mixed infections of sweepovirus species and strains can lead to recombination, which may contribute to the generation of new recombinant sweepoviruses. RESULTS This study reports the full genome sequence of 34 sweepoviruses sampled from a sweet potato germplasm bank and commercial fields in Brazil. These sequences were compared with others from public nucleotide sequence databases to provide a comprehensive overview of the genetic diversity and patterns of genetic exchange in sweepoviruses isolated from Brazil, as well as to review the classification and nomenclature of sweepoviruses in accordance with the current guidelines proposed by the Geminiviridae Study Group of the International Committee on Taxonomy of Viruses (ICTV). Co-infections and extensive recombination events were identified in Brazilian sweepoviruses. Analysis of the recombination breakpoints detected within the sweepovirus dataset revealed that most recombination events occurred in the intergenic region (IR) and in the middle of the C1 open reading frame (ORF). CONCLUSIONS The genetic diversity of sweepoviruses was considerably greater than previously described in Brazil. Moreover, recombination analysis revealed that a genomic exchange is responsible for the emergence of sweepovirus species and strains and provided valuable new information for understanding the diversity and evolution of sweepoviruses.
Collapse
Affiliation(s)
- Leonardo C Albuquerque
- Embrapa Vegetables, Km 09, BR060, Cx. Postal 218, Brasília, DF, CEP 70359-970, Brazil
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora” (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas, Estación Experimental “La Mayora”, 29750, Algarrobo-Costa, Málaga, Spain
| | - Alice K Inoue-Nagata
- Embrapa Vegetables, Km 09, BR060, Cx. Postal 218, Brasília, DF, CEP 70359-970, Brazil
| | - Bruna Pinheiro
- Embrapa Vegetables, Km 09, BR060, Cx. Postal 218, Brasília, DF, CEP 70359-970, Brazil
| | - Renato O Resende
- Departamento de Biologia Celular, Universidade de Brasília, CEP 70.910-970, Brasília, DF, Brazil
| | - Enrique Moriones
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora” (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas, Estación Experimental “La Mayora”, 29750, Algarrobo-Costa, Málaga, Spain
| | - Jesús Navas-Castillo
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora” (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas, Estación Experimental “La Mayora”, 29750, Algarrobo-Costa, Málaga, Spain
| |
Collapse
|
9
|
Bi H, Zhang P. Molecular characterization of two sweepoviruses from China and evaluation of the infectivity of cloned SPLCV-JS in Nicotiana benthamiana. Arch Virol 2012; 157:441-54. [PMID: 22179901 DOI: 10.1007/s00705-011-1194-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 12/01/2011] [Indexed: 11/25/2022]
Abstract
Sweepoviruses are important begomoviruses that infect Ipomoea plants worldwide and cause sweet potato yield losses and cultivar decline. Two sweepoviruses, sweet potato leaf curl virus-Jiangsu (SPLCV-JS) and sweet potato leaf curl China virus-Zhejiang (SPLCCNV-ZJ), were cloned from diseased sweet potato plants collected in the Jiangsu and Zhejiang provinces of China. Sequence characterization and phylogenetic analysis demonstrated that both are typical monopartite begomoviruses and have close relationships to several reported SPLCV and SPLCCNV isolates, respectively, from Asian countries. Analysis of the protein alignments and subcellular localizations of the six SPLCV-JS proteins was also conducted to verify their putative functions. In Nicotiana benthamiana, an infectivity assay of the infectious SPLCV-JS clone resulted in mild symptoms and weak viral DNA accumulation. Interestingly, SPLCV-JS, together with a heterologous betasatellite DNA (tomato yellow leaf curl China virus isolate Y10 [TYLCCNV-Y10] DNA-β), showed a synergistic effect on enhanced symptom severity and viral DNA accumulation. This is the first reported infectious SPLCV clone.
Collapse
Affiliation(s)
- Huiping Bi
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | | |
Collapse
|
10
|
Clark CA, Davis JA, Abad JA, Cuellar WJ, Fuentes S, Kreuze JF, Gibson RW, Mukasa SB, Tugume AK, Tairo FD, Valkonen JPT. Sweetpotato Viruses: 15 Years of Progress on Understanding and Managing Complex Diseases. PLANT DISEASE 2012; 96:168-185. [PMID: 30731810 DOI: 10.1094/pdis-07-11-0550] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Affiliation(s)
| | | | - Jorge A Abad
- U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Plant Germplasm Quarantine Programs, Beltsville, MD
| | | | | | | | - Richard William Gibson
- Natural Resources Institute, University of Greenwich, Chatham, Kent, CT2 7LT, United Kingdom
| | - Settumba B Mukasa
- Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere University, Kampala, Uganda
| | - Arthur K Tugume
- Department of Biological Sciences, College of Natural Sciences, Makerere University, Kampala, Uganda
| | | | | |
Collapse
|
11
|
Barkley NA, Pinnow DL, Wang ML, Ling KS, Jarret RL. Detection and Classification of SPLCV Isolates in the U.S. Sweetpotato Germplasm Collection via a Real-Time PCR Assay and Phylogenetic Analysis. PLANT DISEASE 2011; 95:1385-1391. [PMID: 30731795 DOI: 10.1094/pdis-01-11-0012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The United States Department of Agriculture-Agricultural Research Service sweetpotato (Ipomoea batatas) germplasm collection contains accessions that were initially collected from various countries worldwide. These materials have been maintained and distributed as in vitro plantlets since the mid-1980s. The status of viral infection by the emerging Sweet potato leaf curl virus (SPLCV) and other Begomovirus spp. in this germplasm has yet to be determined. In order to minimize the potential distribution of virus-infected clones, all accessions in the collection were tested for SPLCV using a real-time polymerase chain reaction assay. In total, 47 of 701 accessions of in vitro plantlets tested positive for SPLCV. The presence of SPLCV detected in these materials was confirmed via biological indexing using the indicator plants I. nil and I. muricata. Symptoms appeared more rapidly on I. muricata than on I. nil. Nucleotide polymorphisms among the isolates were evaluated by sequencing the AV1 coat protein gene from 24 SPLCV-infected accessions. The results revealed that the SPLCV isolates shared high sequence identity. Ten nucleotide substitutions were identified, most of which were synonymous changes. Phylogenetic analysis was conducted on those 24 SPLCV isolates in combination with six described SPLCV species and various SPLCV strains from GenBank to evaluate the relationships among viral species or strains. The results from this analysis indicated that most of the AV1 genes derived from previously classified SPLCV species clustered together, some of which formed well-supported monophyletic clades, further supporting the current taxonomy. Overall, identification of SPLCV-infected germplasm will allow approaches to be employed to eliminate the virus from the collection and limit the distribution of infected materials.
Collapse
Affiliation(s)
- N A Barkley
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Plant Genetic Resources Conservation Unit, Griffin, GA 30223
| | - D L Pinnow
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Plant Genetic Resources Conservation Unit, Griffin, GA 30223
| | - M L Wang
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Plant Genetic Resources Conservation Unit, Griffin, GA 30223
| | - K S Ling
- USDA-ARS, U.S. Vegetable Laboratory, Charleston, SC 29414 USA
| | - R L Jarret
- USDA-ARS, Plant Genetic Resources Conservation Unit, Griffin, GA
| |
Collapse
|