1
|
de Carvalho Ruthner Batista HB, Vieira LFP, Kawai JGC, de Oliveira Fahl W, Barboza CM, Achkar S, de Novaes Oliveira R, Brandão PE, Carnieli Junior P. Dispersion and diversification of Lyssavirus rabies transmitted from haematophagous bats Desmodus rotundus: a phylogeographical study. Virus Genes 2023; 59:817-822. [PMID: 37796410 DOI: 10.1007/s11262-023-02030-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/30/2023] [Indexed: 10/06/2023]
Abstract
Rabies is worldwide zoonosis caused by Lyssavirus rabies (RABV) a RNA negative sense virus with low level of fidelity during replication cycle. Nucleoprotein of RABV is the most conserved between all five proteins of the virus and is the most used gene for phylogenetic and phylogeographic studies. Despite of rabies been very important in Public Health concern, it demands continuous prophylactic care for herbivores with economic interest, such as cattle and horses. The main transmitter of RABV for these animals in Brazil is the hematophagous bats Desmodus rotundus. The aim of this study was to determine the dispersion over time and space of RABV transmitted by D. rotundus. Samples of RABV from the State of São Paulo (SP), Southeast Brazil isolated from the central nervous system (CNS) of cattle, were submitted to RNA extraction, RT-PCR, sequencing and phylogeographic analyzes with BEAST (Bayesian Evolutionary Analysis Sampling Trees) v 2.5 software. Was possible to identify high rate of diversification in starts sublineages of RABV what are correlated with a behavior of D. rotundus, the main transmitter of rabies to cattle. This study also highlights the importance of continuous monitoring of genetic lineages of RABV in Brazil.
Collapse
|
2
|
Deviatkin AA, Vakulenko YA, Dashian MA, Lukashev AN. Evaluating the Impact of Anthropogenic Factors on the Dissemination of Contemporary Cosmopolitan, Arctic, and Arctic-like Rabies Viruses. Viruses 2021; 14:66. [PMID: 35062270 PMCID: PMC8777955 DOI: 10.3390/v14010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 12/29/2021] [Indexed: 11/16/2022] Open
Abstract
Rabies is a globally prevalent viral zoonosis that causes 59,000 deaths per year and has important economic consequences. Most virus spread is associated with the migration of its primary hosts. Anthropogenic dissemination, mainly via the transportation of rabid dogs, shaped virus ecology a few hundred years ago and is responsible for several current outbreaks. A systematic analysis of aberrant long-distance events in the steppe and Arctic-like groups of rabies virus was performed using statistical (Bayesian) phylogeography and plots of genetic vs. geographic distances. The two approaches produced similar results but had some significant differences and complemented each other. No phylogeographic analysis could be performed for the Arctic group because polar foxes transfer the virus across the whole circumpolar region at high velocity, and there was no correlation between genetic and geographic distances in this virus group. In the Arctic-like group and the steppe subgroup of the cosmopolitan group, a significant number of known sequences (15-20%) was associated with rapid long-distance transfers, which mainly occurred within Eurasia. Some of these events have been described previously, while others have not been documented. Most of the recent long-distance transfers apparently did not result in establishing the introduced virus, but a few had important implications for the phylogeographic history of rabies. Thus, human-mediated long-distance transmission of the rabies virus remains a significant threat that needs to be addressed.
Collapse
Affiliation(s)
- Andrei A. Deviatkin
- Laboratory of Molecular Biology and Biochemistry, Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119435 Moscow, Russia
- The National Medical Research Center for Endocrinology, 117036 Moscow, Russia
| | - Yulia A. Vakulenko
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov First Moscow State Medical University, 119435 Moscow, Russia; (Y.A.V.); (A.N.L.)
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Mariia A. Dashian
- Faculty of Biomedicine, Pirogov Medical University, 117997 Moscow, Russia;
| | - Alexander N. Lukashev
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov First Moscow State Medical University, 119435 Moscow, Russia; (Y.A.V.); (A.N.L.)
| |
Collapse
|
3
|
Caraballo DA, Lema C, Novaro L, Gury-Dohmen F, Russo S, Beltrán FJ, Palacios G, Cisterna DM. A Novel Terrestrial Rabies Virus Lineage Occurring in South America: Origin, Diversification, and Evidence of Contact between Wild and Domestic Cycles. Viruses 2021; 13:v13122484. [PMID: 34960753 PMCID: PMC8707302 DOI: 10.3390/v13122484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/30/2021] [Accepted: 12/09/2021] [Indexed: 12/25/2022] Open
Abstract
The rabies virus (RABV) is characterized by a history dominated by host shifts within and among bats and carnivores. One of the main outcomes of long-term RABV maintenance in dogs was the establishment of variants in a wide variety of mesocarnivores. In this study, we present the most comprehensive phylogenetic and phylogeographic analysis, contributing to a better understanding of the origins, diversification, and the role of different host species in the evolution and diffusion of a dog-related variant endemic of South America. A total of 237 complete Nucleoprotein gene sequences were studied, corresponding to wild and domestic species, performing selection analyses, ancestral states reconstructions, and recombination analyses. This variant originated in Brazil and disseminated through Argentina and Paraguay, where a previously unknown lineage was found. A single host shift was identified in the phylogeny, from dog to the crab-eating fox (Cerdocyon thous) in the Northeast of Brazil. Although this process occurred in a background of purifying selection, there is evidence of adaptive evolution -or selection of sub-consensus sequences- in internal branches after the host shift. The interaction of domestic and wild cycles persisted after host switching, as revealed by spillover and putative recombination events.
Collapse
Affiliation(s)
- Diego A. Caraballo
- Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), CONICET-Universidad de Buenos Aires, Ciudad Universitaria-Pabellón II, Buenos Aires C1428EHA, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1053ABH, Argentina
- Correspondence:
| | - Cristina Lema
- Servicio de Neurovirosis, Administración Nacional de Laboratorios e Institutos de Salud (ANLIS), Instituto Nacional de Enfermedades Infecciosas, “Dr. Carlos G. Malbrán”, Av. Vélez Sarsfield 563, Buenos Aires C1282AFF, Argentina; (C.L.); (D.M.C.)
| | - Laura Novaro
- DILAB, SENASA, Av. Paseo Colón 367, Buenos Aires C1063ACD, Argentina; (L.N.); (S.R.)
| | - Federico Gury-Dohmen
- Instituto de Zoonosis “Dr. Luis Pasteur”, Av. Díaz Vélez 4821, Buenos Aires C1405DCD, Argentina; (F.G.-D.); (F.J.B.)
| | - Susana Russo
- DILAB, SENASA, Av. Paseo Colón 367, Buenos Aires C1063ACD, Argentina; (L.N.); (S.R.)
| | - Fernando J. Beltrán
- Instituto de Zoonosis “Dr. Luis Pasteur”, Av. Díaz Vélez 4821, Buenos Aires C1405DCD, Argentina; (F.G.-D.); (F.J.B.)
| | - Gustavo Palacios
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Daniel M. Cisterna
- Servicio de Neurovirosis, Administración Nacional de Laboratorios e Institutos de Salud (ANLIS), Instituto Nacional de Enfermedades Infecciosas, “Dr. Carlos G. Malbrán”, Av. Vélez Sarsfield 563, Buenos Aires C1282AFF, Argentina; (C.L.); (D.M.C.)
| |
Collapse
|
4
|
Nahata KD, Bollen N, Gill MS, Layan M, Bourhy H, Dellicour S, Baele G. On the Use of Phylogeographic Inference to Infer the Dispersal History of Rabies Virus: A Review Study. Viruses 2021; 13:v13081628. [PMID: 34452492 PMCID: PMC8402743 DOI: 10.3390/v13081628] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/06/2021] [Accepted: 08/11/2021] [Indexed: 12/28/2022] Open
Abstract
Rabies is a neglected zoonotic disease which is caused by negative strand RNA-viruses belonging to the genus Lyssavirus. Within this genus, rabies viruses circulate in a diverse set of mammalian reservoir hosts, is present worldwide, and is almost always fatal in non-vaccinated humans. Approximately 59,000 people are still estimated to die from rabies each year, leading to a global initiative to work towards the goal of zero human deaths from dog-mediated rabies by 2030, requiring scientific efforts from different research fields. The past decade has seen a much increased use of phylogeographic and phylodynamic analyses to study the evolution and spread of rabies virus. We here review published studies in these research areas, making a distinction between the geographic resolution associated with the available sequence data. We pay special attention to environmental factors that these studies found to be relevant to the spread of rabies virus. Importantly, we highlight a knowledge gap in terms of applying these methods when all required data were available but not fully exploited. We conclude with an overview of recent methodological developments that have yet to be applied in phylogeographic and phylodynamic analyses of rabies virus.
Collapse
Affiliation(s)
- Kanika D. Nahata
- Department of Microbiology, Immunology and Transplantation, Rega Institute KU Leuven, 3000 Leuven, Belgium; (N.B.); (M.S.G.); (S.D.); (G.B.)
- Correspondence:
| | - Nena Bollen
- Department of Microbiology, Immunology and Transplantation, Rega Institute KU Leuven, 3000 Leuven, Belgium; (N.B.); (M.S.G.); (S.D.); (G.B.)
| | - Mandev S. Gill
- Department of Microbiology, Immunology and Transplantation, Rega Institute KU Leuven, 3000 Leuven, Belgium; (N.B.); (M.S.G.); (S.D.); (G.B.)
| | - Maylis Layan
- Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, Sorbonne Université, UMR2000, CNRS, 75015 Paris, France;
| | - Hervé Bourhy
- Lyssavirus Epidemiology and Neuropathology Unit, Institut Pasteur, 75015 Paris, France;
- WHO Collaborating Centre for Reference and Research on Rabies, Institut Pasteur, 75015 Paris, France
| | - Simon Dellicour
- Department of Microbiology, Immunology and Transplantation, Rega Institute KU Leuven, 3000 Leuven, Belgium; (N.B.); (M.S.G.); (S.D.); (G.B.)
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, 1050 Bruxelles, Belgium
| | - Guy Baele
- Department of Microbiology, Immunology and Transplantation, Rega Institute KU Leuven, 3000 Leuven, Belgium; (N.B.); (M.S.G.); (S.D.); (G.B.)
| |
Collapse
|
5
|
Layan M, Dellicour S, Baele G, Cauchemez S, Bourhy H. Mathematical modelling and phylodynamics for the study of dog rabies dynamics and control: A scoping review. PLoS Negl Trop Dis 2021; 15:e0009449. [PMID: 34043640 PMCID: PMC8189497 DOI: 10.1371/journal.pntd.0009449] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 06/09/2021] [Accepted: 05/05/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Rabies is a fatal yet vaccine-preventable disease. In the last two decades, domestic dog populations have been shown to constitute the predominant reservoir of rabies in developing countries, causing 99% of human rabies cases. Despite substantial control efforts, dog rabies is still widely endemic and is spreading across previously rabies-free areas. Developing a detailed understanding of dog rabies dynamics and the impact of vaccination is essential to optimize existing control strategies and developing new ones. In this scoping review, we aimed at disentangling the respective contributions of mathematical models and phylodynamic approaches to advancing the understanding of rabies dynamics and control in domestic dog populations. We also addressed the methodological limitations of both approaches and the remaining issues related to studying rabies spread and how this could be applied to rabies control. METHODOLOGY/PRINCIPAL FINDINGS We reviewed how mathematical modelling of disease dynamics and phylodynamics have been developed and used to characterize dog rabies dynamics and control. Through a detailed search of the PubMed, Web of Science, and Scopus databases, we identified a total of n = 59 relevant studies using mathematical models (n = 30), phylodynamic inference (n = 22) and interdisciplinary approaches (n = 7). We found that despite often relying on scarce rabies epidemiological data, mathematical models investigated multiple aspects of rabies dynamics and control. These models confirmed the overwhelming efficacy of massive dog vaccination campaigns in all settings and unraveled the role of dog population structure and frequent introductions in dog rabies maintenance. Phylodynamic approaches successfully disentangled the evolutionary and environmental determinants of rabies dispersal and consistently reported support for the role of reintroduction events and human-mediated transportation over long distances in the maintenance of rabies in endemic areas. Potential biases in data collection still need to be properly accounted for in most of these analyses. Finally, interdisciplinary studies were determined to provide the most comprehensive assessments through hypothesis generation and testing. They also represent new avenues, especially concerning the reconstruction of local transmission chains or clusters through data integration. CONCLUSIONS/SIGNIFICANCE Despite advances in rabies knowledge, substantial uncertainty remains regarding the mechanisms of local spread, the role of wildlife in dog rabies maintenance, and the impact of community behavior on the efficacy of control strategies including vaccination of dogs. Future integrative approaches that use phylodynamic analyses and mechanistic models within a single framework could take full advantage of not only viral sequences but also additional epidemiological information as well as dog ecology data to refine our understanding of rabies spread and control. This would represent a significant improvement on past studies and a promising opportunity for canine rabies research in the frame of the One Health concept that aims to achieve better public health outcomes through cross-sector collaboration.
Collapse
Affiliation(s)
- Maylis Layan
- Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, UMR2000, CNRS, Paris, France
- Sorbonne Université, Paris, France
| | - Simon Dellicour
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, Bruxelles, Belgium
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Guy Baele
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Simon Cauchemez
- Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, UMR2000, CNRS, Paris, France
| | - Hervé Bourhy
- Lyssavirus Epidemiology and Neuropathology Unit, Institut Pasteur, Paris, France
- WHO Collaborating Centre for Reference and Research on Rabies, Institut Pasteur, Paris, France
| |
Collapse
|
6
|
Kim J, Kwak HR, Kim M, Seo JK, Yang JW, Chung MN, Kil EJ, Choi HS, Lee S. Phylogeographic analysis of the full genome of Sweepovirus to trace virus dispersal and introduction to Korea. PLoS One 2018; 13:e0202174. [PMID: 30102735 PMCID: PMC6089449 DOI: 10.1371/journal.pone.0202174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 07/26/2018] [Indexed: 01/04/2023] Open
Abstract
Sweet potato is a vegetatively propagated crop that is produced for both growth in Korean fields and for export out of the country. The viruses that are present in introduced sweet potatoes can spread both domestically and to foreign countries. Determining the time and path of virus movement could help curtail its spread and prevent future dispersal of related viruses. Determining the consequences of past virus and sweet potato dispersal could provide insight into the ecological and economic risks associated with other sweet potato-infecting viral invasions. We therefore applied Bayesian phylogeographic inferences and recombination analyses of the available Sweepovirus sequences (including 25 Korean Sweepovirus genomes) and reconstructed a plausible history of Sweepovirus diversification and movement across the globe. The Mediterranean basin and Central America were found to be the launchpad of global Sweepovirus dispersal. Currently, China and Brazil are acting as convergence regions for Sweepoviruses. Recently reported Korean Sweepovirus isolates were introduced from China in a recent phase and the regions around China and Brazil continue to act as centers of Sweepovirus diversity and sites of ongoing Sweepovirus evolution. The evidence indicates that the region is an epidemiological hotspot, which suggests that novel Sweepovirus variants might be found.
Collapse
Affiliation(s)
- Jaedeok Kim
- Crop Protection Division, National Institute of Agricultural Science, Wanju, Korea
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Korea
| | - Hae-Ryun Kwak
- Crop Protection Division, National Institute of Agricultural Science, Wanju, Korea
| | - Mikyeong Kim
- Crop Protection Division, National Institute of Agricultural Science, Wanju, Korea
| | - Jang-Kyun Seo
- Graduate school of International Agricultural Technology, Seoul National University, Pyeongchang, Korea
| | - Jung Wook Yang
- Bioenergy Crop Research Institute, National Institute of Crop Science, Muan, Korea
| | - Mi-Nam Chung
- Research Policy Bureau, Rural Development Administration, Jeonju, Korea
| | - Eui-Joon Kil
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Korea
| | - Hong-Soo Choi
- Crop Protection Division, National Institute of Agricultural Science, Wanju, Korea
| | - Sukchan Lee
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Korea
| |
Collapse
|
7
|
Dellicour S, Rose R, Faria NR, Vieira LFP, Bourhy H, Gilbert M, Lemey P, Pybus OG. Using Viral Gene Sequences to Compare and Explain the Heterogeneous Spatial Dynamics of Virus Epidemics. Mol Biol Evol 2017. [PMID: 28651357 DOI: 10.1093/molbev/msx176] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Rabies is an important zoonotic disease distributed worldwide. A key question in rabies epidemiology is the identification of factors that impact virus dispersion. Here we apply new analytical methods, based on phylogeographic reconstructions of viral lineage movement, to undertake a comparative evolutionary-epidemiological study of the spatial dynamics of rabies virus (RABV) epidemics in different hosts and habitats. We compiled RABV data sets from skunk, raccoon, bat and domestic dog populations in order to investigate the viral diffusivity of different RABV epidemics, and to detect and compare the environmental factors that impact the velocity of viral spread in continuous spatial landscapes. We build on a recently developed statistical framework that uses spatially- and temporally-referenced phylogenies. We estimate several spatial statistics of virus spread, which reveal a higher diffusivity of RABV in domestic dogs compared with RABV in other mammals. This finding is explained by subsequent analyses of environmental heterogeneity, which indicate that factors relating to human geography play a significant role in RABV dispersion in domestic dogs. More generally, our results suggest that human-related factors are important worldwide in explaining RABV dispersion in terrestrial host species. Our study shows that phylogenetically informed viral movements can be used to elucidate the factors that impact virus dispersal, opening new opportunities for a better understanding of the impact of host species and environmental conditions on the spatial dynamics of rapidly evolving populations.
Collapse
Affiliation(s)
- Simon Dellicour
- Clinical and Epidemiological Virology, Department of Microbiology and Immunology, Rega Institute, KU Leuven-University of Leuven, Leuven, Belgium
| | | | | | - Luiz Fernando Pereira Vieira
- Department of Laboratorial Diagnosis, Institute of Agricultural and Forest Defense of Espírito Santo (IDAF), Vitoria, Brazil
| | - Hervé Bourhy
- Institut Pasteur, Lyssavirus Dynamics and Host Adaptation Unit, WHO Collaborating Centre for Reference and Research on Rabies, Paris, France
| | - Marius Gilbert
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, Brussels, Belgium
| | - Philippe Lemey
- Clinical and Epidemiological Virology, Department of Microbiology and Immunology, Rega Institute, KU Leuven-University of Leuven, Leuven, Belgium
| | - Oliver G Pybus
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
8
|
Dibia IN, Sumiarto B, Susetya H, Putra AAG, Scott-Orr H, Mahardika GN. Phylogeography of the current rabies viruses in Indonesia. J Vet Sci 2016; 16:459-66. [PMID: 25643792 PMCID: PMC4701738 DOI: 10.4142/jvs.2015.16.4.459] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 11/23/2014] [Accepted: 12/30/2014] [Indexed: 12/25/2022] Open
Abstract
Rabies is a major fatal zoonotic disease in Indonesia. This study was conducted to determine the recent dynamics of rabies virus (RABV) in various areas and animal species throughout Indonesia. A total of 27 brain samples collected from rabid animals of various species in Bali, Sumatra, Kalimantan, Sulawesi, Java, and Flores in 2008 to 2010 were investigated. The cDNA of the nucleoprotein gene from each sample was generated and amplified by one-step reverse transcription-PCR, after which the products were sequenced and analyzed. The symmetric substitution model of a Bayesian stochastic search variable selection extension of the discrete phylogeographic model of the social network was applied in BEAST ver. 1.7.5 software. The spatial dispersal was visualized in Cartographica using Spatial Phylogenetic Reconstruction of Evolutionary Dynamics. We demonstrated inter-island introduction and reintroduction, and dog was found to be the only source of infection of other animals. Ancestors of Indonesian RABVs originated in Java and its descendants were transmitted to Kalimantan, then further to Sumatra, Flores, and Bali. The Flores descendent was subsequently transmitted to Sulawesi and back to Kalimantan. The viruses found in various animal species were transmitted by the dog.
Collapse
Affiliation(s)
- I Nyoman Dibia
- Animal Disease Investigation Centre, Denpasar 80226, Indonesia.,Veterinary Science Post Graduate Program, Faculty of Veterinary Medicine, Gajah Mada University, Yogyakarta 55281, Indonesia
| | - Bambang Sumiarto
- Veterinary Public Health Department, Faculty of Veterinary Medicine, Gajah Mada University, Yogyakarta 55281, Indonesia
| | - Heru Susetya
- Veterinary Public Health Department, Faculty of Veterinary Medicine, Gajah Mada University, Yogyakarta 55281, Indonesia
| | | | - Helen Scott-Orr
- Faculty of Veterinary Science, University of Sydney, Camden 2570, Australia
| | - Gusti Ngurah Mahardika
- The Animal Biomedical and Molecular Biology Laboratory, Faculty of Veterinary Medicine, Udayana University, Denpasar 80226, Indonesia
| |
Collapse
|
9
|
Lin YC, Chu PY, Chang MY, Hsiao KL, Lin JH, Liu HF. Spatial Temporal Dynamics and Molecular Evolution of Re-Emerging Rabies Virus in Taiwan. Int J Mol Sci 2016; 17:392. [PMID: 26999115 PMCID: PMC4813248 DOI: 10.3390/ijms17030392] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 03/04/2016] [Accepted: 03/09/2016] [Indexed: 11/26/2022] Open
Abstract
Taiwan has been recognized by the World Organization for Animal Health as rabies-free since 1961. Surprisingly, rabies virus (RABV) was identified in a dead Formosan ferret badger in July 2013. Later, more infected ferret badgers were reported from different geographic regions of Taiwan. In order to know its evolutionary history and spatial temporal dynamics of this virus, phylogeny was reconstructed by maximum likelihood and Bayesian methods based on the full-length of glycoprotein (G), matrix protein (M), and nucleoprotein (N) genes. The evolutionary rates and phylogeographic were determined using Beast and SPREAD software. Phylogenetic trees showed a monophyletic group containing all of RABV isolates from Taiwan and it further separated into three sub-groups. The estimated nucleotide substitution rates of G, M, and N genes were between 2.49 × 10−4–4.75 × 10−4 substitutions/site/year, and the mean ratio of dN/dS was significantly low. The time of the most recent common ancestor was estimated around 75, 89, and 170 years, respectively. Phylogeographic analysis suggested the origin of the epidemic could be in Eastern Taiwan, then the Formosan ferret badger moved across the Central Range of Taiwan to western regions and separated into two branches. In this study, we illustrated the evolution history and phylogeographic of RABV in Formosan ferret badgers.
Collapse
Affiliation(s)
- Yung-Cheng Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan.
- Department of Medical Research, Mackay Memorial Hospital, Taipei 10449, Taiwan.
| | - Pei-Yu Chu
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Mei-Yin Chang
- Department of Medical Laboratory Science and Biotechnology, Fooyin University, Kaohsiung 83102, Taiwan.
| | - Kuang-Liang Hsiao
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan.
| | - Jih-Hui Lin
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Taipei 11561, Taiwan.
| | - Hsin-Fu Liu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan.
- Department of Medical Research, Mackay Memorial Hospital, Taipei 10449, Taiwan.
- Department of Nursing, National Taipei University of Nursing and Health Sciences, Taipei 11219, Taiwan.
| |
Collapse
|
10
|
Carnieli P, Ruthner Batista HBC, de Novaes Oliveira R, Castilho JG, Vieira LFP. Phylogeographic dispersion and diversification of rabies virus lineages associated with dogs and crab-eating foxes (Cerdocyon thous) in Brazil. Arch Virol 2013; 158:2307-13. [PMID: 23749047 DOI: 10.1007/s00705-013-1755-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 05/02/2013] [Indexed: 11/27/2022]
Abstract
Genetic lineages of dog-associated RABV still circulate in some areas of the North and Northeast of Brazil. In parallel, another RABV lineage circulates among wild canids in the Northeast, particularly the crab-eating fox (Cerdocyon thous). Although previous studies and phylogenetic analyses have been carried out, the way in which these lineages are dispersed temporally and spatially remained to be elucidated. In this study, RABV N gene sequences isolated from canids in North and Northeast Brazil were analyzed by the Bayesian Markov Chain Monte Carlo Method, and the results were then used in a phylogeographic study. It was inferred from the findings that the most recent common ancestor became established at the end of the nineteenth century on the border of the Brazilian states of Paraíba and Pernambuco and diversified into the lineages associated with dogs and C. thous. Around 1910, the original C. thous lineage diversified into two main sublineages in the same area, one of which migrated to the south and the other to the north. The dog-associated lineage diversified around 1945 and moved toward the north and south. From the phylogeographic analysis it was possible to infer not only the movement of the virus lineages but also the probable location where dispersion and diversification occurred. The methodology used here enabled the phylogeographic history of RABV in the region to be reconstructed, and the dispersion pattern of the virus can be used to predict its movements, making it easier to stop the advance of a rabies epidemic.
Collapse
|
11
|
Silva SR, Katz ISS, Mori E, Carnieli P, Vieira LFP, Batista HBCR, Chaves LB, Scheffer KC. Biotechnology advances: a perspective on the diagnosis and research of Rabies Virus. Biologicals 2013; 41:217-23. [PMID: 23683880 DOI: 10.1016/j.biologicals.2013.04.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 04/05/2013] [Accepted: 04/06/2013] [Indexed: 11/15/2022] Open
Abstract
Rabies is a widespread zoonotic disease responsible for approximately 55,000 human deaths/year. The direct fluorescent antibody test (DFAT) and the mouse inoculation test (MIT) used for rabies diagnosis, have high sensitivity and specificity, but are expensive and time-consuming. These disadvantages and the identification of new strains of the virus encourage the use of new techniques that are rapid, sensitive, specific and economical for the detection and research of the Rabies Virus (RABV). Real-time RT-PCR, phylogeographic analysis, proteomic assays and DNA recombinant technology have been used in research laboratories. Together, these techniques are effective on samples with low virus titers in the study of molecular epidemiology or in the identification of new disease markers, thus improving the performance of biological assays. In this context, modern advances in molecular technology are now beginning to complement more traditional approaches and promise to revolutionize the diagnosis of rabies. This brief review presents some of the recent molecular tools used for RABV analysis, with emphasis on rabies diagnosis and research.
Collapse
Affiliation(s)
- S R Silva
- Pasteur Institute, São Paulo, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Phylogeography of rabies virus isolated from herbivores and bats in the Espírito Santo State, Brazil. Virus Genes 2012; 46:330-6. [DOI: 10.1007/s11262-012-0866-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 12/08/2012] [Indexed: 10/27/2022]
|
13
|
Integrating the landscape epidemiology and genetics of RNA viruses: rabies in domestic dogs as a model. Parasitology 2012; 139:1899-913. [PMID: 22814380 PMCID: PMC3526958 DOI: 10.1017/s003118201200090x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Landscape epidemiology and landscape genetics combine advances in molecular techniques, spatial analyses and epidemiological models to generate a more real-world understanding of infectious disease dynamics and provide powerful new tools for the study of RNA viruses. Using dog rabies as a model we have identified how key questions regarding viral spread and persistence can be addressed using a combination of these techniques. In contrast to wildlife rabies, investigations into the landscape epidemiology of domestic dog rabies requires more detailed assessment of the role of humans in disease spread, including the incorporation of anthropogenic landscape features, human movements and socio-cultural factors into spatial models. In particular, identifying and quantifying the influence of anthropogenic features on pathogen spread and measuring the permeability of dispersal barriers are important considerations for planning control strategies, and may differ according to cultural, social and geographical variation across countries or continents. Challenges for dog rabies research include the development of metapopulation models and transmission networks using genetic information to uncover potential source/sink dynamics and identify the main routes of viral dissemination. Information generated from a landscape genetics approach will facilitate spatially strategic control programmes that accommodate for heterogeneities in the landscape and therefore utilise resources in the most cost-effective way. This can include the efficient placement of vaccine barriers, surveillance points and adaptive management for large-scale control programmes.
Collapse
|