1
|
Portela F, Sousa JJ, Araújo-Paredes C, Peres E, Morais R, Pádua L. A Systematic Review on the Advancements in Remote Sensing and Proximity Tools for Grapevine Disease Detection. SENSORS (BASEL, SWITZERLAND) 2024; 24:8172. [PMID: 39771913 PMCID: PMC11679221 DOI: 10.3390/s24248172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025]
Abstract
Grapevines (Vitis vinifera L.) are one of the most economically relevant crops worldwide, yet they are highly vulnerable to various diseases, causing substantial economic losses for winegrowers. This systematic review evaluates the application of remote sensing and proximal tools for vineyard disease detection, addressing current capabilities, gaps, and future directions in sensor-based field monitoring of grapevine diseases. The review covers 104 studies published between 2008 and October 2024, identified through searches in Scopus and Web of Science, conducted on 25 January 2024, and updated on 10 October 2024. The included studies focused exclusively on the sensor-based detection of grapevine diseases, while excluded studies were not related to grapevine diseases, did not use remote or proximal sensing, or were not conducted in field conditions. The most studied diseases include downy mildew, powdery mildew, Flavescence dorée, esca complex, rots, and viral diseases. The main sensors identified for disease detection are RGB, multispectral, hyperspectral sensors, and field spectroscopy. A trend identified in recent published research is the integration of artificial intelligence techniques, such as machine learning and deep learning, to improve disease detection accuracy. The results demonstrate progress in sensor-based disease monitoring, with most studies concentrating on specific diseases, sensor platforms, or methodological improvements. Future research should focus on standardizing methodologies, integrating multi-sensor data, and validating approaches across diverse vineyard contexts to improve commercial applicability and sustainability, addressing both economic and environmental challenges.
Collapse
Affiliation(s)
- Fernando Portela
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal; (F.P.); (E.P.); (R.M.)
- proMetheus—Research Unit in Materials, Energy and Environment for Sustainability, Escola Superior Agrária, Instituto Politécnico de Viana do Castelo, 4900-347 Viana do Castelo, Portugal;
- Agronomy Department, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Joaquim J. Sousa
- School of Science and Technology, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal;
- Centre for Robotics in Industry and Intelligent Systems (CRIIS), INESC Technology and Science (INESC-TEC), 4200-465 Porto, Portugal
| | - Cláudio Araújo-Paredes
- proMetheus—Research Unit in Materials, Energy and Environment for Sustainability, Escola Superior Agrária, Instituto Politécnico de Viana do Castelo, 4900-347 Viana do Castelo, Portugal;
- CISAS—Center for Research and Development in Agrifood Systems and Sustainability, Instituto Politécnico de Viana do Castelo, 4900-347 Viana do Castelo, Portugal
| | - Emanuel Peres
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal; (F.P.); (E.P.); (R.M.)
- School of Science and Technology, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal;
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Raul Morais
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal; (F.P.); (E.P.); (R.M.)
- School of Science and Technology, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal;
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Luís Pádua
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal; (F.P.); (E.P.); (R.M.)
- School of Science and Technology, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal;
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| |
Collapse
|
2
|
Read DA, Thompson GD, Swanevelder DZH, Pietersen G. Metaviromic Characterization of Betaflexivirus Populations Associated with a Vitis cultivar Collection in South Africa. Viruses 2023; 15:1474. [PMID: 37515161 PMCID: PMC10385141 DOI: 10.3390/v15071474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
South Africa is associated with a centuries-old viticultural industry, accompanied by a diverse range of wine and table grape cultivars and an extensive history of pervasive introductions of vine material and associated viruses. The Vitis D2 collection in Stellenbosch represents the most comprehensive collection of Vitis species, hybrids, and cultivars in South Africa. We collected leaf petiole material from 229 accessions from this collection. Our metaviromic analyses revealed a total of 406 complete/near complete genomes of various betaflexiviruses. Among these, we identified the presence of grapevine rupestris stem pitting-associated virus and grapevine viruses A, B, E, F, H (GVH), I (GVI), and M (GVM). Notably, this study marks the first report of GVH, GVI, and GVM in South Africa, which were confirmed via RT-PCR. This research significantly contributes to our understanding of viral diversity and introductions in South African viticulture and emphasizes the need for vigilant monitoring and management of viral infections. Our findings lay the groundwork for strategies that mitigate the impact of viruses on South Africa's wine industry, which generates an annual revenue of approximately 500 million USD.
Collapse
Affiliation(s)
- David A Read
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa
| | - Genevieve D Thompson
- Gene Vantage, 53 Kyalami Boulevard, Kyalami Business Park, Johannesburg 1684, South Africa
| | - Dirk Z H Swanevelder
- Agricultural Research Council (ARC)-Biotechnology Platform, 100 Old Soutpan Road, Onderstepoort, Pretoria 0110, South Africa
| | | |
Collapse
|
3
|
Read DA, Thompson GD, Cordeur NL, Swanevelder D, Pietersen G. Genomic characterization of grapevine viruses N and O: novel vitiviruses from South Africa. Arch Virol 2022; 167:611-614. [PMID: 34988696 DOI: 10.1007/s00705-021-05333-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 10/28/2021] [Indexed: 11/02/2022]
Abstract
A survey was performed on a Vitis cultivar collection in Stellenbosch, South Africa. Metaviromes were generated for each cultivar, using an RNAtag-seq workflow. Analysis of assembled contigs indicated the presence of two putatively novel members of the genus Vitivirus, provisionally named "grapevine virus N" (GVN) and "grapevine virus O" (GVO). Comparisons of amino acid sequences showed that GVN and GVO are most closely related to grapevine virus G and grapevine virus E, respectively. The incidence of these novel viruses within the sampling site was low, with GVO and GVN associated with only five and two cultivars, respectively, of the 229 sampled.
Collapse
Affiliation(s)
- David A Read
- Agricultural Research Council (ARC)-Biotechnology Platform, 100 Old Soutpan Road, Onderstepoort, Pretoria, 0110, South Africa. .,Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.
| | - Genevieve D Thompson
- Agricultural Research Council (ARC)-Biotechnology Platform, 100 Old Soutpan Road, Onderstepoort, Pretoria, 0110, South Africa.,Gene Vantage, 34 Monte Carlo Crescent, Kyalami Business Park, Johannesburg, 1684, South Africa
| | | | - Dirk Swanevelder
- Agricultural Research Council (ARC)-Biotechnology Platform, 100 Old Soutpan Road, Onderstepoort, Pretoria, 0110, South Africa
| | - Gerhard Pietersen
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| |
Collapse
|
4
|
Oberemok V, Laikova K, Golovkin I, Kryukov L, Kamenetsky-Goldstein R. Biotechnology of virus eradication and plant vaccination in phytobiome context. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:3-8. [PMID: 34569131 DOI: 10.1111/plb.13338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
A plant's associated biota plays an integral role in its metabolism, nutrient uptake, stress tolerance, pathogen resistance and other physiological processes. Although a virome is an integral part of the phytobiome, a major contradiction exists between the holobiont approach and the practical need to eradicate pathogens from agricultural crops. In this review, we discuss grapevine virus control, but the issue is also relevant for numerous other crops, including potato, cassava, citrus, cacao and other species. Grapevine diseases, especially viral infections, cause main crop losses. Methods have been developed to eliminate viruses and other microorganisms from plant material, but elimination of viruses from plant material does not guarantee protection from future reinfection. Elimination of viral particles in plant material could create genetic drift, leading in turn to an increase in the occurrence of pathogenic strains of viruses. A possible solution may be a combination of virus elimination and plant propagation in tissue culture with in vitro vaccination. In this context, possible strategies to control viral infections include application of plant resistance inducers, cross protection and vaccination using siRNA, dsRNA and viral replicons during plant 'cleaning' and in vitro propagation. The experience and knowledge accumulated in human immunization can help plant scientists to develop and employ new methods of protection, leading to more sustainable and healthier crop production.
Collapse
Affiliation(s)
- V Oberemok
- V.I. Vernadsky Crimean Federal University, Simferopol, Russia
- Nikita Botanical Gardens - National Scientific Centre Russian Academy of Sciences, Yalta, Russia
| | - K Laikova
- V.I. Vernadsky Crimean Federal University, Simferopol, Russia
- Research Institute of Agriculture of Crimea, Simferopol, Russia
| | - I Golovkin
- V.I. Vernadsky Crimean Federal University, Simferopol, Russia
| | - L Kryukov
- V.I. Vernadsky Crimean Federal University, Simferopol, Russia
- Lobachevsky State University of Nizhni Novgorod, Nizhni Novgorod, Russia
| | | |
Collapse
|
5
|
Orfanidou CG, Moraki K, Panailidou P, Lotos L, Katsiani A, Avgelis A, Katis NI, Maliogka VI. Prevalence and Genetic Diversity of Viruses Associated with Rugose Wood Complex in Greek Vineyards. PLANT DISEASE 2021; 105:3677-3685. [PMID: 34085849 DOI: 10.1094/pdis-02-21-0266-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Rugose wood is one of the most important disease syndromes of grapevine, and it has been associated with at least three viruses: grapevine rupestris stem pitting-associated virus (GRSPaV), grapevine virus A (GVA), and grapevine virus B (GVB). All three viruses show a worldwide distribution pattern, and their genetic composition has been the focus of extensive research in past years. Despite their first record in Greece almost 20 years ago, there is a lack of knowledge on the distribution and genetic variability of their populations in Greek vineyards. In this context, we investigated the distribution of GRSPaV, GVA, and GVB in rootstocks, self-rooted vines, and grafted grapevine cultivars originating from different geographic regions that represent important viticultural areas of Greece. Three new reverse transcription-PCR assays were developed for the reliable detection of GRSPaV, GVA, and GVB. Our results indicated that GVA is the most prevalent in Greek vineyards, followed by GRSPaV and GVB. However, virus incidence differed among self-rooted and grafted grapevine cultivars or rootstocks tested. Selected isolates from each virus were further molecularly characterized to determine their phylogenetic relationships. All three viruses exhibited high nucleotide diversity, which was depicted in the constructed phylogenetic trees. Isolates from Greece were placed in various phylogroups, reinforcing the scenario of multiple introductions of GVA, GVB, and GRSPaV in Greece and highlighting the effect of different transmission modes in the evolutionary course of the three viruses.
Collapse
Affiliation(s)
- C G Orfanidou
- Laboratory of Plant Pathology, Faculty of Agriculture, Forestry and Natural Environment, School of Agriculture, 54124, Thessaloniki, Greece
| | - K Moraki
- Laboratory of Plant Pathology, Faculty of Agriculture, Forestry and Natural Environment, School of Agriculture, 54124, Thessaloniki, Greece
| | - P Panailidou
- Laboratory of Plant Pathology, Faculty of Agriculture, Forestry and Natural Environment, School of Agriculture, 54124, Thessaloniki, Greece
| | - L Lotos
- Laboratory of Plant Pathology, Faculty of Agriculture, Forestry and Natural Environment, School of Agriculture, 54124, Thessaloniki, Greece
| | - A Katsiani
- Laboratory of Plant Pathology, Faculty of Agriculture, Forestry and Natural Environment, School of Agriculture, 54124, Thessaloniki, Greece
| | - A Avgelis
- Department of Agriculture, Hellenic Mediterranean University, 71004 Heraklion, Crete
| | - N I Katis
- Laboratory of Plant Pathology, Faculty of Agriculture, Forestry and Natural Environment, School of Agriculture, 54124, Thessaloniki, Greece
| | - V I Maliogka
- Laboratory of Plant Pathology, Faculty of Agriculture, Forestry and Natural Environment, School of Agriculture, 54124, Thessaloniki, Greece
| |
Collapse
|
6
|
Wu Q, Habili N, Constable F, Al Rwahnih M, Goszczynski DE, Wang Y, Pagay V. Virus Pathogens in Australian Vineyards with an Emphasis on Shiraz Disease. Viruses 2020; 12:v12080818. [PMID: 32731601 PMCID: PMC7472089 DOI: 10.3390/v12080818] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 06/24/2020] [Accepted: 07/25/2020] [Indexed: 12/12/2022] Open
Abstract
Grapevine viruses are found throughout the viticultural world and have detrimental effects on vine productivity and grape and wine quality. This report provides a comprehensive and up-to-date review on grapevine viruses in Australia with a focus on “Shiraz Disease” (SD) and its two major associated viruses, grapevine virus A (GVA) and grapevine leafroll-associated virus 3 (GLRaV-3). Sensitive grapevine cultivars like Shiraz infected with GVA alone or with a co-infection of a leafroll virus, primarily GLRaV-3, show symptoms of SD leading to significant yield and quality reductions in Australia and in South Africa. Symptom descriptors for SD will be outlined and a phylogenetic tree will be presented indicating the SD-associated isolates of GVA in both countries belong to the same clade. Virus transmission, which occurs through infected propagation material, grafting, and naturally vectored by mealybugs and scale insects, will be discussed. Laboratory and field-based indexing will also be discussed along with management strategies including rogueing and replanting certified stock that decrease the incidence and spread of SD. Finally, we present several cases of SD incidence in South Australian vineyards and their effects on vine productivity. We conclude by offering strategies for virus detection and management that can be adopted by viticulturists. Novel technologies such as high throughput sequencing and remote sensing for virus detection will be outlined.
Collapse
Affiliation(s)
- Qi Wu
- School of Agriculture, Food & Wine, University of Adelaide, Waite Precinct, PMB 1, Glen Osmond, Adelaide 5064, South Australia, Australia; (Q.W.); (Y.W.)
- The Australian Wine Research Institute, PO Box 197, Glen Osmond, Adelaide 5064, South Australia, Australia;
| | - Nuredin Habili
- The Australian Wine Research Institute, PO Box 197, Glen Osmond, Adelaide 5064, South Australia, Australia;
| | - Fiona Constable
- Agriculture Victoria Research, Department of Economic Development, Jobs, Transport and Resources, AgriBio, Bundoora, Melbourne 3083, Victoria, Australia;
| | - Maher Al Rwahnih
- Department of Plant Pathology, University of California, Davis, CA 95616, USA;
| | - Darius E. Goszczynski
- Plant Protection Research Institute, Agricultural Research Council, Private Bag X134, Pretoria 0001, South Africa;
| | - Yeniu Wang
- School of Agriculture, Food & Wine, University of Adelaide, Waite Precinct, PMB 1, Glen Osmond, Adelaide 5064, South Australia, Australia; (Q.W.); (Y.W.)
| | - Vinay Pagay
- School of Agriculture, Food & Wine, University of Adelaide, Waite Precinct, PMB 1, Glen Osmond, Adelaide 5064, South Australia, Australia; (Q.W.); (Y.W.)
- Correspondence:
| |
Collapse
|
7
|
Tereshchenko A, Yazdi GR, Konup I, Smyntyna V, Khranovskyy V, Yakimova R, Ramanavicius A. Application of ZnO Nanorods Based Whispering Gallery Mode Resonator in Optical Immunosensors. Colloids Surf B Biointerfaces 2020; 191:110999. [PMID: 32289650 DOI: 10.1016/j.colsurfb.2020.110999] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/01/2020] [Accepted: 03/24/2020] [Indexed: 10/24/2022]
Abstract
In this research a whispering gallery mode (WGM) resonator based on vertically oriented ZnO nanorods, which were formed on silicon surface (silicon/ZnO-NRs), has been applied in the design of optical immunosensor that was dedicated for the determination of grapevine virus A-type (GVA) proteins. Vertically oriented ZnO-NRs were grown on silicon substrates by atmospheric pressure metal organic chemical vapor deposition (APMOCVD) and the silicon/ZnO-NRs structures formed were characterized by structural and optical methods. Optical characterization demonstrates that silicon/ZnO-NRs-based structures can act as 'whispering gallery mode' (WGM) resonator where quasi-whispering gallery modes (quasi-WGMs) are generated. These quasi-WGMs were experimentally observed in the visible and infrared ranges of the photoluminescence spectra. In order to design an immuno-sensing system the anti-GVA antibodies were immobilized on the surface of silicon/ZnO-NRs and in this way silicon/ZnO-NRs/anti-GVA structure was formed. The immobilization of anti-GVA antibodies and then the interaction of silicon/ZnO-NRs/anti-GVA structure with GVA proteins (GVA-antigens) resulted in an opposite shifts of the WGMs peaks in the visible range of the photoluminescence spectra observed as a defect-related photoluminescence emission of ZnO-NRs. Here designed silicon/ZnO-NRs/anti-GVA immuno-sensing structure demonstrates the sensitivity towards GVA-antigens in the concentration range of 1-200 ng/ml. Bioanalytical applicability of the silicon/ZnO-NRs-based structures in the WGMs registration mode is discussed.
Collapse
Affiliation(s)
- Alla Tereshchenko
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania.
| | - G Reza Yazdi
- Department of Physics, Chemistry and Biology, Linköping University, 58183 Linköping, Sweden
| | - Igor Konup
- Department of Microbiology, Virology and Biotechnology, Faculty of Biology, Odessa National I.I. Mechnikov University, 2, Shampanskiy Lane, 65000, Odesa, Ukraine
| | - Valentyn Smyntyna
- Department of Experimental Physics, Faculty of Mathematics, Physics and Information Technologies, Odesa National I.I. Mechnikov University, Pastera 42, 65023, Odesa, Ukraine
| | - Volodymyr Khranovskyy
- Department of Physics, Chemistry and Biology, Linköping University, 58183 Linköping, Sweden
| | - Rositsa Yakimova
- Department of Physics, Chemistry and Biology, Linköping University, 58183 Linköping, Sweden
| | - Arunas Ramanavicius
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania.
| |
Collapse
|
8
|
Elbeaino T, Chammem H, Alsaheli Z, Ben Slimen A, Digiaro M. Development of RT-PCR assays for the detection and the resultant phylogenetic analysis of four grapevine vitiviruses based on the coat protein sequences. J Virol Methods 2019; 273:113712. [PMID: 31400362 DOI: 10.1016/j.jviromet.2019.113712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/17/2019] [Accepted: 07/30/2019] [Indexed: 11/27/2022]
Abstract
Four sets of primers were designed based on the alignment of the complete coat protein (CP) gene sequences of several isolates of four different vitiviruses, i.e. grapevine virus B (GVB), GVD, GVE and GVF, and tested for their efficiency in RT-PCR assays to detect vitiviruses infections in grapevine. The resultant RT-PCR amplicons were sequenced and analyzed for their genetic variability and phylogenetic studies. The results of the RT-PCR assays showed that these primers were highly efficient in detecting different vitivirus isolates in grapevine material originating from ten different Mediterranean countries. In particular, 76 out of 218 tested samples (ca. 35%) were infected with at least one vitivirus. GVE was the most detected (14.7%), followed by GVF (11.5%), GVB (6.9%), and GVD (2.8%). Nucleotide (nt) sequence analysis of the CP genes from this study and Genbank showed that the sequence identity matrixes among isolates of GVB and GVE were the most variable, with nt identity ranging from 77% to 100%, whereas isolates of GVD and GVF showed more conserved nt identities ranging between 82% to 100% and 86.4% to 99.8%, respectively. The phylogenetic trees constructed based on the CP sequences distinguished two main groups of isolates for each vitivirus species, except for the GVD isolates, which did not show any particular subdivision. In general, the distributions of the isolates in the phylogenetic tree were associated with their geographical origin, thus suggesting limited movement of grapevine materials between the different countries. This study reported for the first time: (i) the development of primers based on the complete CP gene sequences for RT-PCR assays for the universal detection of vitivirus species, (ii) the high genetic variability among Mediterranean isolates of vitiviruses and (iii) the presence of GVD in Jordanian vines, of GVE in grapevines from Hungary, Italy, Jordan, Malta and Palestine, and of GVF in grapevines from Afghanistan, Bulgaria, China, France, Hungary, Italy, Jordan, Lebanon and Malta.
Collapse
Affiliation(s)
- Toufic Elbeaino
- Istituto Agronomico Mediterraneo of Bari, Via Ceglie 9, 70010 Valenzano, BA, Italy.
| | - Hamza Chammem
- Istituto Agronomico Mediterraneo of Bari, Via Ceglie 9, 70010 Valenzano, BA, Italy
| | - Zeinab Alsaheli
- Istituto Agronomico Mediterraneo of Bari, Via Ceglie 9, 70010 Valenzano, BA, Italy; Dipartimento di Scienze Agro-Alimentari (DISTAL), Alma Mater Studiorum - Università di Bologna, viale Fanin, 40, 40127 Bologna, Italy
| | - Amani Ben Slimen
- Istituto Agronomico Mediterraneo of Bari, Via Ceglie 9, 70010 Valenzano, BA, Italy
| | - Michele Digiaro
- Istituto Agronomico Mediterraneo of Bari, Via Ceglie 9, 70010 Valenzano, BA, Italy
| |
Collapse
|
9
|
Beuve M, Hily JM, Alliaume A, Reinbold C, Le Maguet J, Candresse T, Herrbach E, Lemaire O. A complex virome unveiled by deep sequencing analysis of RNAs from a French Pinot Noir grapevine exhibiting strong leafroll symptoms. Arch Virol 2018; 163:2937-2946. [PMID: 30033497 DOI: 10.1007/s00705-018-3949-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 05/11/2018] [Indexed: 11/25/2022]
Abstract
We have characterized the virome of a grapevine Pinot Noir accession (P70) that displayed, over the year, very stable and strong leafroll symptoms. For this, we have used two extraction methods (dsRNA and total RNA) coupled with the high throughput sequencing (HTS) Illumina technique. While a great disparity in viral sequences were observed, both approaches gave similar results, revealing a very complex infection status. Five virus and viroid isolates [Grapevine leafroll-associated viruse-1 (GLRaV-1), Grapevine virus A (GVA), Grapevine rupestris stem pitting-associated virus (GRSPaV), Hop stunt viroid (HSVd) and Grapevine yellow speckle viroid 1 (GYSVd1)] were detected in P70 with a grand total of eleven variants being identified and de novo assembled. A comparison between both extraction methods regarding their power to detect viruses and the ease of genome assembly is also provided.
Collapse
Affiliation(s)
- Monique Beuve
- SVQV, Université de Strasbourg, 68000, Colmar, France
| | | | | | | | - Jean Le Maguet
- SVQV, Université de Strasbourg, 68000, Colmar, France
- Institut Français des Productions Cidricoles (IFPC), 61500, Sées, France
| | - Thierry Candresse
- UMR 1332 Biologie du Fruit et Pathologie, INRA, Univ. Bordeaux, Villenave d'Ornon Cedex, France
| | | | | |
Collapse
|
10
|
Tereshchenko A, Fedorenko V, Smyntyna V, Konup I, Konup A, Eriksson M, Yakimova R, Ramanavicius A, Balme S, Bechelany M. ZnO films formed by atomic layer deposition as an optical biosensor platform for the detection of Grapevine virus A-type proteins. Biosens Bioelectron 2017; 92:763-769. [DOI: 10.1016/j.bios.2016.09.071] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/23/2016] [Accepted: 09/20/2016] [Indexed: 12/17/2022]
|
11
|
A novel vitivirus-like sequence found in Arracacia xanthorrhiza plants by high throughput sequencing. Arch Virol 2017; 162:2141-2144. [DOI: 10.1007/s00705-017-3326-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 02/06/2017] [Indexed: 11/26/2022]
|
12
|
Vargas-Asencio J, Al Rwahnih M, Rowhani A, Celebi-Toprak F, Thompson JR, Fuchs M, Perry KL. Limited Genetic Variability Among American Isolates of Grapevine virus E from Vitis spp. PLANT DISEASE 2016; 100:159-163. [PMID: 30688581 DOI: 10.1094/pdis-05-15-0556-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A survey for the presence of Grapevine virus E (GVE, genus Vitivirus, family Betaflexiviridae) in vineyards in New York and California was conducted using macroarray hybridization or reverse-transcription polymerase chain reaction (RT-PCR) assays. In New York, GVE was detected in 10 of 46 vines of Vitis labrusca, one V. riparia, and one Vitis hybrid. All GVE-infected New York vines were coinfected with Grapevine leafroll-associated virus-3. In California, GVE was detected in 8 of 417 vines of V. vinifera. All GVE-infected California vines were also coinfected by one of the leafroll-associated viruses and other vitiviruses. In order to assess the genetic diversity among GVE isolates, a viral cDNA was amplified by RT-PCR, and a 675-nucleotide region that included the 3' terminus of the coat protein gene, a short intergenic region, and the 5' terminus of the putative nucleic acid binding protein gene was sequenced. All 20 GVE isolates sequenced in this study were very closely related, with >98% nucleotide identity to the SA94 isolate from South Africa. These findings confirm the presence of GVE in major grape-growing regions of the United States and indicate a very low level of genetic diversity.
Collapse
Affiliation(s)
- J Vargas-Asencio
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853
| | - M Al Rwahnih
- Department of Plant Pathology, University of California, Davis 95616
| | - A Rowhani
- Department of Plant Pathology, University of California, Davis 95616
| | - F Celebi-Toprak
- Department of Biology, Pamukkale University, Denizli, Turkey
| | - J R Thompson
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University
| | - M Fuchs
- Department of Plant Pathology, Cornell University, New York State Agricultural Experiment Station, Geneva, NY 14456
| | - K L Perry
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University
| |
Collapse
|
13
|
Sharma AM, Baraff B, Hutchins JT, Wong MK, Blaisdell GK, Cooper ML, Daane KM, Almeida RPP. Relative Prevalence of Grapevine Leafroll-Associated Virus Species in Wine Grape-Growing Regions of California. PLoS One 2015; 10:e0142120. [PMID: 26529503 PMCID: PMC4631472 DOI: 10.1371/journal.pone.0142120] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 10/16/2015] [Indexed: 11/19/2022] Open
Abstract
Some diseases manifest as one characteristic set of symptoms to the host, but can be caused by multiple pathogens. Control treatments based on plant symptoms can make it difficult to effectively manage such diseases, as the biology of the underlying pathogens can vary. Grapevine leafroll disease affects grapes worldwide, and is associated with several viral species in the family Closteroviridae. Whereas some of the viruses associated with this disease are transmitted by insect vectors, others are only graft-transmissible. In three regions of California, we surveyed vineyards containing diseased vines and screened symptomatic plants for all known viral species associated with grapevine leafroll disease. Relative incidence of each virus species differed among the three regions regions, particularly in relation to species with known vectors compared with those only known to be graft-transmitted. In one region, the pathogen population was dominated by species not known to have an insect vector. In contrast, populations in the other surveyed regions were dominated by virus species that are vector-transmissible. Our survey did not detect viruses associated with grapevine leafroll disease at some sites with characteristic disease symptoms. This could be explained either by undescribed genetic diversity among these viruses that prevented detection with available molecular tools at the time the survey was performed, or a misidentification of visual symptoms that may have had other underlying causes. Based on the differences in relative prevalence of each virus species among regions and among vineyards within regions, we expect that region and site-specific management strategies are needed for effective disease control.
Collapse
Affiliation(s)
- Abhineet M. Sharma
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California, 94720, United States of America
| | - Breanna Baraff
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California, 94720, United States of America
| | - John T. Hutchins
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California, 94720, United States of America
| | - Michelle K. Wong
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California, 94720, United States of America
| | - G. Kai Blaisdell
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California, 94720, United States of America
| | - Monica L. Cooper
- University of California Cooperative Extension, 1710 Soscol Avenue, Suite 4, Napa, CA, 94559, United States of America
| | - Kent M. Daane
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California, 94720, United States of America
| | - Rodrigo P. P. Almeida
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California, 94720, United States of America
| |
Collapse
|
14
|
Alabi OJ, Al Rwahnih M, Mekuria TA, Naidu RA. Genetic diversity of Grapevine virus A in Washington and California vineyards. PHYTOPATHOLOGY 2014; 104:548-560. [PMID: 24168043 DOI: 10.1094/phyto-06-13-0179-r] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Grapevine virus A (GVA; genus Vitivirus, family Betaflexiviridae) has been implicated with the Kober stem grooving disorder of the rugose wood disease complex. In this study, 26 isolates of GVA recovered from wine grape (Vitis vinifera) cultivars from California and Washington were analyzed for their genetic diversity. An analysis of a portion of the RNA-dependent RNA polymerase (RdRp) and complete coat protein (CP) sequences revealed intra- and inter-isolate sequence diversity. Our results indicated that both RdRp and CP are under strong negative selection based on the normalized values for the ratio of nonsynonymous substitutions per nonsynonymous site to synonymous substitutions per synonymous site. A global phylogenetic analysis of CP sequences revealed segregation of virus isolates into four major clades with no geographic clustering. In contrast, the RdRp-based phylogenetic tree indicated segregation of GVA isolates from California and Washington into six clades, independent of geographic origin or cultivar. Phylogenetic network coupled with recombination analyses showed putative recombination events in both RdRp and CP sequence data sets, with more of these events located in the CP sequence. The preponderance of divergent variants of GVA co-replicating within individual grapevines could increase viral genotypic complexity with implications for phylogenetic analysis and evolutionary history of the virus. The knowledge of genetic diversity of GVA generated in this study will provide a foundation for elucidating the epidemiological characteristics of virus populations at different scales and implementing appropriate management strategies for minimizing the spread of genetic variants of the virus by vectors and via planting materials supplied to nurseries and grape growers.
Collapse
|
15
|
Osman F, Hodzic E, Omanska-Klusek A, Olineka T, Rowhani A. Development and validation of a multiplex quantitative PCR assay for the rapid detection of Grapevine virus A, B and D. J Virol Methods 2013; 194:138-45. [DOI: 10.1016/j.jviromet.2013.07.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 07/26/2013] [Accepted: 07/26/2013] [Indexed: 10/26/2022]
|
16
|
Complete genome sequence analysis of an American isolate of Grapevine virus E. Virus Genes 2013; 46:563-6. [PMID: 23296875 DOI: 10.1007/s11262-012-0872-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 12/24/2012] [Indexed: 10/27/2022]
Abstract
The complete genome sequence of Grapevine virus E (GVE) collected from a red-berried wine grape cultivar (Cabernet Sauvignon) in Washington State was determined. The 7,568 nucleotide long genome of GVE is more similar in sequence identity with a GVE isolate from a wine grape cv. Shiraz from South Africa when compared with an isolate from "Aki Queen" grape from Japan. Like GVE isolates from South Africa and Japan, the Washington isolate encodes five open reading frames (ORFs) and the overall genome organization is identical among these isolates. In addition to AlkB domain, a DExD domain, belonging to the DEAD-like helicases superfamily, was present upstream of the helicase domain in the replicase ORF of the virus.
Collapse
|
17
|
Di Carli M, Benvenuto E, Donini M. Recent insights into plant-virus interactions through proteomic analysis. J Proteome Res 2012; 11:4765-80. [PMID: 22954327 DOI: 10.1021/pr300494e] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Plant viruses represent a major threat for a wide range of host species causing severe losses in agricultural practices. The full comprehension of mechanisms underlying events of virus-host plant interaction is crucial to devise novel plant resistance strategies. Until now, functional genomics studies in plant-virus interaction have been limited mainly on transcriptomic analysis. Only recently are proteomic approaches starting to provide important contributions to this area of research. Classical two-dimensional electrophoresis (2-DE) coupled to mass spectrometry (MS) is still the most widely used platform in plant proteome analysis, although in the last years the application of quantitative "second generation" proteomic techniques (such as differential in gel electrophoresis, DIGE, and gel-free protein separation methods) are emerging as more powerful analytical approaches. Apparently simple, plant-virus interactions reveal a really complex pathophysiological context, in which resistance, defense and susceptibility, and direct virus-induced reactions interplay to trigger expression responses of hundreds of genes. Given that, this review is specifically focused on comparative proteome-based studies on pathogenesis of several viral genera, including some of the most important and widespread plant viruses of the genus Tobamovirus, Sobemovirus, Cucumovirus and Potyvirus. In all, this overview reveals a widespread repression of proteins associated with the photosynthetic apparatus, while energy metabolism/protein synthesis and turnover are typically up-regulated, indicating a major redirection of cell metabolism. Other common features include the modulation of metabolisms concerning sugars, cell wall, and reactive oxigen species as well as pathogenesis-related (PR) proteins. The fine-tuning between plant development and antiviral defense mechanisms determines new patterns of regulation of common metabolic pathways. By offering a 360-degree view of protein modulation, all proteomic tools reveal the extraordinary intricacy of mechanisms with which a simple viral genome perturbs the plant cell molecular networks. This "omic" approach, while providing a global perspective and useful information to the understanding of the plant host-virus interactome, may possibly reveal protein targets/markers useful in the design of future diagnosis and/or plant protection strategies.
Collapse
Affiliation(s)
- Mariasole Di Carli
- ENEA, Laboratorio Biotecnologie, UT BIORAD-FARM, Casaccia Research Center, Via Anguillarese 301, I-00123 Rome, Italy
| | | | | |
Collapse
|
18
|
Blouin AG, Chavan RR, Pearson MN, MacDiarmid RM, Cohen D. Detection and characterisation of two novel vitiviruses infecting Actinidia. Arch Virol 2012; 157:713-22. [PMID: 22274622 DOI: 10.1007/s00705-011-1219-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 11/30/2011] [Indexed: 10/14/2022]
Abstract
Two co-infecting novel vitiviruses from Actinidia chinensis were identified from mechanically inoculated Nicotiana occidentalis. Both virus genomes were sequenced and share 64% nucleotide identity. Their overall structure is typical of vitiviruses, with five open reading frames (ORFs) and a polyadenylated 3' end. Open reading frame 4 (ORF4) encodes the coat protein, the most conserved gene of the vitiviruses, in which they share 75% amino acid identity, 61-68% with grapevine virus B, 55-59% with grapevine virus A, and 37-42% with grapevine virus E. Based on the molecular criteria for species demarcation in the family Betaflexiviridae, these are two novel viruses, tentatively named Actinidia virus A and Actinidia virus B.
Collapse
Affiliation(s)
- Arnaud G Blouin
- The New Zealand Institute for Plant and Food Research Ltd., Auckland, New Zealand.
| | | | | | | | | |
Collapse
|