1
|
Ferguson C, Ali A. Genetic Diversity of Cotton Leafroll Dwarf Virus from the Southwestern United States and Its Implications for the Multi-Introduction Event Hypothesis and Future Evolution. PLANT DISEASE 2024; 108:3484-3495. [PMID: 39110617 DOI: 10.1094/pdis-05-24-0952-sr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Cotton leafroll dwarf virus (CLRDV) is a viral agent recently identified in the United States in 2017 in Alabama. Since its identification, CLRDV has spread to every cotton-growing state east of New Mexico. Oklahoma, Kansas, and Texas make up the westernmost border of reported CLRDV incidence, making monitoring of these states vital for proper control. Additionally, as the virus evolves, mutations that alter symptomology, such as mutations in the F-box-like motif in ORF0/P0, may occur and need to be monitored thoroughly during the growing seasons. Using high-throughput sequencing and PCR-derived Sanger sequencing, 4 CLRDV genomes and 21 P0 gene isolates were sequenced from Oklahoma, Kansas, and Texas from 2019 to 2021 to determine the genetic diversity among CLRDV isolates. Phylogenetic analyses of the complete genomes revealed seven clades, whereas ORF0 gene analyses resulted in large polytomic clusters. BEAST analyses of the 114 total P0 sequences from GenBank, downloaded before 2024, revealed a lower mean substitution rate than previously reported as well as an earlier root year (1914). In addition, using all available CLRDV genome sequences, 11 likely recombination events were determined. Examination of the P0 amino acid sequences revealed 13 mutations unique to the isolates collected in this study. Based on the phylogenetic and amino acid analyses, the CLRDV isolates from Texas (TX clade) may represent evidence for the multi-introduction event hypothesis into the United States. Additionally, based on our analyses in this study, we propose the Asian CLRDV isolates should be constituted as a potentially separate strain of CLRDV.
Collapse
Affiliation(s)
- Connor Ferguson
- Department of Biological Science, The University of Tulsa, Tulsa, OK 74104, U.S.A
| | - Akhtar Ali
- Department of Biological Science, The University of Tulsa, Tulsa, OK 74104, U.S.A
| |
Collapse
|
2
|
Li X, Chen X, Fang J, Feng X, Zhang X, Lin H, Chen W, Zhang N, He H, Huang Z, Xue X, Li Y, Fan L, Lai R, Huo Z, Cui M, Deng G, Zaid C, Su Y, Zhang J, Cai W, Qi Y. Whole-genome sequencing of a worldwide collection of sugarcane cultivars (Saccharum spp.) reveals the genetic basis of cultivar improvement. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2151-2167. [PMID: 38852163 DOI: 10.1111/tpj.16861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/12/2024] [Accepted: 05/20/2024] [Indexed: 06/11/2024]
Abstract
Sugarcane is the main source of sugar worldwide, and 80% of the sucrose production comes from sugarcane. However, the genetic differentiation and basis of agronomic traits remain obscure. Here, we sequenced the whole-genome of 219 elite worldwide sugarcane cultivar accessions. A total of approximately 6 million high-quality genome-wide single nucleotide polymorphisms (SNPs) were detected. A genome-wide association study identified a total of 2198 SNPs that were significantly associated with sucrose content, stalk number, plant height, stalk diameter, cane yield, and sugar yield. We observed homozygous tendency of favor alleles of these loci, and over 80% of cultivar accessions carried the favor alleles of the SNPs or haplotypes associated with sucrose content. Gene introgression analysis showed that the number of chromosome segments from Saccharum spontaneum decreased with the breeding time of cultivars, while those from S. officinarum increased in recent cultivars. A series of selection signatures were identified in sugarcane improvement procession, of which 104 were simultaneously associated with agronomic traits and 45 of them were mainly associated with sucrose content. We further proposed that as per sugarcane transgenic experiments, ShN/AINV3.1 plays a positive role in increasing stalk number, plant height, and stalk diameter. These findings provide comprehensive resources for understanding the genetic basis of agronomic traits and will be beneficial to germplasm innovation, screening molecular markers, and future sugarcane cultivar improvement.
Collapse
Affiliation(s)
- Xuhui Li
- Institute of Nanfan and Seed Industry, Guangdong Academy of Science, Guangzhou, Guangdong, 510316, China
| | - Xinglong Chen
- Institute of Nanfan and Seed Industry, Guangdong Academy of Science, Guangzhou, Guangdong, 510316, China
| | - Junteng Fang
- Institute of Nanfan and Seed Industry, Guangdong Academy of Science, Guangzhou, Guangdong, 510316, China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510325, China
| | - Xiaomin Feng
- Institute of Nanfan and Seed Industry, Guangdong Academy of Science, Guangzhou, Guangdong, 510316, China
| | - Xiangbo Zhang
- Institute of Nanfan and Seed Industry, Guangdong Academy of Science, Guangzhou, Guangdong, 510316, China
| | - Huanzhang Lin
- Institute of Nanfan and Seed Industry, Guangdong Academy of Science, Guangzhou, Guangdong, 510316, China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510325, China
| | - Weiwei Chen
- Institute of Nanfan and Seed Industry, Guangdong Academy of Science, Guangzhou, Guangdong, 510316, China
| | - Nannan Zhang
- Institute of Nanfan and Seed Industry, Guangdong Academy of Science, Guangzhou, Guangdong, 510316, China
| | - Huiyi He
- Institute of Nanfan and Seed Industry, Guangdong Academy of Science, Guangzhou, Guangdong, 510316, China
| | - Zhenghui Huang
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510325, China
| | - Xiaoming Xue
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510325, China
| | - Yucong Li
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510325, China
| | - Lina Fan
- Institute of Nanfan and Seed Industry, Guangdong Academy of Science, Guangzhou, Guangdong, 510316, China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510325, China
| | - Ruiqiang Lai
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510325, China
| | - Zhenye Huo
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510325, China
| | - Mingyang Cui
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510325, China
| | - Guangyan Deng
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510325, China
| | - Chachar Zaid
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510325, China
| | - Yueping Su
- Zhanjiang Academy of Agricultural Sciences, Zhanjiang, Guangdong, 524094, China
| | - Jisen Zhang
- State Key Laboratory for Conservation and Utilization of Agro-Bioresources, Guangxi University, Nanning, Guangxi, 530005, China
| | - Weijun Cai
- Zhanjiang Academy of Agricultural Sciences, Zhanjiang, Guangdong, 524094, China
| | - Yongwen Qi
- Institute of Nanfan and Seed Industry, Guangdong Academy of Science, Guangzhou, Guangdong, 510316, China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510325, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, 510642, China
| |
Collapse
|
3
|
Rott P, Grinstead S, Dallot S, Foster ZSL, Daugrois JH, Fernandez E, Kaye CJ, Hendrickson L, Hu X, Adhikari B, Malapi M, Grünwald NJ, Roumagnac P, Mollov D. Genetic Diversity, Evolution, and Diagnosis of Sugarcane Yellow Leaf Virus from 19 Sugarcane-Producing Locations Worldwide. PLANT DISEASE 2023; 107:3437-3447. [PMID: 37079008 DOI: 10.1094/pdis-10-22-2405-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Sugarcane yellow leaf virus (SCYLV), the causal agent of yellow leaf, has been reported in an increasing number of sugarcane-growing locations since its first report in the 1990s in Brazil, Florida, and Hawaii. In this study, the genetic diversity of SCYLV was investigated using the genome coding sequence (5,561 to 5,612 nt) of 109 virus isolates from 19 geographical locations, including 65 new isolates from 16 geographical regions worldwide. These isolates were distributed in three major phylogenetic lineages (BRA, CUB, and REU), except for one isolate from Guatemala. Twenty-two recombination events were identified among the 109 isolates of SCYLV, thus confirming that recombination was a significant driving force in the genetic diversity and evolution of this virus. No temporal signal was found in the genomic sequence dataset, most likely because of the short temporal window of the 109 SCYLV isolates (1998 to 2020). Among 27 primers reported in the literature for the detection of the virus by RT-PCR, none matched 100% with all 109 SCYLV sequences, suggesting that the use of some primer pairs may not result in the detection of all virus isolates. Primers YLS111/YLS462, which were the first primer pair used by numerous research organizations to detect the virus by RT-PCR, failed to detect isolates belonging to the CUB lineage. In contrast, primer pair ScYLVf1/ScYLVr1 efficiently detected isolates of all three lineages. Continuous pursuit of knowledge of SCYLV genetic variability is therefore critical for effective diagnosis of yellow leaf, especially in virus-infected and mainly asymptomatic sugarcane plants.
Collapse
Affiliation(s)
- Philippe Rott
- CIRAD, UMR PHIM, 34398 Montpellier, France
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Sam Grinstead
- National Germplasm Resources Laboratory, USDA-ARS, Beltsville, MD 20705, U.S.A
| | - Sylvie Dallot
- CIRAD, UMR PHIM, 34398 Montpellier, France
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Zachary S L Foster
- Horticultural Crops Disease and Pest Management Research Unit, USDA-ARS, Corvallis, OR 97330, U.S.A
| | - Jean H Daugrois
- CIRAD, UMR PHIM, 34398 Montpellier, France
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Emmanuel Fernandez
- CIRAD, UMR PHIM, 34398 Montpellier, France
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | | | | | - Xiaojun Hu
- Plant Germplasm Quarantine Program, USDA-APHIS, Beltsville, MD 20705, U.S.A
| | - Bishwo Adhikari
- Plant Germplasm Quarantine Program, USDA-APHIS, Beltsville, MD 20705, U.S.A
| | - Martha Malapi
- Plant Germplasm Quarantine Program, USDA-APHIS, Beltsville, MD 20705, U.S.A
| | - Niklaus J Grünwald
- Horticultural Crops Disease and Pest Management Research Unit, USDA-ARS, Corvallis, OR 97330, U.S.A
| | - Philippe Roumagnac
- CIRAD, UMR PHIM, 34398 Montpellier, France
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Dimitre Mollov
- Horticultural Crops Disease and Pest Management Research Unit, USDA-ARS, Corvallis, OR 97330, U.S.A
| |
Collapse
|
4
|
Nithya K, Parameswari B, Kumar S, Annadurai A, Nithyanantham R, Mahadevaswamy HK, Viswanathan R. Prospecting true ScYLV resistance in Saccharum hybrid parental population in India by symptom phenotyping and viral titre quantification. 3 Biotech 2023; 13:125. [PMID: 37041801 PMCID: PMC10082694 DOI: 10.1007/s13205-023-03541-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 03/28/2023] [Indexed: 04/13/2023] Open
Abstract
UNLABELLED In sugarcane (Saccharum spp. hybrids) cultivation, viral diseases pose a great challenge across the globe. Yellow leaf (YL) disease is one of the important viral diseases caused by Sugarcane yellow leaf virus (ScYLV), a positive-sense ssRNA virus, genus Polerovirus, family Solemoviridae. The disease symptoms appear in later stages of crop growth during grand growth to maturity phase with intense midrib yellowing in the abaxial leaf surface. At present, this disease is managed through tissue (meristem) culture and healthy seed nurseries in India. However, the virus-free plants are infected quickly by secondary inoculum from aphid vectors in the field, which necessitates the importance of developing YL-resistant varieties. We screened about 600-625 sugarcane parental clones to identify true YL resistance based on 0-5 disease rating scale since 2015 and categorised them as resistant, moderately resistant, moderately susceptible, susceptible and highly susceptible. Leaf samples were collected from all these categories of plants during 2018-20 for the viral titre estimation through absolute quantification method (qRT-PCR assay). The viral load was invariably high in all categories of susceptible samples that ranged from 4.40 × 102 to 8.429 × 106, whereas in YL-free asymptomatic clones, the viral load ranged from 82.35 ± 5.90 to 5.121 × 104. The results clearly indicated that highest viral titre of 105-107 copies was present in all the susceptible clones irrespective of their disease severity grades. Our results clearly established that about 22.85% of apparently resistant sugarcane clones remained free from YL symptoms with significantly low ScYLV titre although we could not find a significant correlation between virus titre and symptom expression. The identified resistant parents will serve as sources of YL resistance to develop virus resistant sugarcane varieties. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-023-03541-y.
Collapse
Affiliation(s)
- K. Nithya
- ICAR-Sugarcane Breeding Institute, Coimbatore, 641007 India
| | - B. Parameswari
- ICAR-National Bureau of Plant Genetic Resources, Regional Station, Hyderabad, 500030 India
- ICAR-Sugarcane Breeding Institute, Research Centre, Karnal, Haryana 132001 India
| | - Subham Kumar
- ICAR-Sugarcane Breeding Institute, Research Centre, Karnal, Haryana 132001 India
| | - A. Annadurai
- ICAR-Sugarcane Breeding Institute, Coimbatore, 641007 India
| | | | | | - R. Viswanathan
- ICAR-Sugarcane Breeding Institute, Coimbatore, 641007 India
| |
Collapse
|
5
|
Gallan DZ, Penteriche AB, Henrique MO, Silva-Filho MC. Sugarcane multitrophic interactions: Integrating belowground and aboveground organisms. Genet Mol Biol 2022; 46:e20220163. [PMID: 36512714 DOI: 10.1590/1678-4685-gmb-2022-0163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/03/2022] [Indexed: 12/14/2022] Open
Abstract
Sugarcane is a crop of major importance used mainly for sugar and biofuel production, and many additional applications of its byproducts are being developed. Sugarcane cultivation is plagued by many insect pests and pathogens that reduce sugarcane yields overall. Recently emerging studies have shown complex multitrophic interactions in cultivated areas, such as the induction of sugarcane defense-related proteins by insect herbivory that function against fungal pathogens that commonly appear after mechanical damage. Fungi and viruses infecting sugarcane also modulate insect behavior, for example, by causing changes in volatile compounds responsible for insect attraction or repelling natural vector enemies via a mechanism that increases pathogen dissemination from infected plants to healthy ones. Interestingly, the fungus Fusarium verticillioides is capable of being vertically transmitted to insect offspring, ensuring its persistence in the field. Understanding multitrophic complexes is important to develop better strategies for controlling pathosystems affecting sugarcane and other important crops and highlights the importance of not only studying binary interactions but also adding as many variables as possible to effectively translate laboratory research to real-life conditions.
Collapse
Affiliation(s)
- Diego Z Gallan
- Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz, Departamento de Genética, Piracicaba, SP, Brazil
| | - Augusto B Penteriche
- Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz, Departamento de Genética, Piracicaba, SP, Brazil
| | - Maressa O Henrique
- Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz, Departamento de Genética, Piracicaba, SP, Brazil
| | - Marcio C Silva-Filho
- Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz, Departamento de Genética, Piracicaba, SP, Brazil
| |
Collapse
|
6
|
Wang W, Wang J, Feng X, Shen L, Feng C, Zhao T, Xiao H, Li S, Zhang S. Breeding of virus-resistant transgenic sugarcane by the integration of the Pac1 gene. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.925839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Various RNA viral diseases on sugarcane result in yield loss and decreased sugar content. Breeding new varieties with virus resistance is the main goal of the sugarcane breeding program. Both single-stranded and double-stranded RNA viruses generated a double-stranded RNA replicative form (RF) during the replication cycle progress. While double-stranded RNA-specific ribonuclease (PAC1) encoded by the Pac1 gene (from Schizosaccharomyces pombe) can recognize and degrade double-stranded RNA specifically without any sequence, the expression of PAC1 in transgenic sugarcane may successfully develop virus-resistant sugarcane. In this research, we first expressed the PAC1 in prokaryotic cells. Then, double-stranded RNA RF of sugarcane's streak mosaic virus (SCSMV) was artificially synthesized. The degradation activity of the PAC1 was successfully tested by mixing the PAC1 protein and the double-stranded RNA RF. After that, the Pac1 gene was ligated to a plant expression vector and was then introduced into a virus-sensitive sugarcane cultivar by using Agrobacterium tumefaciens-mediated transformation method. Transgenic plants were challenged by inoculating with SCSMV. Results showed that although all the transgenic lines were infected by SCSMV, the mosaic symptoms that appeared on the leaves were significantly milder than that of the wild type. All transgenic shoots showed significantly lower viral loads and attained greater heights than wild-type shoots. This research provided a new pathway for breeding new varieties of sugarcane with virus resistance.
Collapse
|
7
|
Parameswari B, Nithya K, Kumar S, Holkar SK, Chabbra ML, Kumar P, Viswanathan R. Genome wide association studies in sugarcane host pathogen system for disease resistance: an update on the current status of research. INDIAN PHYTOPATHOLOGY 2021; 74:865-874. [DOI: 10.1007/s42360-021-00323-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 01/12/2021] [Accepted: 01/20/2021] [Indexed: 02/08/2023]
|
8
|
Viswanathan R. Impact of yellow leaf disease in sugarcane and its successful disease management to sustain crop production. INDIAN PHYTOPATHOLOGY 2021; 74:573-586. [DOI: 10.1007/s42360-021-00391-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/18/2021] [Accepted: 05/27/2021] [Indexed: 02/05/2023]
|
9
|
Sun SR, Chen JS, He EQ, Huang MT, Fu HY, Lu JJ, Gao SJ. Genetic Variability and Molecular Evolution of Maize Yellow Mosaic Virus Populations from Different Geographic Origins. PLANT DISEASE 2021; 105:896-903. [PMID: 33044140 DOI: 10.1094/pdis-05-20-1013-re] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Maize yellow mosaic virus (MaYMV) hosted in various gramineous plants was assigned to the genus Polerovirus (family Luteoviridae) in 2018. However, little is known about its genetic diversity and population structure. In this study, 509 sugarcane leaf samples with mosaic symptoms were collected in 2017 to 2019 from eight sugarcane-growing provinces in China. Reverse-transcription PCR results revealed that four positive-sense RNA viruses were found to infect sugarcane, and the incidence of MaYMV among samples from Fujian, Sichuan, and Guangxi Provinces was 52.1, 9.8, and 2.5%, respectively. Based on 82 partial MaYMV sequences and 46 whole-genome sequences from different host plants, phylogenetic analysis revealed that MaYMV populations are very closely associated with their source geographical regions (China, Africa, and South America). Pairwise identity analysis showed significant variability in genome sequences among MaYMV isolates with genomic nucleotide identities of 91.1 to 99.9%. In addition to codon mutations, insertions or deletions also contributed to genetic variability in individual coding regions, especially in the readthrough protein (P3-P5 fusion protein). Low gene flow and significant genetic differentiation of MaYMV were observed among the three geographical populations, suggesting that environmental adaptation is an important evolutionary force that shapes the genetic structure of MaYMV. Genes in the MaYMV genome were subject to strong negative or purification selection during evolution, except for the movement protein (MP), which was under positive selection pressure. This finding suggests that the MP may play an important role in MaYMV evolution. Taken together, our findings provide basic information for the development of an integrated disease management strategy against MaYMV.
Collapse
Affiliation(s)
- Sheng-Ren Sun
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jian-Sheng Chen
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Er-Qi He
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Guizhou Institute of Subtropical Crops, Guizhou Academy of Agricultural Sciences, Xingyi 562400, Guizhou, China
| | - Mei-Ting Huang
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Hua-Ying Fu
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jia-Ju Lu
- Guizhou Institute of Subtropical Crops, Guizhou Academy of Agricultural Sciences, Xingyi 562400, Guizhou, China
| | - San-Ji Gao
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| |
Collapse
|
10
|
Comparative genomics reveals insights into genetic variability and molecular evolution among sugarcane yellow leaf virus populations. Sci Rep 2021; 11:7149. [PMID: 33785787 PMCID: PMC8009895 DOI: 10.1038/s41598-021-86472-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/15/2021] [Indexed: 11/08/2022] Open
Abstract
Yellow leaf disease caused by sugarcane yellow leaf virus (SCYLV) is one of the most prevalent diseases worldwide. In this study, six near-complete genome sequences of SCYLV were determined to be 5775-5881 bp in length. Phylogenetic analysis revealed that the two SCYLV isolates from Réunion Island, France, and four from China were clustered into REU and CUB genotypes, respectively, based on 50 genomic sequences (this study = 6, GenBank = 44). Meanwhile, all 50 isolates were clustered into three phylogroups (G1-G3). Twelve significant recombinant events occurred in intra- and inter-phylogroups between geographical origins and host crops. Most recombinant hotspots were distributed in coat protein read-through protein (RTD), followed by ORF0 (P0) and ORF1 (P1). High genetic divergences of 12.4% for genomic sequences and 6.0-24.9% for individual genes were determined at nucleotide levels. The highest nucleotide diversity (π) was found in P0, followed by P1 and RdRP. In addition, purifying selection was a main factor restricting variability in SCYLV populations. Infrequent gene flow between Africa and the two subpopulations (Asia and America) were found, whereas frequent gene flow between Asia and America subpopulations was observed. Taken together, our findings facilitate understanding of genetic diversity and evolutionary dynamics of SCYLV.
Collapse
|
11
|
Holkar SK, Balasubramaniam P, Kumar A, Kadirvel N, Shingote PR, Chhabra ML, Kumar S, Kumar P, Viswanathan R, Jain RK, Pathak AD. Present Status and Future Management Strategies for Sugarcane Yellow Leaf Virus: A Major Constraint to the Global Sugarcane Production. THE PLANT PATHOLOGY JOURNAL 2020; 36:536-557. [PMID: 33312090 PMCID: PMC7721539 DOI: 10.5423/ppj.rw.09.2020.0183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/23/2020] [Accepted: 11/07/2020] [Indexed: 02/08/2023]
Abstract
Sugarcane yellow leaf virus (SCYLV) is a distinct member of the Polerovirus genus of the Luteoviridae family. SCYLV is the major limitation to sugarcane production worldwide and presently occurring in most of the sugarcane growing countries. SCYLV having high genetic diversity within the species and presently ten genotypes are known to occur based on the complete genome sequence information. SCYLV is present in almost all the states of India where sugarcane is grown. Virion comprises of 180 coat protein units and are 24-29 nm in diameter. The genome of SCYLV is a monopartite and comprised of single-stranded (ss) positive-sense (+) linear RNA of about 6 kb in size. Virus genome consists of six open reading frames (ORFs) that are expressed by sub-genomic RNAs. The SCYLV is phloem-limited and transmitted by sugarcane aphid Melanaphis sacchari in a circulative and non-propagative manner. The other aphid species namely, Ceratovacuna lanigera, Rhopalosiphum rufiabdominalis, and R. maidis also been reported to transmit the virus. The virus is not transmitted mechanically, therefore, its transmission by M. sacchari has been studied in different countries. SCYLV has a limited natural host range and mainly infect sugarcane (Sachharum hybrid), grain sorghum (Sorghum bicolor), and Columbus grass (Sorghum almum). Recent insights in the protein-protein interactions of Polerovirus through protein interaction reporter (PIR) technology enable us to understand viral encoded proteins during virus replication, assembly, plant defence mechanism, short and long-distance travel of the virus. This review presents the recent understandings on virus biology, diagnosis, genetic diversity, virus-vector and host-virus interactions and conventional and next generation management approaches.
Collapse
Affiliation(s)
- Somnath Kadappa Holkar
- ICAR-Indian Institute of Sugarcane Research, Biological Control Centre, Pravaranagar, Maharashtra 43 72, India
| | | | - Atul Kumar
- ICAR-Indian Institute of Sugarcane Research, Biological Control Centre, Pravaranagar, Maharashtra 43 72, India
- Amity Institute of Biotechnology, Amity University, Lucknow Campus, Lucknow 226 010, Uttar Pradesh, India
| | - Nithya Kadirvel
- Division of Crop Protection, ICAR-Sugarcane Breeding Institute, Coimbatore 61 007, Tamil Nadu, India
| | | | - Manohar Lal Chhabra
- ICAR-Sugarcane Breeding Institute, Regional Centre, Karnal, Haryana 13 001, India
| | - Shubham Kumar
- ICAR-Sugarcane Breeding Institute, Regional Centre, Karnal, Haryana 13 001, India
| | - Praveen Kumar
- ICAR-Sugarcane Breeding Institute, Regional Centre, Karnal, Haryana 13 001, India
| | - Rasappa Viswanathan
- Division of Crop Protection, ICAR-Sugarcane Breeding Institute, Coimbatore 61 007, Tamil Nadu, India
| | - Rakesh Kumar Jain
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi 110 012, India
| | - Ashwini Dutt Pathak
- ICAR-Indian Institute of Sugarcane Research, Lucknow 226 002, Uttar Pradesh, India
| |
Collapse
|
12
|
Boukari W, Kaye C, Wei C, Hincapie M, LaBorde C, Irey M, Rott P. Field Infection of Virus-Free Sugarcane by Sugarcane Yellow Leaf Virus and Effect of Yellow Leaf on Sugarcane Grown on Organic and on Mineral Soils in Florida. PLANT DISEASE 2019; 103:2367-2373. [PMID: 31318645 DOI: 10.1094/pdis-01-19-0199-re] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Sugarcane yellow leaf virus (SCYLV), the causal agent of yellow leaf, is widespread in Florida. Two field trials were set up, one on organic soil and one on mineral soil, to investigate the rate and timing of sugarcane infection by SCYLV under field conditions and the effect of the virus on yield. Each trial consisted of plots planted with healthy or SCYLV-infected seed cane of two commercial cultivars. Virus prevalence varied from 83 to 100% in plots planted with infected seed cane regardless of cultivar, location, and crop season. On organic soil, plants of virus-free plots became progressively infected in plant cane and first ratoon crops. On mineral soil, healthy sugarcane became initially infected in the first ratoon crop. After three crop seasons, the highest SCYLV prevalence rates were 33 and 7% on organic and mineral soils, respectively. No significant negative effect of SCYLV on yield was found in plant cane crop regardless of cultivar and soil type. However, yield reductions in ratoon crops varied from nonsignificant to 27% depending on cultivar and soil type. Low virus prevalence observed after three crop seasons suggested that planting virus-free seed cane should limit the impact of SCYLV on sugarcane production in Florida.
Collapse
Affiliation(s)
- Wardatou Boukari
- Plant Pathology Department, Everglades Research and Education Center, University of Florida, Belle Glade 33430, FL, U.S.A
| | - Claudia Kaye
- U.S. Sugar Corporation, Clewiston 33440, FL, U.S.A
| | - Chunyan Wei
- Plant Pathology Department, Everglades Research and Education Center, University of Florida, Belle Glade 33430, FL, U.S.A
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530005, China
| | - Martha Hincapie
- Plant Pathology Department, Everglades Research and Education Center, University of Florida, Belle Glade 33430, FL, U.S.A
| | | | - Michael Irey
- U.S. Sugar Corporation, Clewiston 33440, FL, U.S.A
| | - Philippe Rott
- Plant Pathology Department, Everglades Research and Education Center, University of Florida, Belle Glade 33430, FL, U.S.A
| |
Collapse
|
13
|
Filardo FF, Thomas JE, Webb M, Sharman M. Faba bean polerovirus 1 (FBPV-1); a new polerovirus infecting legume crops in Australia. Arch Virol 2019; 164:1915-1921. [PMID: 30993462 DOI: 10.1007/s00705-019-04233-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 02/08/2019] [Indexed: 11/28/2022]
Abstract
A new polerovirus species with the proposed name faba bean polerovirus 1 (FBPV-1) was found in winter legume crops and weeds in New South Wales, Australia. We describe the complete genome sequence of 5,631 nucleotides, containing all putative open reading frames, from two isolates, one from faba bean (Vicia faba) and one from chickpea (Cicer arietinum). FBPV-1 has a genome organization typical of poleroviruses with six open reading frames. However, recombination analysis strongly supports a recombination event in which the 5' portion of FBPV-1, which encodes for proteins P0, P1 and P1-P2, appears to be from a novel parent with a closest nucleotide identity of only 66% to chickpea chlorotic stunt virus. The 3' portion of FBPV-1 encodes for proteins P3, P4 and P3-P5 and shares 94% nucleotide identity to a turnip yellows virus isolate from Western Australia.
Collapse
Affiliation(s)
- Fiona F Filardo
- Queensland Department of Agriculture and Fisheries, Ecosciences Precinct, GPO Box 267, Brisbane, QLD, 4001, Australia.
| | - John E Thomas
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Ecosciences Precinct, GPO Box 267, Brisbane, QLD, 4001, Australia
| | - Matthew Webb
- Queensland Department of Agriculture and Fisheries, Ecosciences Precinct, GPO Box 267, Brisbane, QLD, 4001, Australia
| | - Murray Sharman
- Queensland Department of Agriculture and Fisheries, Ecosciences Precinct, GPO Box 267, Brisbane, QLD, 4001, Australia
| |
Collapse
|
14
|
Filloux D, Fernandez E, Comstock JC, Mollov D, Roumagnac P, Rott P. Viral Metagenomic-Based Screening of Sugarcane from Florida Reveals Occurrence of Six Sugarcane-Infecting Viruses and High Prevalence of Sugarcane yellow leaf virus. PLANT DISEASE 2018; 102:2317-2323. [PMID: 30207899 DOI: 10.1094/pdis-04-18-0581-re] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A viral metagenomics study of the sugarcane virome in Florida was carried out in 2013 to 2014 to analyze occurrence of known and potentially new viruses. In total, 214 sugarcane leaf samples were collected from different commercial sugarcane (Saccharum interspecific hybrids) fields in Florida and from other Saccharum and related species taken from two local germplasm collections. Virion-associated nucleic acids (VANA) metagenomics was used for detection and identification of viruses present within the collected leaf samples. VANA sequence reads were obtained for 204 leaf samples and all four previously reported sugarcane viruses occurring in Florida were detected: Sugarcane yellow leaf virus (SCYLV, 150 infected samples out of 204), Sugarcane mosaic virus (1 of 204), Sugarcane mild mosaic virus (13 of 204), and Sugarcane bacilliform virus (54 of 204). High prevalence of SCYLV in Florida commercial fields and germplasm collections was confirmed by reverse-transcription polymerase chain reaction. Sequence analyses revealed the presence of SCYLV isolates belonging to two different phylogenetic clades (I and II), including a new genotype of this virus. This viral metagenomics approach also resulted in the detection of a new sugarcane-infecting mastrevirus (recently described and named Sugarcane striate virus), and two potential new viruses in the genera Chrysovirus and Umbravirus.
Collapse
Affiliation(s)
- D Filloux
- CIRAD, BGPI, Montpellier, France, and BGPI, INRA, CIRAD, SupAgro, Univ Montpellier, Montpellier, France
| | - E Fernandez
- CIRAD, BGPI, Montpellier, France, and BGPI, INRA, CIRAD, SupAgro, Univ Montpellier, Montpellier, France
| | - J C Comstock
- Sugarcane Field Station, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Canal Point, FL 33438
| | - D Mollov
- USDA-ARS, National Germplasm Resources Laboratory, Beltsville, MD 20705
| | | | - P Rott
- University of Florida, Department of Plant Pathology, Everglades Research & Education Center, Belle Glade 33430
| |
Collapse
|
15
|
Khalil F, Yueyu X, Naiyan X, Di L, Tayyab M, Hengbo W, Islam W, Rauf S, Pinghua C. Genome characterization of Sugarcane Yellow Leaf Virus with special reference to RNAi based molecular breeding. Microb Pathog 2018; 120:187-197. [PMID: 29730517 DOI: 10.1016/j.micpath.2018.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 04/26/2018] [Accepted: 05/02/2018] [Indexed: 12/28/2022]
Abstract
Sugarcane is an essential crop for sugar and biofuel. Globally, its production is severely affected by sugarcane yellow leaf disease (SCYLD) caused by Sugarcane Yellow Leaf Virus (SCYLV). Many aphid vectors are involved in the spread of the disease which reduced the effectiveness of cultural and chemical management. Empirical methods of plant breeding such as introgression from wild and cultivated germplasm were not possible or at least challenging due to the absence of resistance in cultivated and wild germplasm of sugarcane. RNA interference (RNAi) transformation is an effective method to create virus-resistant varieties. Nevertheless, limited progress has been made due to lack of comprehensive research program on SCYLV based on RNAi technique. In order to show improvement and to propose future strategies for the feasibility of the RNAi technique to cope SCYLV, genome-wide consensus sequences of SCYLV were analyzed through GenBank. The coverage rates of every consensus sequence in SCYLV isolates were calculated to evaluate their practicability. Our analysis showed that single consensus sequence from SCYLV could not work well for RNAi based sugarcane breeding programs. This may be due to high mutation rate and continuous recombination within and between various viral strains. Alternative multi-target RNAi strategy is suggested to combat several strains of the viruses and to reduce the silencing escape. The multi-target small interfering RNA (siRNA) can be used together to construct RNAi plant expression plasmid, and to transform sugarcane tissues to develop new sugarcane varieties resistant to SCYLV.
Collapse
Affiliation(s)
- Farghama Khalil
- National Engineering Research Center of Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xu Yueyu
- National Engineering Research Center of Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xiao Naiyan
- National Engineering Research Center of Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Liu Di
- National Engineering Research Center of Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Muhammad Tayyab
- National Engineering Research Center of Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Wang Hengbo
- National Engineering Research Center of Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Waqar Islam
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Govt. of Punjab, Agriculture Department, Lahore, Pakistan; College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Saeed Rauf
- University College of Agriculture, University of Sargodha, Pakistan
| | - Chen Pinghua
- National Engineering Research Center of Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; GMOs LAB of Quality Supervision Inspection &Testing Center for Sugarcane and Derived Products, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
16
|
Amata RL, Fernandez E, Filloux D, Martin DP, Rott P, Roumagnac P. Prevalence of Sugarcane yellow leaf virus in Sugarcane-Producing Regions in Kenya Revealed by Reverse-Transcription Loop-Mediated Isothermal Amplification Method. PLANT DISEASE 2016; 100:260-268. [PMID: 30694143 DOI: 10.1094/pdis-05-15-0602-re] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Yellow leaf (YL) is a disease of sugarcane that is currently widespread throughout most American and Asian sugarcane-producing countries. However, its actual distribution in Africa remains largely unknown. A reverse-transcription loop-mediated isothermal amplification (RT-LAMP) assay was developed to facilitate and improve the detection of Sugarcane yellow leaf virus (SCYLV), the causal agent of YL. The RT-LAMP assay was found to be comparable with or superior to conventional RT-polymerase chain reaction (PCR) for the detection of SCYLV genotypes CUB and BRA in infected sugarcane 'C132-81' and 'SP71-6163', respectively. Additionally, 68 sugarcane samples that tested negative by RT-PCR were found positive by RT-LAMP, whereas the RT-LAMP assay failed to detect SCYLV in only 5 samples that tested positive by RT-PCR. Combining RT-PCR and RT-LAMP data enabled the detection of SCYLV in 86 of 183 Kenyan sugarcane plants, indicating high SCYLV prevalence throughout the country (ranging from 36 to 64% in individual counties). Seminested PCR assays were developed that enabled the amplification of a fragment encompassing the capsid protein coding region gene and its flanking 5' and 3' genomic regions. Sequences of this fragment for four Kenyan SCYLV isolates indicated that they shared 99.2 to 99.6% pairwise identity with one another and clearly clustered phylogenetically with SCYLV-BRA genotype isolates. To our knowledge, this is the first report of SCYLV in Kenya.
Collapse
Affiliation(s)
- Ruth L Amata
- Kenya Agricultural and Livestock Research Organization, Nairobi, 00200 Kenya
| | - Emmanuel Fernandez
- CIRAD-INRA-SupAgro, UMR BGPI, Campus International de Montferrier-Baillarguet, 34398 Montpellier Cedex-5, France
| | - Denis Filloux
- CIRAD-INRA-SupAgro, UMR BGPI, Campus International de Montferrier-Baillarguet, 34398 Montpellier Cedex-5, France
| | - Darren P Martin
- Computational Biology Group, Institute of Infectious Disease and Molecular Medicine, UCT Faculty of Health Sciences, Observatory 7925, South Africa
| | - Philippe Rott
- CIRAD-INRA-SupAgro, UMR BGPI, Campus International de Montferrier-Baillarguet; and Plant Pathology Department, Everglades Research and Education Center, University of Florida, IFAS, Belle Glade, 33430
| | - Philippe Roumagnac
- CIRAD-INRA-SupAgro, UMR BGPI, Campus International de Montferrier-Baillarguet, 34398 Montpellier Cedex-5, France
| |
Collapse
|
17
|
ElSayed AI, Komor E, Boulila M, Viswanathan R, Odero DC. Biology and management of sugarcane yellow leaf virus: an historical overview. Arch Virol 2015; 160:2921-2934. [PMID: 26424197 DOI: 10.1007/s00705-015-2618-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 09/17/2015] [Indexed: 02/05/2023]
Abstract
Sugarcane yellow leaf virus (SCYLV) is one of the most widespread viruses causing disease in sugarcane worldwide. The virus has been responsible for drastic economic losses in most sugarcane-growing regions and remains a major concern for sugarcane breeders. Infection with SCYLV results in intense yellowing of the midrib, which extends to the leaf blade, followed by tissue necrosis from the leaf tip towards the leaf base. Such symptomatic leaves are usually characterized by increased respiration, reduced photosynthesis, a change in the ratio of hexose to sucrose, and an increase in starch content. SCYLV infection affects carbon assimilation and metabolism in sugarcane, resulting in stunted plants in severe cases. SCYLV is mainly propagated by planting cuttings from infected stalks. Phylogenetic analysis has confirmed the worldwide distribution of at least eight SCYLV genotypes (BRA, CHN1, CHN3, CUB, HAW, IND, PER, and REU). Evidence of recombination has been found in the SCYLV genome, which contains potential recombination signals in ORF1/2 and ORF5. This shows that recombination plays an important role in the evolution of SCYLV.
Collapse
Affiliation(s)
- Abdelaleim Ismail ElSayed
- Biochemistry Department, Faculty of Agriculture, Zagazig University, 44519, Zagazig, Egypt.
- Everglades Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, 3200 East Palm Beach Road, Belle Glade, FL, 33430-4702, USA.
| | - Ewald Komor
- Plant Physiology, University Bayreuth, 95440, Bayreuth, Germany
| | - Moncef Boulila
- Institut de l'Olivier, B.P. 14, 4061, Sousse Ibn-khaldoun, Tunisia
| | - Rasappa Viswanathan
- Division of Crop Protection, Sugarcane Breeding Institute, Indian Council of Agricultural Research, Coimbatore, 641007, India
| | - Dennis C Odero
- Everglades Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, 3200 East Palm Beach Road, Belle Glade, FL, 33430-4702, USA
| |
Collapse
|
18
|
Cascardo RS, Arantes ILG, Silva TF, Sachetto-Martins G, Vaslin MFS, Corrêa RL. Function and diversity of P0 proteins among cotton leafroll dwarf virus isolates. Virol J 2015; 12:123. [PMID: 26260343 PMCID: PMC4531488 DOI: 10.1186/s12985-015-0356-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 08/04/2015] [Indexed: 11/23/2022] Open
Abstract
Background The RNA silencing pathway is an important anti-viral defense mechanism in plants. As a counter defense, some members of the viral family Luteoviridae are able to evade host immunity by encoding the P0 RNA silencing suppressor protein. Here we explored the functional diversity of P0 proteins among eight cotton leafroll dwarf virus (CLRDV) isolates, a virus associated with a worldwide cotton disease known as cotton blue disease (CBD). Methods CLRDV-infected cotton plants of different varieties were collected from five growing fields in Brazil and their P0 sequences compared to three previously obtained isolates. P0’s silencing suppression activities were scored based on transient expression experiments in Nicotiana benthamiana leaves. Results High sequence diversity was observed among CLRDV P0 proteins, indicating that some isolates found in cotton varieties formerly resistant to CLRDV should be regarded as new genotypes within the species. All tested proteins were able to suppress local and systemic silencing, but with significantly variable degrees. All P0 proteins were able to mediate the decay of ARGONAUTE proteins, a key component of the RNA silencing machinery. Conclusions The sequence diversity observed in CLRDV P0s is also reflected in their silencing suppression capabilities. However, the strength of local and systemic silencing suppression was not correlated for some proteins. Electronic supplementary material The online version of this article (doi:10.1186/s12985-015-0356-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Renan S Cascardo
- Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Ighor L G Arantes
- Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Tatiane F Silva
- Department of Virology, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil. .,Present address: Departamento de Biotecnologia, Escola de Engenharia de Lorena, Universidade de São Paulo, Lorena, São Paulo, Brazil.
| | - Gilberto Sachetto-Martins
- Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Maité F S Vaslin
- Department of Virology, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Régis L Corrêa
- Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
19
|
da Silva AKF, Romanel E, Silva TDF, Castilhos Y, Schrago CG, Galbieri R, Bélot JL, Vaslin MFS. Complete genome sequences of two new virus isolates associated with cotton blue disease resistance breaking in Brazil. Arch Virol 2015; 160:1371-4. [PMID: 25772571 DOI: 10.1007/s00705-015-2380-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 02/21/2015] [Indexed: 11/26/2022]
Abstract
Since 2006, Brazilian cotton (Gossypium hirsutum) crops planted with cultivars that are resistant to cotton blue disease have developed a new disease termed "atypical" cotton blue disease or atypical vein mosaic disease. Here, we describe the complete genomes of two virus isolates associated with this disease. The new virus isolates, called CLRDV-Acr3 and CLRDV-IMA2, were found to have a high degree of nucleotide and amino acid sequence similarity to previously described isolates of cotton leafroll dwarf virus, the causal agent of cotton blue disease. However, their P0 proteins were 86.1 % identical. These results show that this new disease is caused by a new CLRDV genotype that seems to have acquired the ability to overcome cotton blue disease resistance.
Collapse
Affiliation(s)
- Anna Karoline Fausto da Silva
- Depto. Virologia, Lab. Virologia Molecular Vegetal, IMPPG, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, RJ, Brasil
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Molecular evolutionary history of Sugarcane yellow leaf virus based on sequence analysis of RNA-dependent RNA polymerase and putative aphid transmission factor-coding genes. J Mol Evol 2014; 78:349-65. [PMID: 24952671 DOI: 10.1007/s00239-014-9630-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 06/12/2014] [Indexed: 10/25/2022]
Abstract
RNA-dependent RNA polymerase (RdRp) encoded by ORF2 and putative aphid transmission factor (PATF) encoded by ORF5 of Sugarcane yellow leaf virus (SCYLV) were detected in six sugarcane cultivars affected by yellow leaf using RT-PCR and real-time RT-PCR assays. Expression of both genes varied among infected plants, but overall expression of RdRp was higher than expression of PATF. Cultivar H87-4094 from Hawaii yielded the highest transcript levels of RdRp, whereas cultivar C1051-73 from Cuba exhibited the lowest levels. Sequence comparisons among 25 SCYLV isolates from various geographical locations revealed an amino acid similarity of 72.1-99.4 and 84.7-99.8 % for the RdRp and PATF genes, respectively. The 25 SCYLV isolates were separated into three (RdRp) and two (PATF) phylogenetic groups using the MEGA6 program that does not account for genetic recombination. However, the SCYLV genome contained potential recombination signals in the RdRp and PATF coding genes based on the GARD genetic algorithm. Use of this later program resulted in the reconstruction of phylogenies on the left as well as on the right sides of the putative recombination breaking points, and the 25 SCYLV isolates were distributed into three distinct phylogenetic groups based on either RdRp or PATF sequences. As a result, recombination reshuffled the affiliation of the accessions to the different clusters. Analysis of selection pressures exerted on RdRp and PATF encoded proteins revealed that ORF 2 and ORF 5 underwent predominantly purifying selection. However, a few sites were also under positive selection as assessed by various models such as FEL, IFEL, REL, FUBAR, MEME, GA-Branch, and PRIME.
Collapse
|