1
|
Lu K, Chen X, Zhang H, Zhu J, Zhao Y, Chen X, Zhang Y, Yao D. White spot syndrome virus IE1 protein blocks the integrin-FAK signaling to enhance viral infection in shrimp. FISH & SHELLFISH IMMUNOLOGY 2025; 157:110073. [PMID: 39637952 DOI: 10.1016/j.fsi.2024.110073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/04/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
DNA viruses commonly utilize immediate-early proteins to manipulate cellular signaling pathways in order to facilitate their infection. Our previous research has suggested that IE1, an immediate-early protein encoded by the white spot syndrome virus (WSSV), may modulate the shrimp integrin-FAK signaling pathway. However, the specific molecular mechanism and role of IE1 in regulating this signaling pathway remain unclear. In this study, we demonstrated that IE1 competes for binding to the cytoplasmic tail of Penaeus vannamei integrin-α5, resulting in the inhibition of the integrin-α5-FAK interaction, thereby suppressing FAK activation and cell adhesion. Furthermore, we observed a significant increase in the expression of P. vannamei integrin-α5 and FAK following WSSV infection. Additionally, knockdown of integrin-α5 or FAK through RNA interference has been shown to reduce cell adhesion and enhance WSSV infection. In conclusion, our findings reveal that IE1 disrupts integrin-FAK signaling to inhibit cell adhesion, ultimately promoting WSSV infection in shrimp.
Collapse
Affiliation(s)
- Kaiyu Lu
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China
| | - Xiyu Chen
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China
| | - Huimin Zhang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China
| | - Jinghua Zhu
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China
| | - Yongzhen Zhao
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Xiuli Chen
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Yueling Zhang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China
| | - Defu Yao
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China.
| |
Collapse
|
2
|
Encinas-García T, Mendoza-Cano F, Muhlia-Almazán A, Vega-Peralta J, Sánchez-Paz A. Comparison of five commercial kits for isolation of total RNA in samples of WSSV-infected shrimp. DISEASES OF AQUATIC ORGANISMS 2023; 156:59-70. [PMID: 38032039 DOI: 10.3354/dao03762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Viral diseases are the most serious threat to the expansion and development of shrimp aquaculture. Rapid diagnosis of the white spot syndrome virus (WSSV), a lethal shrimp pathogen, is essential to restrict its spread and reduce the mortality of infected shrimp. This virus has globally affected the shrimp farming industry, with a devastating economic impact. Several studies have focused on the expression of WSSV transcripts to understand the molecular mechanisms governing the pathological development of the disease. Since gene expression studies and molecular diagnostics at the early stages of infection depend on the efficient isolation of high-quality RNA, the extraction methods should be carefully selected. However, previous comparisons of the performance of RNA isolation kits have yet to be systematically investigated. In this study, 5 commercial RNA extraction methods were compared in WSSV-infected shrimp. The highest total RNA yield (ng mg-1 tissue) was obtained using TRIzol. Even though the 260/280 nm absorption ratios showed significant differences, the methods showed good purity values (>2.0). RNA integrity was evaluated in a denaturing agarose gel electrophoresis, and degradation was observed after the total RNA samples were treated with DNase I. Finally, the method that allowed the earlier detection of WSSV transcripts by qRT-PCR was the Zymo Direct-zol RNA MiniPrep kit. This study shows that the amount of observed (or estimated) WSSV transcripts might be affected because of the RNA isolation method. In addition, these results may contribute to improve the accuracy of the results obtained in gene expression studies, for more sensitive and robust detection of WSSV.
Collapse
Affiliation(s)
- Trinidad Encinas-García
- Laboratorio de Virología, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Campus Hermosillo, Hermosillo, Sonora, CP 83106, México
| | - Fernando Mendoza-Cano
- Laboratorio de Virología, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Campus Hermosillo, Hermosillo, Sonora, CP 83106, México
| | - Adriana Muhlia-Almazán
- Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD) Unidad Hermosillo, Carretera Gustavo Enrique Astiazaran Rosas, No. 46, Col. La Victoria, Hermosillo, Sonora 83304, México
| | - Juan Vega-Peralta
- Laboratorio de Virología, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Campus Hermosillo, Hermosillo, Sonora, CP 83106, México
| | - Arturo Sánchez-Paz
- Laboratorio de Virología, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Campus Hermosillo, Hermosillo, Sonora, CP 83106, México
| |
Collapse
|
3
|
Comparative Transcriptome Analysis Reveals That WSSV IE1 Protein Plays a Crucial Role in DNA Replication Control. Int J Mol Sci 2022; 23:ijms23158176. [PMID: 35897756 PMCID: PMC9330391 DOI: 10.3390/ijms23158176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 12/10/2022] Open
Abstract
For DNA viruses, the immediate-early (IE) proteins are generally essential regulators that manipulate the host machinery to support viral replication. Recently, IE1, an IE protein encoded by white spot syndrome virus (WSSV), has been demonstrated to function as a transcription factor. However, the target genes of IE1 during viral infection remain poorly understood. Here, we explored the host target genes of IE1 using RNAi coupled with transcriptome sequencing analysis. A total of 429 differentially expressed genes (DEGs) were identified from penaeid shrimp, of which 284 genes were upregulated and 145 genes were downregulated after IE1 knockdown. GO and KEGG pathway enrichment analysis revealed the identified DEGs are significantly enriched in the minichromosome maintenance (MCM) complex and DNA replication, indicating that IE1 plays a critical role in DNA replication control. In addition, it was found that Penaeus vannamei MCM complex genes were remarkably upregulated after WSSV infection, while RNAi-mediated knockdown of PvMCM2 reduced the expression of viral genes and viral loads at the early infection stage. Finally, we demonstrated that overexpression of IE1 promoted the expression of MCM complex genes as well as cellular DNA synthesis in insect High-Five cells. Collectively, our current data suggest that the WSSV IE1 protein is a viral effector that modulates the host DNA replication machinery for viral replication.
Collapse
|
4
|
Wang C, Wei M, Wu G, He L, Zhu J, Juventus Aweya J, Chen X, Zhao Y, Zhang Y, Yao D. Proteomics analysis reveals a critical role for the WSSV immediate-early protein IE1 in modulating the host prophenoloxidase system. Virulence 2022; 13:936-948. [PMID: 35582758 PMCID: PMC9154788 DOI: 10.1080/21505594.2022.2078471] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
White spot syndrome virus (WSSV) is a large enveloped double-stranded DNA virus that is a major impediment for shrimp aquaculture worldwide. So far, the mechanisms of WSSV-host interactions are ill-defined. Recent studies have revealed that IE1, an immediate-early protein encoded by WSSV, is a multifunctional modulator implicated in virus-host interactions. In this study, the biological functions of IE1 were further explored by identifying its interacting proteins using GST-pull down and mass spectrometry analysis. A total of 361 host proteins that potentially bind to IE1 were identified. Bioinformatics analysis revealed that the identified IE1-interacting proteins were key molecules involved in various signaling pathways such as prophenoloxidase (proPO) system, PI3K-AKT, MAPK, Focal adhesion, and cell cycle. Among these, the regulatory role of IE1 in the shrimp proPO system was further studied. The Co-immunoprecipitation (Co-IP) results confirmed that IE1 interacted with the Ig-like domain of Penaeus vannamei proPO or proPO-like proteins (proPO1/2 and hemocyanin). In addition, we found that in vivo RNAi mediated knockdown of IE1 reduced the viral genes expression and viral loads, as well as caused an increase in the PO activity of hemocytes during infection, whereas recombinant IE1 protein could inhibit the PO activity in a dose-dependent manner. Finally, our result demonstrated that WSSV could suppress the PO activity of hemocytes at the early infection stage. Collectively, our current data indicate that IE1 is a novel viral regulator that negatively modulates the shrimp proPO system, which provide additional insights into the biological functions of IE1 during WSSV infection.
Collapse
Affiliation(s)
- Chuanqi Wang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Menghao Wei
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Gaochun Wu
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Lixuan He
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Jinghua Zhu
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Jude Juventus Aweya
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Xiuli Chen
- Guangxi Academy of Fishery Sciences, Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Nanning 530021, China
| | - Yongzhen Zhao
- Guangxi Academy of Fishery Sciences, Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Nanning 530021, China
| | - Yueling Zhang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Defu Yao
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| |
Collapse
|
5
|
Tang R, Lu L, Wang B, Yu J, Wang H. Identification of the Immediate-Early Genes of Cyprinid Herpesvirus 2. Viruses 2020; 12:v12090994. [PMID: 32906668 PMCID: PMC7552009 DOI: 10.3390/v12090994] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 12/17/2022] Open
Abstract
Cyprinid herpesvirus 2 (CyHV-2), which infects goldfish and crucian carp causing high mortality, is an emerging viral pathogen worldwide. The genome of CyHV-2 is large and comprises double-stranded DNA, including several genes similar to cyprinid herpesvirus 1, ictalurid herpesvirus-1, cyprinid herpesvirus 3, and ranid herpesvirus-1. Genes of DNA viruses are expressed in three temporal phases: immediate-early (IE), early (E), and late (L) genes. Viral IE genes initiate transcription as soon as the virus enters the host, without viral DNA replication. IE gene products enable the efficient expression of E and L genes or regulate the host to initiate virus replication. In the present study, five IE genes of CyHV-2 were identified, including open reading frame (ORF)54, ORF121, ORF141, ORF147, and ORF155. Time course analysis and reverse transcription polymerase chain reaction confirmed five IE genes, thirty-four E genes, and thirty-nine L genes. In addition, all 150 ORFs identified in the CyHV-2 genome are transcribed, and are expressed in chronological order, similar to other herpesviruses. This study is the first to identify the IE genes of CyHV-2, which will provide more information for viral molecular characterization.
Collapse
Affiliation(s)
- Ruizhe Tang
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China; (R.T.); (L.L.)
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture Shanghai Ocean University, Shanghai 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Liqun Lu
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China; (R.T.); (L.L.)
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture Shanghai Ocean University, Shanghai 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Beiyang Wang
- China Society of Fisheries, Beijing 100000, China; (B.W.); (J.Y.)
| | - Jiao Yu
- China Society of Fisheries, Beijing 100000, China; (B.W.); (J.Y.)
| | - Hao Wang
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China; (R.T.); (L.L.)
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
- Correspondence: ; Tel.: +86-021-6190-0453
| |
Collapse
|
6
|
Gao Y, Liu LK, Wang KJ, Liu HP. A negative elongation factor E inhibits white spot syndrome virus replication by suppressing promoter activity of the viral immediate early genes in red claw crayfish Cherax quadricarinatus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 107:103665. [PMID: 32147597 DOI: 10.1016/j.dci.2020.103665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 06/10/2023]
Abstract
Invertebrates rely solely on the innate immune system to protect against virus infection, while the viral infection must rely on the transcriptional system of the host cell to achieve the expression of viral genes, which is naturally regulated by the host's transcriptional system. However, the mechanism of the host against viral transcription in host cells is still poorly understood in crustaceans. Previously, we found that the partial transcript sequence of a negative elongation factor E (named as CqNELF-E) was up-regulated in a differentially expressed transcriptome library of the haematopietic tissue (Hpt) cells from red claw crayfish Cherax quadricarinatus upon white spot syndrome virus (WSSV) infection, suggesting a possible role of CqNELF-E in WSSV-host interaction. In the present study, we revealed the function of CqNELF-E. The full-length cDNA sequence of CqNELF-E was identified with 1726 bp from red claw crayfish, which contained an open reading frame of 816 bp, encoding 271 amino acids. Amino acid sequencing analysis revealed that the CqNELF-E had a conserved RNA recognition motif (RRM) and a leucine zipper motif (LZM). Tissue distribution analysis showed that CqNELF-E was widely expressed in various tissues with the highest expression in muscle, relatively abundant in Hpt and the lowest presence in heart. Interestingly, the gene expression of CqNELF-E was significantly up-regulated at both 6 and 12 hpi after WSSV infection in Hpt cell cultures in red claw crayfish. In addition, the expression of both the viral immediately early gene (IE) 1 (IE1) and a late gene envelope protein VP28 were significantly increased after gene silencing of CqNELF-E in Hpt cells, indicating the potential suppression role of CqNELF-E against the viral infection. Further study revealed that the CqNELF-E had an inhibitory effect on the promoter activity of WSSV IE genes WSV051, WSV069 (IE1) and WSV083 by a dual luciferase reporter gene assay. Taken together, these results suggest that CqNELF-E plays an antiviral role, probably via inhibition on the viral transcription activity in WSSV infection in a crustacean.
Collapse
Affiliation(s)
- Yan Gao
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Ling-Ke Liu
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Ke-Jian Wang
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Hai-Peng Liu
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, Fujian, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), China.
| |
Collapse
|
7
|
Wang W, Luo P, Pan C, Wang Q, Yuan H, Liu J, Jin C, Chen J, Wu W. LvPPAE2 induced by WSV056 confers host defense against WSSV in Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2020; 96:319-329. [PMID: 31805414 DOI: 10.1016/j.fsi.2019.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/28/2019] [Accepted: 12/01/2019] [Indexed: 06/10/2023]
Abstract
Viral immediate early (IE) genes encode regulatory proteins that are critical for viral replication. WSV056 is an IE protein of white spot syndrome virus (WSSV), an important pathogen of farmed shrimp. It targets the host Rb protein(s) and, according to a previous study, may enhance the replication of the viral genome. However, the ectopic expression of WSV056 in transgenic Drosophila melanogaster exerted an inhibitory effect on the replication of Drosophila C virus (DCV). Transcriptome study using Affymetrix GeneChip suggested that the enrichment of serine proteases (SPs) likely accounts for DCV inhibition in WSV056-overexpressing Drosophila. Injection of recombinant WSV056 to the WSSV natural host Litopenaeus vannamei enhanced the expression of the SP family member prophenoloxidase-activating enzyme 2 (LvPPAE2) and conferred shrimp with more resistance to WSSV infection. LvPPAE2 knockdown contributed to decreased expression of antimicrobial peptides LvAlf1 and LvLyz1, reduced hemolymph phenoloxidase activity, and increased virus load, suggesting that LvPPAE2 is involved in the host defense against WSSV infection. Taken together, these results suggest that wsv056 plays a role in restricting viral replication by inducing the SP-mediated immune responses in the host.
Collapse
Affiliation(s)
- Wei Wang
- Institute of Oceanography, Minjiang University, Fuzhou, Fujian, 350108, China
| | - Peng Luo
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, 501301, China
| | - Changkun Pan
- Institute of Oceanography, Minjiang University, Fuzhou, Fujian, 350108, China
| | - Qingbai Wang
- Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 501301, China
| | - Huifang Yuan
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Jieping Liu
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, Fujian, 362000, China
| | - Chunying Jin
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, 361000, China
| | - Jianming Chen
- Institute of Oceanography, Minjiang University, Fuzhou, Fujian, 350108, China.
| | - Wenlin Wu
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, Fujian, 362000, China.
| |
Collapse
|
8
|
Wang S, Li H, Weng S, Li C, He J. White Spot Syndrome Virus Establishes a Novel IE1/JNK/c-Jun Positive Feedback Loop to Drive Replication. iScience 2019; 23:100752. [PMID: 31884168 PMCID: PMC6941876 DOI: 10.1016/j.isci.2019.100752] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/05/2019] [Accepted: 11/26/2019] [Indexed: 02/07/2023] Open
Abstract
Viruses need to hijack and manipulate host proteins to guarantee their replication. Herein, we uncovered that the DNA virus white spot syndrome virus (WSSV) established a novel positive feedback loop by hijacking the host JNK pathway via its immediate-early 1 (IE1) protein to drive replication. Specifically, the WSSV IE1 bound to host JNK, and enhanced JNK autoactivation by autophosphorylation, and in turn, elevated JNK kinase activity to its substrate c-Jun and induced IE1, which resulted in a viral gene-mediated positive feedback loop. Moreover, the activation of this loop is able to induce wsv056, wsv249, and wsv403, in addition to IE1 itself. Disruption of this loop during WSSV infection by knockdown of JNK, c-Jun or IE1 led to an increased survival rate and lower viral burdens in shrimp. Taken together, this loop may provide a potential target for the development of specific antiviral strategies or agents against WSSV infection. Lvc-Jun promotes WSSV IE1 induction via interacting with the promoter of IE1 gene The interaction of IE1-LvJNK enhances the autophosphorylation of LvJNK IE1 hijacks the JNK/c-Jun cascade to create a feedback loop to drive replication wsv056, wsv249, and wsv403 are also benefit from this positive feedback loop
Collapse
Affiliation(s)
- Sheng Wang
- State Key Laboratory of Biocontrol/ Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510275, P. R. China; Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Haoyang Li
- State Key Laboratory of Biocontrol/ Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510275, P. R. China; Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Shaoping Weng
- State Key Laboratory of Biocontrol/ Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510275, P. R. China; Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Chaozheng Li
- State Key Laboratory of Biocontrol/ Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510275, P. R. China; Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, P. R. China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China.
| | - Jianguo He
- State Key Laboratory of Biocontrol/ Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510275, P. R. China; Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, P. R. China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China.
| |
Collapse
|
9
|
de Macêdo Mendes C, Teixeira DG, Lima JPMS, Lanza DCF. Characterization of putative proteins encoded by variable ORFs in white spot syndrome virus genome. BMC STRUCTURAL BIOLOGY 2019; 19:8. [PMID: 30999895 PMCID: PMC6474068 DOI: 10.1186/s12900-019-0106-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 03/28/2019] [Indexed: 01/07/2023]
Abstract
Background White Spot Syndrome Virus (WSSV) is an enveloped double-stranded DNA virus which causes mortality of several species of shrimp, being considered one of the main pathogens that affects global shrimp farming. This virus presents a complex genome of ~ 300 kb and viral isolates that present genomes with great identity. Despite this conservation, some variable regions in the WSSV genome occur in coding regions, and these putative proteins may have some relationship with viral adaptation and virulence mechanisms. Until now, the functions of these proteins were little studied. In this work, sequences and putative proteins encoded by WSSV variable regions were characterized in silico. Results The in silico approach enabled determining the variability of some sequences, as well as the identification of some domains resembling the Formin homology 2, RNA recognition motif, Xeroderma pigmentosum group D repair helicase, Hemagglutinin and Ankyrin motif. The information obtained from the sequences and the analysis of secondary and tertiary structure models allow to infer that some of these proteins possibly have functions related to protein modulation/degradation, intracellular transport, recombination and endosome fusion events. Conclusions The bioinformatics approaches were efficient in generating three-dimensional models and to identify domains, thereby enabling to propose possible functions for the putative polypeptides produced by the ORFs wsv129, wsv178, wsv249, wsv463a, wsv477, wsv479, wsv492, and wsv497. Electronic supplementary material The online version of this article (10.1186/s12900-019-0106-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cayro de Macêdo Mendes
- Applied Molecular Biology Lab - LAPLIC, Department of Biochemistry, Federal University of Rio Grande do Norte, Natal, RN, Brazil.,Postgraduate Program in Bioinformatics, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Diego Gomes Teixeira
- Postgraduate Program in Biochemistry, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - João Paulo Matos Santos Lima
- Postgraduate Program in Bioinformatics, Federal University of Rio Grande do Norte, Natal, RN, Brazil.,Postgraduate Program in Biochemistry, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Daniel Carlos Ferreira Lanza
- Applied Molecular Biology Lab - LAPLIC, Department of Biochemistry, Federal University of Rio Grande do Norte, Natal, RN, Brazil. .,Postgraduate Program in Bioinformatics, Federal University of Rio Grande do Norte, Natal, RN, Brazil. .,Postgraduate Program in Biochemistry, Federal University of Rio Grande do Norte, Natal, RN, Brazil.
| |
Collapse
|
10
|
Shi H, Ruan L, Söderhäll I, Söderhäll K, Xu X. Transfection of crayfish hematopoietic tissue cells. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 88:70-76. [PMID: 30003890 DOI: 10.1016/j.dci.2018.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/07/2018] [Accepted: 07/07/2018] [Indexed: 06/08/2023]
Abstract
Transfection is a powerful tool useful for studying gene function. Establishing transfection methods that enable highly efficient DNA uptake has become increasingly important. The crayfish hematopoietic tissue (Hpt) cell cultures have been proven to be suitable for studies on immunity and cell differentiation in crustaceans including shrimps, but no efficient gene transfer and expression method is available for these cells. Here we report a novel and highly efficient DNA transfection system based on electroporation. This method depends on a recombinant plasmid with the promoter from white spot syndrome virus immediate-early gene wsv249. This plasmid could be introduced into primary cells and efficiently express foreign genes by electroporation. By optimizing different electroporation parameters, more than 30% transfection efficiency could be achieved with the relative viability of cells around 50%. This is the first report of gene introduction to crayfish Hpt cells and will be useful for the expanding our research on crustacean immunity.
Collapse
Affiliation(s)
- Hong Shi
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of State Oceanic Administration, Third Institute of Oceanography, State Oceanic Administration, Fujian Key Laboratory of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Xiamen, 361005, PR China.
| | - Lingwei Ruan
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of State Oceanic Administration, Third Institute of Oceanography, State Oceanic Administration, Fujian Key Laboratory of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Xiamen, 361005, PR China
| | - Irene Söderhäll
- Science for Life Laboratory, Department of Comparative Physiology, Uppsala University, Norbyvägen 18A, 752 36 Uppsala, Sweden
| | - Kenneth Söderhäll
- Science for Life Laboratory, Department of Comparative Physiology, Uppsala University, Norbyvägen 18A, 752 36 Uppsala, Sweden
| | - Xun Xu
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of State Oceanic Administration, Third Institute of Oceanography, State Oceanic Administration, Fujian Key Laboratory of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Xiamen, 361005, PR China
| |
Collapse
|
11
|
Yang Z, Xu X, Li F, Yang F. Characterization of the promoter of white spot syndrome virus immediate-early gene wsv249. Virus Res 2018; 252:76-81. [PMID: 29753890 DOI: 10.1016/j.virusres.2018.05.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 11/28/2022]
Abstract
White spot syndrome virus immediate early (IE) gene wsv249 encodes an E3 ubiquitin ligase that can interact with a shrimp ubiquitin-conjugating enzyme to mediate ubiquitination. In this study, to understand the transcriptional regulation of wsv249, a serial of 5'-truncated mutations were made on its promoter and the activities of mutated promoters was analyzed. Four 25 bp regions potentially containing either positive or negative regulatory elements were identified. Notably, the deletion of -275/-250, which abolished a cAMP-response element (CRE), greatly reduced the promoter activity by 84.2%. CRE serves as the binding site for proteins belong to the cAMP responsive element-binding proteins (CREBs) family and the activator protein 1 (AP-1) family. Electrophoretic mobility shift assay (EMSA) showed that Lvc-Jun could directly bind to the CRE element in the promoter region of wsv249. In addition, the regulation of shrimp homolog of c-Jun and CREB on wsv249 promoter was further investigated. We found that Lvc-Jun greatly upregulated the activity of wsv249 promoter by ∼12.4 fold, and the CRE at -212/-205 but not the one at -256/-249 was essential for the regulation. In contrast, LvCREB-3 could not activate wsv249 promoter activity. These findings extend our knowledge of the transcriptional regulation of WSSV IE genes.
Collapse
Affiliation(s)
- Zi Yang
- State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of State Oceanic Administration, Third Institute of Oceanography, Xiamen, 361005, PR China; College of Ocean and Earth Science, Xiamen University, Xiamen,361005, PR China
| | - Xiaomin Xu
- State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of State Oceanic Administration, Third Institute of Oceanography, Xiamen, 361005, PR China; School of life Science, Xiamen University, Xiamen,361005, PR China
| | - Fang Li
- State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of State Oceanic Administration, Third Institute of Oceanography, Xiamen, 361005, PR China.
| | - Feng Yang
- State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of State Oceanic Administration, Third Institute of Oceanography, Xiamen, 361005, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China.
| |
Collapse
|
12
|
Pan C, Wang W, Yuan H, Yang L, Chen B, Li D, Chen J. The immediate early protein WSV187 can influence viral replication via regulation of JAK/STAT pathway in Drosophila. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 72:89-96. [PMID: 28232015 DOI: 10.1016/j.dci.2017.02.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 02/17/2017] [Accepted: 02/18/2017] [Indexed: 06/06/2023]
Abstract
The world production of shrimp is seriously affected by the white spot syndrome virus (WSSV). Viral immediate-early (IE) genes encode regulatory proteins critical for the viral lifecycle. In spite of their importance, only five out of the 21 identified WSSV IE genes are functionally characterized. Here, we report the use of Drosophila melanogaster as a model to explore the role of WSSV IE gene wsv187. In vivo expression of WSV187 in transgenic flies show WSV187 localized in the cytoplasm. Overexpression of wsv187 results wing defects consistent with phenotypes observed in JAK/STAT exacerbated flies. After artificial infection of the DCV virus, the flies expressing wsv187 showed a lower viral load, a higher survival rate and an up-regulated STAT92E expression. These data demonstrate wsv187 plays a role in the controlling of virus replication by activating host JAK/STAT pathway.
Collapse
Affiliation(s)
- Changkun Pan
- School of Marine Sciences, Ningbo University, Ningbo 315211, Zhejiang, China; State Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, Fujian, China
| | - Wei Wang
- State Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, Fujian, China.
| | - Huifang Yuan
- State Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, Fujian, China
| | - Lirong Yang
- State Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, Fujian, China
| | - Baoru Chen
- State Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, Fujian, China
| | - Dengfeng Li
- School of Marine Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Jianming Chen
- State Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, Fujian, China.
| |
Collapse
|
13
|
Identification of two p53 isoforms from Litopenaeus vannamei and their interaction with NF-κB to induce distinct immune response. Sci Rep 2017; 7:45821. [PMID: 28361937 PMCID: PMC5374463 DOI: 10.1038/srep45821] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 03/06/2017] [Indexed: 12/17/2022] Open
Abstract
p53 is a transcription factor with capability of regulating diverse NF-κB dependent biological progresses such as inflammation and host defense, but the actual mechanism remains unrevealed. Herein, we firstly identified two novel alternatively spliced isoforms of p53 from Litopenaeus vannamei (LvΔNp53 and the full-length of p53, LvFLp53). We then established that the two p53 isoforms exerted opposite effects on regulating NF-κB induced antimicrobial peptides (AMPs) and white spot syndrome virus (WSSV) immediate-early (IE) genes expression, suggesting there could be a crosstalk between p53 and NF-κB pathways. Of note, both of the two p53 isoforms could interact directly with LvDorsal, a shrimp homolog of NF-κB. In addition, the activation of NF-κB mediated by LvDorsal was provoked by LvΔNp53 but suppressed by LvFLp53, and the increased NF-κB activity conferred by LvΔNp53 can be attenuated by LvFLp53. Furthermore, silencing of LvFLp53 in shrimp caused higher mortalities and virus loads under WSSV infection, whereas LvΔNp53-knockdown shrimps exhibited an opposed RNAi phenotype. Taken together, these findings present here provided some novel insight into different roles of shrimp p53 isoforms in immune response, and some information for us to understand the regulatory crosstalk between p53 pathway and NF-κB pathway in invertebrates.
Collapse
|
14
|
Role of Litopenaeus vannamei Yin Yang 1 in the Regulation of the White Spot Syndrome Virus Immediate Early Gene ie1. J Virol 2017; 91:JVI.02314-16. [PMID: 28077637 DOI: 10.1128/jvi.02314-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 12/29/2016] [Indexed: 01/26/2023] Open
Abstract
Yin Yang 1 (YY1) is a multifunctional zinc finger transcription factor that regulates many key cellular processes. In this study, we report the cloning of YY1 from Litopenaeus vannamei shrimp (LvYY1). This study shows that LvYY1 is ubiquitously expressed in shrimp tissues, and knockdown of LvYY1 expression by double-stranded RNA (dsRNA) injection in white spot syndrome virus (WSSV)-infected shrimp reduced both mRNA levels of the WSSV immediate early gene ie1 as well as overall copy numbers of the WSSV genome. The cumulative mortality rate of infected shrimp also declined with LvYY1 dsRNA injection. Using an insect cell model, we observed that LvYY1 activates ie1 expression, and a mutation introduced into the ie1 promoter subsequently repressed this capability. Moreover, reporter assay results suggested that LvYY1 is involved in basal transcriptional regulation via an interaction with L. vannamei TATA-binding protein (LvTBP). Electrophoretic mobility shift assay (EMSA) results further indicated that LvYY1 binds to a YY1-binding site in the region between positions -119 and -126 in the ie1 promoter. Chromatin immunoprecipitation analysis also confirmed that LvYY1 binds to the ie1 promoter in WSSV-infected shrimp. Taken together, these results indicate that WSSV uses host LvYY1 to enhance ie1 expression via a YY1-binding site and the TATA box in the ie1 promoter, thereby facilitating lytic activation and viral replication.IMPORTANCE WSSV has long been a scourge of the shrimp industry and remains a serious global threat. Thus, there is a pressing need to understand how the interactions between WSSV and its host drive infection, lytic development, pathogenesis, and mortality. Our successful cloning of L. vannamei YY1 (LvYY1) led to the elucidation of a critical virus-host interaction between LvYY1 and the WSSV immediate early gene ie1 We observed that LvYY1 regulates ie1 expression via a consensus YY1-binding site and TATA box. LvYY1 was also found to interact with L. vannamei TATA-binding protein (LvTBP), which may have an effect on basal transcription. Knockdown of LvYY1 expression inhibited ie1 transcription and subsequently reduced viral DNA replication and decreased cumulative mortality rates of WSSV-infected shrimp. These findings are expected to contribute to future studies involving WSSV-host interactions.
Collapse
|
15
|
Yao D, Ruan L, Lu H, Shi H, Xu X. Shrimp STAT was hijacked by white spot syndrome virus immediate-early protein IE1 involved in modulation of viral genes. FISH & SHELLFISH IMMUNOLOGY 2016; 59:268-275. [PMID: 27815197 DOI: 10.1016/j.fsi.2016.10.051] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 10/18/2016] [Accepted: 10/30/2016] [Indexed: 06/06/2023]
Abstract
STATs are a family of transcription factors that regulate a cascade of cellular processes including cell growth, differentiation, apoptosis and immune responses. However, they are usually targeted by viruses to assist infection. In this study, we identified that white spot syndrome virus (WSSV) immediate-early protein IE1 interacted with Litopenaeus vannamei STAT (LvSTAT) and thereby led to its phosphorylation activation. In addition, we demonstrated that LvSTAT could bind to the promoters of the viral immediate-early genes wsv051 and ie1 through STAT-binding motifs in vitro and vivo, allowing the enhancement of their promoters' activities. Moreover, IE1 could promote the transcriptional activation activity of LvSTAT to augment the transcription of wsv051 and ie1. In conclusion, our findings revealed a novel linkage between WSSV IE1 and shrimp STAT, which was a clue to well understand how WSSV adopted the active strategies to modulate the shrimp signaling pathway.
Collapse
Affiliation(s)
- Defu Yao
- School of Life Science, Xiamen University, Xiamen 361005, People's Republic of China; State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of State Oceanic Administration, Third Institute of Oceanography, State Oceanic Administration, Key Laboratory of Marine Genetic Resources of Fujian Province, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Xiamen 361005, People's Republic of China
| | - Lingwei Ruan
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of State Oceanic Administration, Third Institute of Oceanography, State Oceanic Administration, Key Laboratory of Marine Genetic Resources of Fujian Province, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Xiamen 361005, People's Republic of China.
| | - Huasong Lu
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of State Oceanic Administration, Third Institute of Oceanography, State Oceanic Administration, Key Laboratory of Marine Genetic Resources of Fujian Province, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Xiamen 361005, People's Republic of China
| | - Hong Shi
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of State Oceanic Administration, Third Institute of Oceanography, State Oceanic Administration, Key Laboratory of Marine Genetic Resources of Fujian Province, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Xiamen 361005, People's Republic of China
| | - Xun Xu
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of State Oceanic Administration, Third Institute of Oceanography, State Oceanic Administration, Key Laboratory of Marine Genetic Resources of Fujian Province, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Xiamen 361005, People's Republic of China
| |
Collapse
|
16
|
Li H, Wang S, Qian Z, Wu Z, Lǚ K, Weng S, He J, Li C. MKK6 from pacific white shrimp Litopenaeus vannamei is responsive to bacterial and WSSV infection. Mol Immunol 2016; 70:72-83. [DOI: 10.1016/j.molimm.2015.12.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 12/08/2015] [Accepted: 12/15/2015] [Indexed: 11/16/2022]
|
17
|
Liu WJ, Lo CF, Kou GH, Leu JH, Lai YJ, Chang LK, Chang YS. The promoter of the white spot syndrome virus immediate-early gene WSSV108 is activated by the cellular KLF transcription factor. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 49:7-18. [PMID: 25445906 DOI: 10.1016/j.dci.2014.10.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 10/24/2014] [Accepted: 10/25/2014] [Indexed: 06/04/2023]
Abstract
A series of deletion and mutation assays of the white spot syndrome virus (WSSV) immediate-early gene WSSV108 promoter showed that a Krüppel-like factor (KLF) binding site located from -504 to -495 (relative to the transcription start site) is important for the overall level of WSSV108 promoter activity. Electrophoretic mobility shift assays further showed that overexpressed recombinant Penaeus monodon KLF (rPmKLF) formed a specific protein-DNA complex with the (32)P-labeled KLF binding site of the WSSV108 promoter, and that higher levels of Litopenaeus vannamei KLF (LvKLF) were expressed in WSSV-infected shrimp. A transactivation assay indicated that the WSSV108 promoter was strongly activated by rPmKLF in a dose-dependent manner. Lastly, we found that specific silencing of LvKLF expression in vivo by dsRNA injection dramatically reduced both WSSV108 expression and WSSV replication. We conclude that shrimp KLF is important for WSSV genome replication and gene expression, and that it binds to the WSSV108 promoter to enhance the expression of this immediate-early gene.
Collapse
Affiliation(s)
- Wang-Jing Liu
- Department of Earth and Life Science, College of Science, University of Taipei, Taipei 100, Taiwan
| | - Chu-Fang Lo
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | - Guang-Hsiung Kou
- Department of Life Science, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Jiann-Horng Leu
- Institute of Marine Biology, College of Life Sciences, National Taiwan Ocean University, Keelung 202, Taiwan
| | - Ying-Jang Lai
- Department of Food Science, College of Science and Engineering, National Quemoy University, Kinmen 892, Taiwan
| | - Li-Kwan Chang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Yun-Shiang Chang
- Department of Molecular Biotechnology, College of Biotechnology and Bioresources, Da-Yeh University, Changhua 515, Taiwan.
| |
Collapse
|
18
|
Huang PH, Lu SC, Yang SH, Cai PS, Lo CF, Chang LK. Regulation of the immediate-early genes of white spot syndrome virus by Litopenaeus vannamei kruppel-like factor (LvKLF). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 46:364-372. [PMID: 24881625 DOI: 10.1016/j.dci.2014.05.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 05/16/2014] [Accepted: 05/19/2014] [Indexed: 06/03/2023]
Abstract
Kruppel-like factors (KLFs) belong to a subclass of Cys2/His2 zinc-finger DNA-binding proteins, and act as important regulators with diverse roles in cell growth, proliferation, differentiation, apoptosis and tumorigenesis. Our previous research showed that PmKLF from Penaeus monodon is crucial for white spot syndrome virus (WSSV) infection, yet the mechanisms by which PmKLF influences WSSV infection remain unclear. This study cloned KLF from Litopenaeus vannamei (LvKLF), which had 93% similarity with PmKLF. LvKLF formed a dimer via the C-terminal zinc-finger motif. Knockdown of LvKLF expression by dsRNA injection in WSSV-challenged shrimps was found to significantly inhibit the transcription of two important immediate-early (IE) genes, IE1 and WSSV304, and also reduced WSSV copy numbers. Moreover, reporter assays revealed that the promoter activities of these two WSSV IE genes were substantially enhanced by LvKLF. Mutations introduced in the promoter sequences of IE1 and WSSV304 were shown to abolish LvKLF activation of promoter activities; and an electrophoretic mobility shift assay demonstrated that LvKLF binds to putative KLF-response elements (KRE) in the promoters. Taken together, these results indicate that LvKLF transcriptional regulation of key IE genes is critical to WSSV replication.
Collapse
Affiliation(s)
- Ping-Han Huang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Shao-Chia Lu
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Shu-Han Yang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Pei-Si Cai
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Chu-Fang Lo
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | - Li-Kwan Chang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
19
|
White spot syndrome virus IE1 and WSV056 modulate the G1/S transition by binding to the host retinoblastoma protein. J Virol 2013; 87:12576-82. [PMID: 24027329 DOI: 10.1128/jvi.01551-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA viruses often target cellular proteins to modulate host cell cycles and facilitate viral genome replication. However, whether proliferation of white spot syndrome virus (WSSV) requires regulation of the host cell cycle remains unclear. In the present study, we show that two WSSV paralogs, IE1 and WSV056, can interact with Litopenaeus vannamei retinoblastoma (Rb)-like protein (lv-RBL) through the conserved LxCxE motif. Further investigation revealed that IE1 and WSV056 could also bind to Drosophila retinoblastoma family protein 1 (RBF1) in a manner similar to how they bind to lv-RBL. Using the Drosophila RBF-E2F pathway as a model system, we demonstrated that both IE1 and WSV056 could sequester RBF1 from Drosophila E2F transcription factor 1 (E2F1) and subsequently activate E2F1 to stimulate the G1/S transition. Our findings provide the first evidence that WSSV may regulate cell cycle progression by targeting the Rb-E2F pathway.
Collapse
|
20
|
Lin F, Huang H, Ke W, Hou L, Li F, Yang F. Characterization of white spot syndrome virus immediate-early gene promoters. J Gen Virol 2013; 94:387-392. [DOI: 10.1099/vir.0.047274-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Twenty-one immediate-early (IE) genes of white spot syndrome virus (WSSV) have been identified so far. However, the transcriptional regulation of WSSV IE genes remains largely unknown. In this report, the 5′ flanking regions of 18 WSSV IE genes were cloned and eight functional promoter regions were identified. WSSV IE gene promoters normally contained a TATA box approximately 30 bp upstream of the transcriptional initiation site. Also, the cyclic AMP response element (CRE; TGACGTCA) was frequently found within the WSSV IE promoter regions. Mutations of the CREs of WSSV IE promoters P403 and P465 reduced their activity significantly, suggesting that these elements have a role in WSSV IE gene transcription. Our findings provide a more global view of WSSV IE gene promoters and will facilitate the in-depth investigation of viral gene transcriptional regulation.
Collapse
Affiliation(s)
- Fanyu Lin
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration (SOA), Xiamen 361005, PR China
- School of Life Science, Xiamen University, Xiamen 361005, PR China
| | - He Huang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration (SOA), Xiamen 361005, PR China
- School of Life Science, Xiamen University, Xiamen 361005, PR China
| | - Wei Ke
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration (SOA), Xiamen 361005, PR China
- School of Life Science, Xiamen University, Xiamen 361005, PR China
| | - Luhong Hou
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration (SOA), Xiamen 361005, PR China
| | - Fang Li
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration (SOA), Xiamen 361005, PR China
| | - Feng Yang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration (SOA), Xiamen 361005, PR China
| |
Collapse
|
21
|
SUMO-conjugating enzyme E2 UBC9 mediates viral immediate-early protein SUMOylation in crayfish to facilitate reproduction of white spot syndrome virus. J Virol 2012; 87:636-47. [PMID: 23097446 DOI: 10.1128/jvi.01671-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Successful viruses have evolved superior strategies to escape host defenses or exploit host biological pathways. Most of the viral immediate-early (ie) genes are essential for viral infection and depend solely on host proteins; however, the molecular mechanisms are poorly understood. In this study, we focused on the modification of viral IE proteins by the crayfish small ubiquitin-related modifier (SUMO) and investigated the role of SUMOylation during the viral life cycle. SUMO and SUMO ubiquitin-conjugating enzyme 9 (UBC9) involved in SUMOylation were identified in red swamp crayfish (Procambarus clarkii). Both SUMO and UBC9 were upregulated in crayfish challenged with white spot syndrome virus (WSSV). Replication of WSSV genes increased in crayfish injected with recombinant SUMO or UBC9, but injection of mutant SUMO or UBC9 protein had no effect. Subsequently, we analyzed the mechanism by which crayfish SUMOylation facilitates WSSV replication. Crayfish UBC9 bound to all three WSSV IE proteins tested, and one of these IE proteins (WSV051) was covalently modified by SUMO in vitro. The expression of viral ie genes was affected and that of late genes was significantly inhibited in UBC9-silenced or SUMO-silenced crayfish, and the inhibition effect was rescued by injection of recombinant SUMO or UBC9. The results of this study demonstrate that viral IE proteins can be modified by crayfish SUMOylation, prompt the expression of viral genes, and ultimately benefit WSSV replication. Understanding of the mechanisms by which viruses exploit host components will greatly improve our knowledge of the virus-host "arms race" and contribute to the development of novel methods against virulent viruses.
Collapse
|
22
|
Huang JY, Liu WJ, Wang HC, Lee DY, Leu JH, Wang HC, Tsai MH, Kang ST, Chen IT, Kou GH, Chang GD, Lo CF. Penaeus monodon thioredoxin restores the DNA binding activity of oxidized white spot syndrome virus IE1. Antioxid Redox Signal 2012; 17:914-26. [PMID: 22332765 PMCID: PMC3392615 DOI: 10.1089/ars.2011.4264] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
AIMS In this study we identified viral gene targets of the important redox regulator thioredoxin (Trx), and explored in depth how Trx interacts with the immediate early gene #1 (IE1) of the white spot syndrome virus (WSSV). RESULTS In a pull-down assay, we found that recombinant Trx bound to IE1 under oxidizing conditions, and a coimmunoprecipitation assay showed that Trx bound to WSSV IE1 when the transfected cells were subjected to oxidative stress. A pull-down assay with Trx mutants showed that no IE1 binding occurred when cysteine 62 was replaced by serine. Electrophoretic mobility shift assay (EMSA) showed that the DNA binding activity of WSSV IE1 was downregulated under oxidative conditions, and that Penaeus monodon Trx (PmTrx) restored the DNA binding activity of the inactivated, oxidized WSSV IE1. Another EMSA experiment showed that IE1's Cys-X-X-Cys motif and cysteine residue 55 were necessary for DNA binding. Measurement of the ratio of reduced glutathione to oxidized glutathione (GSH/GSSG) in WSSV-infected shrimp showed that oxidative stress was significantly increased at 48 h postinfection. The biological significance of Trx was also demonstrated in a double-strand RNA Trx knockdown experiment where suppression of shrimp Trx led to significant decreases in mortality and viral copy numbers. INNOVATION AND CONCLUSION WSSV's pathogenicity is enhanced by the virus' use of host Trx to rescue the DNA binding activity of WSSV IE1 under oxidizing conditions.
Collapse
Affiliation(s)
- Jiun-Yan Huang
- Institute of Zoology, College of Life Science, National Taiwan University, Taipei, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|