1
|
Sabbaghian M, Gheitasi H, Shekarchi AA, Tavakoli A, Poortahmasebi V. The mysterious anelloviruses: investigating its role in human diseases. BMC Microbiol 2024; 24:40. [PMID: 38281930 PMCID: PMC10823751 DOI: 10.1186/s12866-024-03187-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/08/2024] [Indexed: 01/30/2024] Open
Abstract
Anelloviruses (AVs) that infect the human population are members of the Anelloviridae family. They are widely distributed in human populations worldwide. Torque teno virus (TTV) was the first virus of this family to be identified and is estimated to be found in the serum of 80-90% of the human population. Sometime after the identification of TTV, Torque teno mini virus (TTMV) and Torque teno midi virus (TTMDV) were also identified and classified in this family. Since identifying these viruses, have been detected in various types of biological fluids of the human body, including blood and urine, as well as vital organs such as the liver and kidney. They can be transmitted from person to person through blood transfusions, fecal-oral contact, and possibly sexual intercourse. Recent studies on these newly introduced viruses show that although they are not directly related to human disease, they may be indirectly involved in initiating or exacerbating some human population-related diseases and viral infections. Among these diseases, we can mention various types of cancers, immune system diseases, viral infections, hepatitis, and AIDS. Also, they likely use the microRNAs (miRNAs) they encode to fulfill this cooperative role. Also, in recent years, the role of proliferation and their viral load, especially TTV, has been highlighted to indicate the immune system status of immunocompromised people or people who undergo organ transplants. Here, we review the possible role of these viruses in diseases that target humans and highlight them as important viruses that require further study. This review can provide new insights to researchers.
Collapse
Affiliation(s)
- Mohammad Sabbaghian
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamidreza Gheitasi
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Akbar Shekarchi
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Tavakoli
- Research Center of Pediatric Infectious Diseases, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Vahdat Poortahmasebi
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Widder S, Görzer I, Friedel B, Rahimi N, Schwarz S, Jaksch P, Knapp S, Puchhammer-Stöckl E. Metagenomic sequencing reveals time, host, and body compartment-specific viral dynamics after lung transplantation. MICROBIOME 2022; 10:66. [PMID: 35459224 PMCID: PMC9033415 DOI: 10.1186/s40168-022-01244-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The virome of lung transplant recipients (LTRs) under immunosuppressive therapy is dominated by non-pathogenic Anelloviridae and further includes several pathogenic viruses such as Herpesviruses or respiratory viruses. It is unclear whether the donor-derived virome in the transplanted lung influences recipient virome dynamics in other body compartments and if so, to which degree. Likewise, it is unknown whether dependencies exist among virus populations that mutually shape viral loads and kinetics. RESULTS To address these questions, we characterized viral communities in airways and plasma of 49 LTRs and analyzed their abundance patterns in a data modeling approach. We found distinct viral clusters that were specific for body compartments and displayed independent dynamics. These clusters robustly gathered specific viral species across the patient cohort. In the lung, viral cluster abundance associated with time after transplantation and we detected mutual exclusion of viral species within the same human host. In plasma, viral cluster dynamics were associated with the indication for transplantation lacking significant short-time changes. Interestingly, pathogenic viruses in the plasma co-occurred specifically with Alpha torque virus genogroup 4 and Gamma torque virus strains suggesting shared functional or ecological requirements. CONCLUSIONS In summary, the detailed analysis of virome dynamics after lung transplantation revealed host, body compartment, and time-specific dependency patterns among viruses. Furthermore, our results suggested genetic adaptation to the host microenvironment at the level of the virome and support the hypothesis of functional complementarity between Anellovirus groups and other persistent viruses. Video abstract.
Collapse
Affiliation(s)
- Stefanie Widder
- Research Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria.
- Konrad Lorenz Institute for Evolution and Cognition Research, Klosterneuburg, Austria.
| | - Irene Görzer
- Center of Virology, Medical University Vienna, Vienna, Austria
| | - Benjamin Friedel
- Center of Virology, Medical University Vienna, Vienna, Austria
- Department for Internal Medicine, Diabetology, Endocrinology, Diakonissenkrankenhaus, ViDia Kliniken, Karlsruhe, Germany
| | - Nina Rahimi
- Research Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Stefan Schwarz
- Division of Thoracic Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Peter Jaksch
- Division of Thoracic Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Sylvia Knapp
- Research Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
3
|
Kyathanahalli C, Snedden M, Hirsch E. Human Anelloviruses: Prevalence and Clinical Significance During Pregnancy. FRONTIERS IN VIROLOGY 2021; 1. [DOI: 10.3389/fviro.2021.782886] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Although the bacterial microbiota of various compartments (e.g. vagina, amniotic fluid, and placenta) have been studied in pregnancy, there has been far less emphasis on normal and pathological viral communities. Cumulative evidence shows the presence of a number of apathogenic viruses in various tissues of healthy people, including pregnant individuals. What role, if any, these viruses play in human physiology is unknown. Anelloviruses (family Anelloviridae) are circular, single-stranded DNA viruses commonly detected with high prevalence in vertebrate hosts, including primates. Humans are nearly always colonized with at least 1 of 3 anellovirus subtypes, namely Alphatorquevirus (torque teno virus, TTV), Betatorquevirus (torque teno midi virus, TTMDV), and Gammatorquevirus (torque teno mini virus, TTMV). In healthy pregnant people, the prototype anellovirus, TTV, has been found in maternal and (variably) fetal blood, amniotic fluid, cervical and vaginal secretions, breast milk, and saliva. Nonetheless, the relevance of human anelloviruses in pregnancy and labor is unclear. There is evidence suggesting a link between anellovirus colonization and preterm birth. In this review, we discuss what is known about this family of commensal viruses in health and disease, and specifically the roles they might play during pregnancy and in the timing of delivery.
Collapse
|
4
|
Deep viral blood metagenomics reveals extensive anellovirus diversity in healthy humans. Sci Rep 2021; 11:6921. [PMID: 33767340 PMCID: PMC7994813 DOI: 10.1038/s41598-021-86427-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/15/2021] [Indexed: 02/08/2023] Open
Abstract
Human blood metagenomics has revealed the presence of different types of viruses in apparently healthy subjects. By far, anelloviruses constitute the viral family that is more frequently found in human blood, although amplification biases and contaminations pose a major challenge in this field. To investigate this further, we subjected pooled plasma samples from 120 healthy donors in Spain to high-speed centrifugation, RNA and DNA extraction, random amplification, and massive parallel sequencing. Our results confirm the extensive presence of anelloviruses in such samples, which represented nearly 97% of the total viral sequence reads obtained. We assembled 114 different viral genomes belonging to this family, revealing remarkable diversity. Phylogenetic analysis of ORF1 suggested 28 potentially novel anellovirus species, 24 of which were validated by Sanger sequencing to discard artifacts. These findings underscore the importance of implementing more efficient purification procedures that enrich the viral fraction as an essential step in virome studies and question the suggested pathological role of anelloviruses.
Collapse
|
5
|
Mortazkar P, Karbalaie Niya MH, Javanmard D, Esghaei M, Keyvani H. Molecular Epidemiology of Anellovirus Infection in Children's Urine: A Cross-sectional Study. Adv Biomed Res 2020; 9:16. [PMID: 32775309 PMCID: PMC7282691 DOI: 10.4103/abr.abr_169_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 12/31/2019] [Accepted: 01/22/2020] [Indexed: 11/04/2022] Open
Abstract
Background Anelloviridae is a viral family which is considered as a constant component of human virome. Given the ubiquitous nature of the virus infection and the long-standing relationship between the virus and the host, in the present study, we aimed at investigating the presence of Anelloviruses in the urine samples of children in a cross-sectional study. Materials and Methods The urine samples of 50 children who were referred to Hazrat Ali Asghar Children's Hospital, affiliated to Iran University of Medical Sciences, Tehran, Iran, were obtained. Three TaqMan real-time polymerase chain reactions (PCRs) were carried out for Anellovirus detection. A phylogenetic tree was drawn for positive products after PCR amplification, purification, and nucleotide sequencing. SPSS, version 20, was used for statistical analyses. Results Children's mean age ± standard deviation was 4.30 ± 1.47 years and 56% (28/50) were female. Real-time PCR revealed that Anellovirus was positive in 12% (6/50). Furthermore, PCR-sequencing results showed that torque teno virus was detected in 83.3% (5/6) and SEN virus in 16.6% (1/6) of the Anellovirus positive samples. In addition, 86% (5/6) of the children with positive samples were female. No significant difference was detected between any of the demographic characteristics and Anellovirus positivity (P > 0.05). Conclusion According to our preliminary study, the presence of Anelloviruses in the urine samples of asymptomatic children in Iran is striking, although limited sample size and age range limitations might have affected the comprehensive results of our study.
Collapse
Affiliation(s)
- Poupak Mortazkar
- Department of Virology, Faculty of Medicine, International Campus (IUMS-IC), Iran University of Medical Sciences, Tehran, Iran
| | | | - Davod Javanmard
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Infectious Disease Research Center, Birjand University of Medical Science, Birjand, Iran
| | - Maryam Esghaei
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Keyvani
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Garretto A, Thomas-White K, Wolfe AJ, Putonti C. Detecting viral genomes in the female urinary microbiome. J Gen Virol 2018; 99:1141-1146. [PMID: 29889019 PMCID: PMC6171713 DOI: 10.1099/jgv.0.001097] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 05/26/2018] [Indexed: 12/17/2022] Open
Abstract
Viruses are the most abundant component of the human microbiota. Recent evidence has uncovered a rich diversity of viruses within the female bladder, including both bacteriophages and eukaryotic viruses. We conducted whole-genome sequencing of the bladder microbiome of 30 women: 10 asymptomatic 'healthy' women and 20 women with an overactive bladder. These metagenomes include sequences representative of human, bacterial and viral DNA. This analysis, however, focused specifically on viral sequences. Using the bioinformatic tool virMine, we discovered sequence fragments, as well as complete genomes, of bacteriophages and the eukaryotic virus JC polyomavirus. The method employed here is a critical proof of concept: the genomes of viral populations within the low-biomass bladder microbiota can be reconstructed through whole-genome sequencing of the entire microbial community.
Collapse
Affiliation(s)
- Andrea Garretto
- Bioinformatics Program, Loyola University Chicago, Chicago, IL, USA
| | - Krystal Thomas-White
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
- Present address: 325 Sharon Park Dr, Suite 522, Menlo Park, CA, USA
| | - Alan J. Wolfe
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
| | - Catherine Putonti
- Bioinformatics Program, Loyola University Chicago, Chicago, IL, USA
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
- Department of Biology, Loyola University Chicago, Chicago, IL, USA
- Department of Computer Science, Loyola University Chicago, Chicago, IL, USA
| |
Collapse
|
7
|
Bacteriophages of the Urinary Microbiome. J Bacteriol 2018; 200:JB.00738-17. [PMID: 29378882 DOI: 10.1128/jb.00738-17] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 01/11/2018] [Indexed: 01/01/2023] Open
Abstract
Bacterial viruses (bacteriophages) play a significant role in microbial community dynamics. Within the human gastrointestinal tract, for instance, associations among bacteriophages (phages), microbiota stability, and human health have been discovered. In contrast to the gastrointestinal tract, the phages associated with the urinary microbiota are largely unknown. Preliminary metagenomic surveys of the urinary virome indicate a rich diversity of novel lytic phage sequences at an abundance far outnumbering that of eukaryotic viruses. These surveys, however, exclude the lysogenic phages residing within the bacteria of the bladder. To characterize this phage population, we examined 181 genomes representative of the phylogenetic diversity of bacterial species within the female urinary microbiota and found 457 phage sequences, 226 of which were predicted with high confidence. Phages were prevalent within the bladder bacteria: 86% of the genomes examined contained at least one phage sequence. Most of these phages are novel, exhibiting no discernible sequence homology to sequences in public data repositories. The presence of phages with substantial sequence similarity within the microbiota of different women supports the existence of a core community of phages within the bladder. Furthermore, the observed variation between the phage populations of women with and without overactive bladder symptoms suggests that phages may contribute to urinary health. To complement our bioinformatic analyses, viable phages were cultivated from the bacterial isolates for characterization; a novel coliphage was isolated, which is obligately lytic in the laboratory strain Escherichia coli C. Sequencing of bacterial genomes facilitates a comprehensive cataloguing of the urinary virome and reveals phage-host interactions.IMPORTANCE Bacteriophages are abundant within the human body. However, while some niches have been well surveyed, the phage population within the urinary microbiome is largely unknown. Our study is the first survey of the lysogenic phage population within the urinary microbiota. Most notably, the abundance of prophage exceeds that of the bacteria. Furthermore, many of the prophage sequences identified exhibited no recognizable sequence homology to sequences in data repositories. This suggests a rich diversity of uncharacterized phage species present in the bladder. Additionally, we observed a variation in the abundances of phages between bacteria isolated from asymptomatic "healthy" individuals and those with urinary symptoms, thus suggesting that, like phages within the gut, phages within the bladder may contribute to urinary health.
Collapse
|
8
|
de Souza WM, Fumagalli MJ, de Araujo J, Sabino-Santos G, Maia FGM, Romeiro MF, Modha S, Nardi MS, Queiroz LH, Durigon EL, Nunes MRT, Murcia PR, Figueiredo LTM. Discovery of novel anelloviruses in small mammals expands the host range and diversity of the Anelloviridae. Virology 2017; 514:9-17. [PMID: 29128758 DOI: 10.1016/j.virol.2017.11.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/26/2017] [Accepted: 11/01/2017] [Indexed: 10/18/2022]
Abstract
The Anelloviridae comprises single-stranded DNA viruses currently grouped in sixty-eight species classified in twelve genera. They have been found in many vertebrate hosts including primates. In this study, we describe the application of the high-throughput sequencing to examine the frequency and diversity of anelloviruses in rodents, bats and opossums captured in São Paulo State, Brazil. We report a total of twenty-six anelloviruses with sixteen nearly complete genomes and ten partial genomes, which include eleven potential novel species identified in rodents (Cricetidae), bats (Molossidae and Phyllostomidae), and opossums (Didelphidae). We also propose the inclusion of two potential new genera within the Anelloviridae family, provisionally named Omegatorquevirus and Sigmatorquevirus, including six and three novel species of anelloviruses, respectively. In summary, this study expands the diversity and the host range of the known anelloviruses.
Collapse
Affiliation(s)
- William Marciel de Souza
- Virology Research Center, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom.
| | - Marcílio Jorge Fumagalli
- Virology Research Center, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Jansen de Araujo
- Laboratory Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Gilberto Sabino-Santos
- Virology Research Center, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Felipe Gonçalves Motta Maia
- Virology Research Center, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marilia Farignoli Romeiro
- Virology Research Center, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Sejal Modha
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Marcello Schiavo Nardi
- Divisão Técnica de Medicina Veterinária e Manejo da Fauna Silvestre, Prefeitura de São Paulo, Brazil
| | | | - Edison Luiz Durigon
- Laboratory Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Márcio Roberto Teixeira Nunes
- Center for Technological Innovations, Evandro Chagas Institute, Ministry of Health, Ananindeua, Pará, Brazil; Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Pablo Ramiro Murcia
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | | |
Collapse
|
9
|
Schlaberg R, Queen K, Simmon K, Tardif K, Stockmann C, Flygare S, Kennedy B, Voelkerding K, Bramley A, Zhang J, Eilbeck K, Yandell M, Jain S, Pavia AT, Tong S, Ampofo K. Viral Pathogen Detection by Metagenomics and Pan-Viral Group Polymerase Chain Reaction in Children With Pneumonia Lacking Identifiable Etiology. J Infect Dis 2017; 215:1407-1415. [PMID: 28368491 PMCID: PMC5565793 DOI: 10.1093/infdis/jix148] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Background. Community-acquired pneumonia (CAP) is a leading cause of pediatric hospitalization. Pathogen identification fails in approximately 20% of children but is critical for optimal treatment and prevention of hospital-acquired infections. We used two broad-spectrum detection strategies to identify pathogens in test-negative children with CAP and asymptomatic controls. Methods. Nasopharyngeal/oropharyngeal (NP/OP) swabs from 70 children <5 years with CAP of unknown etiology and 90 asymptomatic controls were tested by next-generation sequencing (RNA-seq) and pan viral group (PVG) PCR for 19 viral families. Association of viruses with CAP was assessed by adjusted odds ratios (aOR) and 95% confidence intervals controlling for season and age group. Results. RNA-seq/PVG PCR detected previously missed, putative pathogens in 34% of patients. Putative viral pathogens included human parainfluenza virus 4 (aOR 9.3, P = .12), human bocavirus (aOR 9.1, P < .01), Coxsackieviruses (aOR 5.1, P = .09), rhinovirus A (aOR 3.5, P = .34), and rhinovirus C (aOR 2.9, P = .57). RNA-seq was more sensitive for RNA viruses whereas PVG PCR detected more DNA viruses. Conclusions. RNA-seq and PVG PCR identified additional viruses, some known to be pathogenic, in NP/OP specimens from one-third of children hospitalized with CAP without a previously identified etiology. Both broad-range methods could be useful tools in future epidemiologic and diagnostic studies.
Collapse
Affiliation(s)
- Robert Schlaberg
- Department of Pathology.,ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, Utah ; and
| | - Krista Queen
- Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | - Keith Tardif
- ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, Utah; and
| | | | | | - Brett Kennedy
- Department of Human Genetics, University of Utah, and
| | - Karl Voelkerding
- Department of Pathology.,ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, Utah ; and
| | - Anna Bramley
- Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Jing Zhang
- Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | - Mark Yandell
- Department of Human Genetics, University of Utah, and
| | - Seema Jain
- Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | - Suxiang Tong
- Centers for Disease Control and Prevention, Atlanta, Georgia
| | | |
Collapse
|
10
|
Al-Qahtani AA, Alabsi ES, AbuOdeh R, Thalib L, Nasrallah GK. Prevalence of anelloviruses (TTV, TTMDV, and TTMV) in healthy blood donors and in patients infected with HBV or HCV in Qatar. Virol J 2016; 13:208. [PMID: 28031027 PMCID: PMC5198501 DOI: 10.1186/s12985-016-0664-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 12/02/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Anelloviruses (TTV, TTMV, and TTMDV) have been associated with non A-G hepatitis. The goal of the current study was to estimate the prevalence of these anelloviruses in Qatar. METHODS A total of 607 blood samples (500 healthy donors, and 53 HBV-and 54 HCV-positive patients) representing different nationalities were tested for the presence of TTV, TTMV, and TTMDV DNA by nested PCR. RESULTS Prevalence rates for the three viruses were high in all studied groups, and exceeding 95% in the HBV group (for TTV and TTMDV). Infection with more than one type of viruses was common and significant in most of the positive patients (p < 0.05) and ranging from 55.4% for TTV/TTMV and TTMV/TTMDV co-infections in the healthy group, to 96.3% for TTV/TTMV co-infections in the HBV group. Further, and as with most previous studies, no significant association was found between anelloviruses infections and age, nationality, or gender (p > 0.05) albeit the detection of higher infection rates among females and Qatari subjects. CONCLUSION This was the first published study to look at prevalence of Anellowviruses in the Middle East. High prevalence rates of the three viruses in all studied groups was noted. Further studies are needed to explore and compare the different genotypes of these viruses in the region.
Collapse
Affiliation(s)
- Ahmed A. Al-Qahtani
- Department of Infection and Immunity, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- Department of Microbiology and Immunology, Alfaisal University School of Medicine, Riyadh, Saudi Arabia
- Liver Disease Research Center, King Saud University, Riyadh, Saudi Arabia
| | - Enas S. Alabsi
- Department Health Sciences, College of Arts and Sciences, Qatar University, PO Box 2713, Doha, Qatar
- Biomedical Research Center, Qatar University, Doha, Qatar
| | - Raed AbuOdeh
- Department of Medical Laboratory Sciences, University of Sharjah, Sharjah, UAE
| | - Lukman Thalib
- Department Health Sciences, College of Arts and Sciences, Qatar University, PO Box 2713, Doha, Qatar
| | - Gheyath K. Nasrallah
- Department Health Sciences, College of Arts and Sciences, Qatar University, PO Box 2713, Doha, Qatar
- Biomedical Research Center, Qatar University, Doha, Qatar
| |
Collapse
|
11
|
Deep sequencing approach for investigating infectious agents causing fever. Eur J Clin Microbiol Infect Dis 2016; 35:1137-49. [PMID: 27180244 PMCID: PMC4902837 DOI: 10.1007/s10096-016-2644-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/01/2016] [Indexed: 11/29/2022]
Abstract
Acute undifferentiated fever (AUF) poses a diagnostic challenge due to the variety of possible aetiologies. While the majority of AUFs resolve spontaneously, some cases become prolonged and cause significant morbidity and mortality, necessitating improved diagnostic methods. This study evaluated the utility of deep sequencing in fever investigation. DNA and RNA were isolated from plasma/sera of AUF cases being investigated at Cairns Hospital in northern Australia, including eight control samples from patients with a confirmed diagnosis. Following isolation, DNA and RNA were bulk amplified and RNA was reverse transcribed to cDNA. The resulting DNA and cDNA amplicons were subjected to deep sequencing on an Illumina HiSeq 2000 platform. Bioinformatics analysis was performed using the program Kraken and the CLC assembly-alignment pipeline. The results were compared with the outcomes of clinical tests. We generated between 4 and 20 million reads per sample. The results of Kraken and CLC analyses concurred with diagnoses obtained by other means in 87.5 % (7/8) and 25 % (2/8) of control samples, respectively. Some plausible causes of fever were identified in ten patients who remained undiagnosed following routine hospital investigations, including Escherichia coli bacteraemia and scrub typhus that eluded conventional tests. Achromobacter xylosoxidans, Alteromonas macleodii and Enterobacteria phage were prevalent in all samples. A deep sequencing approach of patient plasma/serum samples led to the identification of aetiological agents putatively implicated in AUFs and enabled the study of microbial diversity in human blood. The application of this approach in hospital practice is currently limited by sequencing input requirements and complicated data analysis.
Collapse
|
12
|
Fatholahi M, Bouzari M. Torque Teno Midi Virus/Small Anellovirus in Sera of Healthy, HIV/HCV and HIV Infected Individuals in Lorestan Province, Iran. Jundishapur J Microbiol 2015; 8:e25368. [PMID: 26862377 PMCID: PMC4740761 DOI: 10.5812/jjm.25368] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Revised: 02/08/2015] [Accepted: 03/17/2015] [Indexed: 12/13/2022] Open
Abstract
Background: Torque Teno Midi Virus/Small Anellovirus (TTMDV/SAV) is a member of the Gammatorquevirus genus within the family Anelloviridae. It is detected in healthy, Hepatitis B Virus, Hepatitis C Virus and HIV infected individuals and also patients with acute respiratory disease in different countries, but its role in clinical diseases and its full geographical distribution is still unclear. Objectives: The current study aimed to detect the frequency of infection with TTMDV/SAV in the sera of healthy blood donors, hepatitis C infected and HIV positive individuals in Lorestan province, Iran; and also investigate the possible role of TTMDV/SAV virus in liver diseases. Materials and Methods: Fifty two, 36, 4, and 110 serum samples from HIV positive, patients with HIV/HCV and HIV/HCV/HBV co-infections, and healthy individuals were collected in Khorramabad city, respectively. Nested-polymerase chain reaction was performed using SMAs/SMAr primers to detect TTMDV/SAV DNA. Serum aminotransferases were measured. Results: In the HIV/HCV, HIV/HCV/HBV, HIV, and control cases, 29 (80.5%), 3 (75%), 43 (82.7%), and 16 (14.5%) were positive for DNA of TTMDV/SAV, respectively. In the HIV/HCV infected cases and HIV positive cases the level of Alanine aminotransferase (ALT) and Aspartate aminotransferase (AST) were not significantly different in TTMDV/SAV infected and non-infected individuals (P > 0.05). Conclusions: Although significant differences (P < 0.01) were observed in the frequency of TTMDV/SAV between healthy controls and each of the HIV positive and HIV/HCV co-infected individuals, no significant difference was observed between HIV positive and HIV/HCV co-infected cases, which may be due to HIV associated immunodeficiency. This is the first time that TTMDV/SAV is reported in HIV infected individuals worldwide. Interpretation of the high frequency of the virus (82.7%) in HIV cases needs more detailed studies.
Collapse
Affiliation(s)
- Maryam Fatholahi
- Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, IR Iran
| | - Majid Bouzari
- Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, IR Iran
- Corresponding author: Majid Bouzari, Department of Biology, Faculty of Sciences, University of Isfahan, P. O. Box: 8174673441, Isfahan, IR Iran. Tel: +98-3117932459, Fax: +98-3117932456, E-mail:
| |
Collapse
|
13
|
Screening of viral pathogens from pediatric ileal tissue samples after vaccination. Adv Virol 2014; 2014:720585. [PMID: 24778651 PMCID: PMC3980782 DOI: 10.1155/2014/720585] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 01/23/2014] [Accepted: 01/27/2014] [Indexed: 01/08/2023] Open
Abstract
In 2010, researchers reported that the two US-licensed rotavirus vaccines contained DNA or DNA fragments from porcine circovirus (PCV). Although PCV, a common virus among pigs, is not thought to cause illness in humans, these findings raised several safety concerns. In this study, we sought to determine whether viruses, including PCV, could be detected in ileal tissue samples of children vaccinated with one of the two rotavirus vaccines. A broad spectrum, novel DNA detection technology, the Lawrence Livermore Microbial Detection Array (LLMDA), was utilized, and confirmation of viral pathogens using the polymerase chain reaction (PCR) was conducted. The LLMDA technology was recently used to identify PCV from one rotavirus vaccine. Ileal tissue samples were analyzed from 21 subjects, aged 15–62 months. PCV was not detected in any ileal tissue samples by the LLMDA or PCR. LLMDA identified a human rotavirus A from one of the vaccinated subjects, which is likely due to a recent infection from a wild type rotavirus. LLMDA also identified human parechovirus, a common gastroenteritis viral infection, from two subjects. Additionally, LLMDA detected common gastrointestinal bacterial organisms from the Enterobacteriaceae, Bacteroidaceae, and Streptococcaceae families from several subjects. This study provides a survey of viral and bacterial pathogens from pediatric ileal samples, and may shed light on future studies to identify pathogen associations with pediatric vaccinations.
Collapse
|
14
|
Phan TG, Luchsinger V, Avendaño LF, Deng X, Delwart E. Cyclovirus in nasopharyngeal aspirates of Chilean children with respiratory infections. J Gen Virol 2014; 95:922-927. [PMID: 24421114 DOI: 10.1099/vir.0.061143-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Some respiratory tract infections remain unexplained despite extensive testing for common pathogens. Nasopharyngeal aspirates (NPAs) from 120 Chilean infants from Santiago with acute lower respiratory tract infections were analysed by viral metagenomics, revealing the presence of nucleic acids from anelloviruses, adenovirus-associated virus and 12 known respiratory viral pathogens. A single sequence read showed translated protein similarity to cycloviruses. We used inverse PCR to amplify the complete circular ssDNA genome of a novel cyclovirus we named CyCV-ChileNPA1. Closely related variants were detected using PCR in the NPAs of three other affected children that also contained anelloviruses. This report increases the current knowledge of the genetic diversity of cycloviruses whose detection in multiple NPAs may reflect a tropism for human respiratory tissues.
Collapse
Affiliation(s)
- Tung Gia Phan
- Department of Laboratory Medicine, University of California at San Francisco, San Francisco, CA 94118, USA.,Blood Systems Research Institute, San Francisco, CA 94118, USA
| | - Vivian Luchsinger
- Programa de Virología, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Luis F Avendaño
- Programa de Virología, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Xutao Deng
- Blood Systems Research Institute, San Francisco, CA 94118, USA
| | - Eric Delwart
- Department of Laboratory Medicine, University of California at San Francisco, San Francisco, CA 94118, USA.,Blood Systems Research Institute, San Francisco, CA 94118, USA
| |
Collapse
|
15
|
Ciccarelli S, Stolfi I, Caramia G. Management strategies in the treatment of neonatal and pediatric gastroenteritis. Infect Drug Resist 2013; 6:133-61. [PMID: 24194646 PMCID: PMC3815002 DOI: 10.2147/idr.s12718] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Acute gastroenteritis, characterized by the onset of diarrhea with or without vomiting, continues to be a major cause of morbidity and mortality in children in mostly resource-constrained nations. Although generally a mild and self-limiting disease, gastroenteritis is one of the most common causes of hospitalization and is associated with a substantial disease burden. Worldwide, up to 40% of children aged less than 5 years with diarrhea are hospitalized with rotavirus. Also, some microorganisms have been found predominantly in resource-constrained nations, including Shigella spp, Vibrio cholerae, and the protozoan infections. Prevention remains essential, and the rotavirus vaccines have demonstrated good safety and efficacy profiles in large clinical trials. Because dehydration is the major complication associated with gastroenteritis, appropriate fluid management (oral or intravenous) is an effective and safe strategy for rehydration. Continuation of breastfeeding is strongly recommended. New treatments such as antiemetics (ondansetron), some antidiarrheal agents (racecadotril), and chemotherapeutic agents are often proposed, but not yet universally recommended. Probiotics, also known as "food supplement," seem to improve intestinal microbial balance, reducing the duration and the severity of acute infectious diarrhea. The European Society for Paediatric Gastroenterology, Hepatology and Nutrition and the European Society of Paediatric Infectious Diseases guidelines make a stronger recommendation for the use of probiotics for the management of acute gastroenteritis, particularly those with documented efficacy such as Lactobacillus rhamnosus GG, Lactobacillus reuteri, and Saccharomyces boulardii. To date, the management of acute gastroenteritis has been based on the option of "doing the least": oral rehydration-solution administration, early refeeding, no testing, no unnecessary drugs.
Collapse
Affiliation(s)
- Simona Ciccarelli
- Neonatal Intensive Care Unit, Sapienza University of Rome, Rome, Italy
| | | | | |
Collapse
|
16
|
Popgeorgiev N, Temmam S, Raoult D, Desnues C. Describing the silent human virome with an emphasis on giant viruses. Intervirology 2013; 56:395-412. [PMID: 24157886 DOI: 10.1159/000354561] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Viruses are the most abundant obligate intracellular entities in our body. Until recently, they were only considered to be pathogens that caused a broad array of pathologies, ranging from mild disease to deaths in the most severe cases. However, recent advances in unbiased mass sequencing techniques as well as increasing epidemiological evidence have indicated that the human body is home to diverse viral species under non-pathological conditions. Despite these studies, the description of the presumably healthy viral flora, i.e. the normal human virome, is still in its infancy regarding viral composition and dynamics. This review summarizes our current knowledge of the human virome under non-pathological conditions.
Collapse
Affiliation(s)
- Nikolay Popgeorgiev
- URMITE UM63, CNRS 7278, IRD 198, INSERM 1095, Aix-Marseille Université, Marseille, France
| | | | | | | |
Collapse
|
17
|
Pankovics P, Boros Á, Szabó H, Székely G, Gyurkovits K, Reuter G. Human enterovirus 109 (EV109) in acute paediatric respiratory disease in Hungary. Acta Microbiol Immunol Hung 2012; 59:285-90. [PMID: 22750788 DOI: 10.1556/amicr.59.2012.2.13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Human enterovirus 109 (EV109) is a recently identified recombinant enterovirus in family Picornaviridae from acute paediatric respiratory illness in Nicaragua. EV109 have not been reported elsewhere. Our aims were the molecular detection and genetic analysis of EV109 from acute childhood respiratory infections in Hungary. Nasopharyngeal aspirates were collected from children under age of 10 years with acute respiratory infections treated in Department of Pulmonology, Kaposi Mór Teaching Hospital, Mosdós, Hungary. Samples were taken from 15 October to 15 May in two respiratory seasons 2005/2006 and 2006/2007. Samples were tested using EV109 specific VP1 primers by RT-PCR method. One (1.1%) of the 92 nasopharyngeal aspirates was positive for EV109 collected from a 2.5-year-old child in January, 2007. The main symptoms were dropping nose, fever (38.1°C), hard cough and wheezing associated with bronchitis and pneumonia. Based upon the VP1 gene region EV109 (L87/HUN/2007, JN900470) has 93% nucleotide identity and identical recombinant pattern to the prototype EV109. This is the first detection of the novel recombinant enterovirus, EV109, in Hungary (in Europe). This study supports the possibility that EV109 is able to cause acute respiratory infections, in addition, it might be plays a part in lower respiratory disease with hospitalization in children.
Collapse
Affiliation(s)
- Péter Pankovics
- 1 National Reference Laboratory of Gastroenteric Viruses ÁNTSZ Regional Institute of State Public Health Service, Regional Laboratory of Virology Pécs Hungary
| | - Ákos Boros
- 1 National Reference Laboratory of Gastroenteric Viruses ÁNTSZ Regional Institute of State Public Health Service, Regional Laboratory of Virology Pécs Hungary
| | - Hajnalka Szabó
- 2 Kaposi Mór Teaching Hospital Department of Pulmonology Mosdós Hungary
| | - Gyöngyi Székely
- 2 Kaposi Mór Teaching Hospital Department of Pulmonology Mosdós Hungary
| | - Kálmán Gyurkovits
- 2 Kaposi Mór Teaching Hospital Department of Pulmonology Mosdós Hungary
| | - Gábor Reuter
- 1 National Reference Laboratory of Gastroenteric Viruses ÁNTSZ Regional Institute of State Public Health Service, Regional Laboratory of Virology Pécs Hungary
| |
Collapse
|