1
|
Li Y, Wu B, Zhai X, Li Q, Fan C, Li YY, Sano D, Chen R. Removal of RNA viruses from swine wastewater using anaerobic membrane bioreactor: Performance and mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134296. [PMID: 38643574 DOI: 10.1016/j.jhazmat.2024.134296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/22/2024] [Accepted: 04/10/2024] [Indexed: 04/23/2024]
Abstract
The effective removal of viruses from swine wastewater using anaerobic membrane bioreactor (AnMBR) is vital to ecological safety. However, most studies have focused only on disinfectants, whereas the capabilities of the treatment process have not been investigated. In this study, the performance and mechanism of an AnMBR in the removal of porcine hepatitis E virus (HEV), porcine kobuvirus (PKoV), porcine epidemic diarrhea virus (PEDV), and transmissible gastroenteritis coronavirus (TGEV) are systematically investigated. The results show that the AnMBR effectively removes the four viruses, with average removal efficiencies of 1.62, 3.05, 2.41, and 1.34 log for HEV, PKoV, PEDV and TGEV, respectively. Biomass adsorption contributes primarily to the total virus removal in the initial stage of reactor operation, with contributions to HEV and PKoV removal exceeding 71.7 % and 68.2 %, respectively. When the membrane is fouled, membrane rejection dominated virus removal. The membrane rejection contribution test shows the significant contribution of membrane pore foulants (23-76 %). Correlation analysis shows that the surface characteristics and size differences of the four viruses contribute primarily to their different effects on biomass adsorption and membrane rejection. This study provides technical guidance for viral removal during the treatment of high-concentration swine wastewater using an AnMBR.
Collapse
Affiliation(s)
- Yu Li
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Baolei Wu
- Vanke School of Public Health, Tsinghua University, Beijing 100008, PR China
| | - Xuanyu Zhai
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Qian Li
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China.
| | - Chenlong Fan
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Daisuke Sano
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Rong Chen
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| |
Collapse
|
2
|
Cui Y, Li J, Guo J, Pan Y, Tong X, Liu C, Wang D, Xu W, Shi Y, Ji Y, Qiu Y, Yang X, Hou L, Zhou J, Feng X, Wang Y, Liu J. Evolutionary Origin, Genetic Recombination, and Phylogeography of Porcine Kobuvirus. Viruses 2023; 15:240. [PMID: 36680281 PMCID: PMC9867129 DOI: 10.3390/v15010240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
The newly identified porcine Kobuvirus (PKV) has raised concerns owing to its association with diarrheal symptom in pigs worldwide. The process involving the emergence and global spread of PKV remains largely unknown. Here, the origin, genetic diversity, and geographic distribution of PKV were determined based on the available PKV sequence information. PKV might be derived from the rabbit Kobuvirus and sheep were an important intermediate host. The most recent ancestor of PKV could be traced back to 1975. Two major clades are identified, PKVa and PKVb, and recombination events increase PKV genetic diversity. Cross-species transmission of PKV might be linked to interspecies conserved amino acids at 13-17 and 25-40 residue motifs of Kobuvirus VP1 proteins. Phylogeographic analysis showed that Spain was the most likely location of PKV origin, which then spread to pig-rearing countries in Asia, Africa, and Europe. Within China, the Hubei province was identified as a primary hub of PKV, transmitting to the east, southwest, and northeast regions of the country. Taken together, our findings have important implications for understanding the evolutionary origin, genetic recombination, and geographic distribution of PKV thereby facilitating the design of preventive and containment measures to combat PKV infection.
Collapse
Affiliation(s)
- Yongqiu Cui
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jingyi Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jinshuo Guo
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Yang Pan
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xinxin Tong
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Changzhe Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Dedong Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Weiyin Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Yongyan Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Ying Ji
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Yonghui Qiu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyu Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Lei Hou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jianwei Zhou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Xufei Feng
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Yong Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Jue Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
3
|
Pathogenic and metagenomic evaluations reveal the correlations of porcine epidemic diarrhea virus, porcine kobuvirus and porcine astroviruses with neonatal piglet diarrhea. Microb Pathog 2022; 170:105703. [DOI: 10.1016/j.micpath.2022.105703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/20/2022] [Accepted: 07/31/2022] [Indexed: 11/17/2022]
|
4
|
Gao Y, He W, Fu J, Li Y, He H, Chen Q. Epidemiological Evidence for Fecal-Oral Transmission of Murine Kobuvirus. Front Public Health 2022; 10:865605. [PMID: 35517645 PMCID: PMC9062591 DOI: 10.3389/fpubh.2022.865605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundMurine Kobuvirus (MuKV) is a novel picornavirus of the genus Kobuvirus, and was first identified in the feces of murine rodents in the USA in 2011. There is limited information on the transmission route of MuKV. Thus, we conducted a study to investigate virus detection rates in fecal, serum, throat, and lung tissue samples from murine rodents.ResultsA total of 413 fecal samples, 385 lung samples, 269 throat swab samples, and 183 serum samples were collected from 413 murine rodents (Rattus norvegicus, Rattus tanezumi, and Rattus rattus) captured in urban Shenzhen. Kobuviruses were detected via RT-PCR. Only fecal samples were positive, with prevalence rates of 34.9% in Rattus norvegicus and 29.4% in Rattus tanezumi. Phylogenetic analysis based on partial 3D and complete VP1 sequence regions indicated that all of the MuKV sequences obtained belonged to Aichivirus A, and were genetically closely related to other MuKVs reported in China, Hungary, and the USA. Twenty-eight full-length MuKV sequences were acquired. Phylogenetic analysis of two sequences randomly selected from the two species (SZ59 and SZ171) indicated that they shared very high nucleotide and amino acid identity with one another (94.0 and 99.3%, respectively), and comparison with human Kobuvirus revealed amino acid identity values of ~80%. Additionally, a sewage-derived sequence shared high similarity with the rat-derived sequences identified in this study, with respective nucleotide and amino acid identity values from 86.5 and 90.7% to 87.2 and 91.1%.ConclusionThe results of the current study provide evidence that murine Kobuvirus is transmitted via the fecal-oral route.
Collapse
|
5
|
Capai L, Piorkowski G, Maestrini O, Casabianca F, Masse S, de Lamballerie X, Charrel RN, Falchi A. Detection of porcine enteric viruses (Kobuvirus, Mamastrovirus and Sapelovirus) in domestic pigs in Corsica, France. PLoS One 2022; 17:e0260161. [PMID: 35030164 PMCID: PMC8759673 DOI: 10.1371/journal.pone.0260161] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 11/03/2021] [Indexed: 11/19/2022] Open
Abstract
Many enteric viruses are found in pig farms around the world and can cause death of animals or important production losses for breeders. Among the wide spectrum of enteric viral species, porcine Sapelovirus (PSV), porcine Kobuvirus (PKoV) and porcine Astrovirus (PAstV) are frequently found in pig feces. In this study we investigated sixteen pig farms in Corsica, France, to evaluate the circulation of three enteric viruses (PKoV, PAstV-1 and PSV). In addition to the three viruses studied by RT-qPCR (908 pig feces samples), 26 stool samples were tested using the Next Generation Sequencing method (NGS). Our results showed viral RNA detection rates (i) of 62.0% [58.7-65.1] (n = 563/908) for PSV, (ii) of 44.8% [41.5-48.1] (n = 407/908) for PKoV and (iii) of 8.6% [6.8-10.6] (n = 78/908) for PAstV-1. Significant differences were observed for all three viruses according to age (P-value = 2.4e-13 for PAstV-1; 2.4e-12 for PKoV and 0.005 for PSV). The type of breeding was significantly associated with RNA detection only for PAstV-1 (P-value = 9.6e-6). Among the 26 samples tested with NGS method, consensus sequences corresponding to 10 different species of virus were detected. This study provides first insight on the presence of three common porcine enteric viruses in France. We also showed that they are frequently encountered in pigs born and bred in Corsica, which demonstrates endemic local circulation.
Collapse
Affiliation(s)
- Lisandru Capai
- UR 7310, Laboratoire de Virologie, Université de Corse, Corte, France
| | - Géraldine Piorkowski
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207), Marseille, France
| | - Oscar Maestrini
- Laboratoire de Recherche sur le Développement de l’Elevage (LRDE), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Corte, France
| | - François Casabianca
- Laboratoire de Recherche sur le Développement de l’Elevage (LRDE), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Corte, France
| | - Shirley Masse
- UR 7310, Laboratoire de Virologie, Université de Corse, Corte, France
| | - Xavier de Lamballerie
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207), Marseille, France
| | - Rémi N. Charrel
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207), Marseille, France
| | - Alessandra Falchi
- UR 7310, Laboratoire de Virologie, Université de Corse, Corte, France
| |
Collapse
|
6
|
Zhang M, You F, Wu F, He H, Li Q, Chen Q. Epidemiology and genetic characteristics of murine kobuvirus from faecal samples of Rattus losea, Rattus tanezumi and Rattus norvegicus in southern China. J Gen Virol 2021; 102. [PMID: 34486970 PMCID: PMC8567428 DOI: 10.1099/jgv.0.001646] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Recently, murine kobuvirus (MuKV), a novel member of the family Picornaviridae, was identified in faecal samples of Rattus norvegicus in China. The limited information on the circulation of MuKV in other murine rodent species prompted us to investigate its prevalence and conduct a genetic characterization of MuKV in Rattus losea, Rattus tanezumi and Rattus norvegicus in China. Between 2015 and 2017, 243 faecal samples of these three murine rodent species from three regions in southern China were screened for the presence of MuKV. The overall prevalence was 23.0% (56/243). Three complete MuKV polyprotein sequences were acquired, and the genome organization was determined. Phylogenetic analyses suggested that our sequences were closely related to Chinese strains and belong to the species Aichivirus A in the genus Kobuvirus. Additional studies are required to understand the true prevalence of MuKV in murine rodent populations in China.
Collapse
Affiliation(s)
- Minyi Zhang
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou 510515, PR China
| | - Fangfei You
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou 510515, PR China
| | - Fei Wu
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou 510515, PR China
| | - Huan He
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou 510515, PR China
| | - Qiushuang Li
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou 510515, PR China
| | - Qing Chen
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou 510515, PR China
| |
Collapse
|
7
|
Valkó A, Marosi A, Cságola A, Farkas R, Rónai Z, Dán Á. Frequency of diarrhoea-associated viruses in swine of various ages in Hungary. Acta Vet Hung 2019; 67:140-150. [PMID: 30922088 DOI: 10.1556/004.2019.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Enteric viral diseases of swine are one of the most frequent disorders causing huge economic losses in pork production. After the reappearance of an emerging enteropathogen, porcine epidemic diarrhoea virus (PEDV) in Hungary in 2016, an extensive survey was initiated in an attempt to identify diarrhoea-related porcine viruses, including adeno-, astro-, boca-, calici-, circo-, corona-, kobu-, rota- and Torque teno viruses. A total of 384 faecal samples collected during a twoyear period from diarrhoeic and asymptomatic pigs of various ages in 17 farms were screened by conventional and real-time PCR methods. Half of the samples contained at least one examined virus with the dominance of kobuvirus (55.1%) followed by bocaviruses (33.2%) and rotavirus groups A and C together (20.9%), while coronaviruses including PEDV were not found in this set of samples. Statistical analysis showed a highly significant difference (P < 0.0001) in the frequency of single infections compared to mixed ones with the exception of weaned pigs, in which group additionally most viruses were detected. The results of this study suggest that the complexity of this disease may vary with age, which makes the prevention of diarrhoea a challenge, especially in weaned pigs.
Collapse
Affiliation(s)
- Anna Valkó
- 1 Department of Microbiology and Infectious Diseases, University of Veterinary Medicine Budapest, Hungária krt. 23–25, H-1143 Budapest, Hungary
| | - András Marosi
- 1 Department of Microbiology and Infectious Diseases, University of Veterinary Medicine Budapest, Hungária krt. 23–25, H-1143 Budapest, Hungary
| | | | - Rózsa Farkas
- 3 National Food Chain Safety Office, Veterinary Diagnostic Directorate, Budapest, Hungary
| | - Zsuzsanna Rónai
- 3 National Food Chain Safety Office, Veterinary Diagnostic Directorate, Budapest, Hungary
| | - Ádám Dán
- 3 National Food Chain Safety Office, Veterinary Diagnostic Directorate, Budapest, Hungary
| |
Collapse
|
8
|
Zhang Q, Liu X, Fang Y, Zhou P, Wang Y, Zhang Y. Detection and phylogenetic analyses of spike genes in porcine epidemic diarrhea virus strains circulating in China in 2016-2017. Virol J 2017; 14:194. [PMID: 29017599 PMCID: PMC5634871 DOI: 10.1186/s12985-017-0860-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 10/04/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Large-scale outbreaks of porcine epidemic diarrhea (PED) have re-emerged in China in recent years. However, little is known about the genetic diversity and molecular epidemiology of field strains of PED virus (PEDV) in China in 2016-2017. To address this issue, in this study, 116 diarrhea samples were collected from pig farms in 6 Chinese provinces in 2016-2017 and were detected using PCR for main porcine enteric pathogens, including PEDV, porcine deltacoronavirus (PDCoV), porcine transmissible gastroenteritis virus (TGEV) and porcine kobuvirus (PKV). In addition, the complete S genes from 11 representative PEDV strains were sequenced and analyzed. RESULTS PCR detection showed that 52.6% (61/116) of these samples were positive for PEDV. Furthermore, sequencing results for the spike (S) genes from 11 of the epidemic PEDV strains showed 93-94% nucleotide identity and 92-93% amino acid identity with the classical CV777 strain. Compared with the CV777 vaccine strain, these strains had an insertion (A133), a deletion (G155), and a continuous 4-amino-acid insertion (56NNTN59) in the S1 region. Phylogenetic analysis based on the S gene indicated that the 11 assessed PEDV strains were genetically diverse and clustered into the G2 group. These results demonstrate that the epidemic strains of PEDV in China in 2016-2017 are mainly virulent strains that belong to the G2 group and genetically differ from the vaccine strain. Importantly, this is the first report that the samples collected in Hainan Province were positive for PEDV (59.2%, 25/42). CONCLUSIONS To our knowledge, this article presents the first report of a virulent PEDV strain isolated from Hainan Island, China. The results of this study will contribute to the understanding of the epidemiology and genetic characteristics of PEDV in China.
Collapse
Affiliation(s)
- Qiaoling Zhang
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Xinsheng Liu
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Yuzhen Fang
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Peng Zhou
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Yonglu Wang
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Yongguang Zhang
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| |
Collapse
|
9
|
Peng Q, Lan X, Wang C, Ren Y, Yue N, Wang J, Zhong B, Zhu Q. Kobuvirus VP3 protein restricts the IFN-β-triggered signaling pathway by inhibiting STAT2-IRF9 and STAT2-STAT2 complex formation. Virology 2017; 507:161-169. [DOI: 10.1016/j.virol.2017.04.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 04/15/2017] [Accepted: 04/19/2017] [Indexed: 11/25/2022]
|
10
|
Complete genome analysis of porcine kobuviruses from the feces of pigs in Japan. Virus Genes 2017; 53:593-602. [PMID: 28484931 DOI: 10.1007/s11262-017-1464-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/24/2017] [Indexed: 10/19/2022]
Abstract
Porcine kobuviruses (PoKoVs) are ubiquitously distributed in pig populations worldwide and are thought to be enteric viruses in swine. Although PoKoVs have been detected in pigs in Japan, no complete genome data for Japanese PoKoVs are available. In the present study, 24 nearly complete or complete sequences of the PoKoV genome obtained from 10 diarrheic feces and 14 non-diarrheic feces of Japanese pigs were analyzed using a metagenomics approach. Japanese PoKoVs shared 85.2-100% identity with the complete coding nucleotide (nt) sequences and the closest relationship of 85.1-98.3% with PoKoVs from other countries. Twenty of 24 Japanese PoKoVs carried a deletion of 90 nt in the 2B coding region. Phylogenetic tree analyses revealed that PoKoVs were not grouped according to their geographical region of origin and the phylogenetic trees of the L, P1, P2, and P3 genetic regions showed topologies different from each other. Similarity plot analysis using strains from a single farm revealed partially different similarity patterns among strains from identical farm origins, suggesting that recombination events had occurred. These results indicate that various PoKoV strains are prevalent and not restricted geographically on pig farms worldwide and the coexistence of multiple strains leads to recombination events of PoKoVs and contributes to the genetic diversity and evolution of PoKoVs.
Collapse
|
11
|
Complete Genome Sequence of a Porcine Kobuvirus Variant Strain from Jiangxi, China. GENOME ANNOUNCEMENTS 2017; 5:5/5/e01580-16. [PMID: 28153909 PMCID: PMC5289695 DOI: 10.1128/genomea.01580-16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The complete genome sequence of a porcine kobuvirus (PKoV) variant strain, CH/KB-1/2014 from Jiangxi, China, with a 90-nucleotide deletion in the 2B gene, was determined and characterized. This study provides a better understanding of the molecular characteristics and evolution of PKoV in Jiangxi, China.
Collapse
|
12
|
Molecular Epidemiological Investigation of Porcine kobuvirus and Its Coinfection Rate with PEDV and SaV in Northwest China. BIOMED RESEARCH INTERNATIONAL 2016; 2016:7590569. [PMID: 27294133 PMCID: PMC4884858 DOI: 10.1155/2016/7590569] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 04/15/2016] [Accepted: 04/28/2016] [Indexed: 11/17/2022]
Abstract
Porcine kobuvirus (PKV) has circulated throughout China in recent years. Although many studies have detected it throughout the world, its molecular epidemiology has not been characterized in northwest China. To understand its prevalence, 203 fecal samples were collected from different regions of Gansu Province and tested with reverse transcription-polymerase chain reaction. In this study, we tested these samples for PKV, porcine epidemic diarrhea virus (PEDV), and sapovirus and analyzed the amplified 2C gene fragments of PKV. Overall, 126 (62.1%) samples were positive for PKV. Of the 74 piglets samples among the 203 fecal samples, 65 (87.8%) were positive for PKV. PKV infection was often accompanied by PEDV, but the relationship between the two viruses must be confirmed. A phylogenetic analysis indicated that the PKV strains isolated from the same regions clustered on the same branches. This investigation shows that PKV infections are highly prevalent in pigs in northwest China, especially in piglets with symptoms of diarrhea.
Collapse
|
13
|
Lu L, Van Dung N, Bryant JE, Carrique-Mas J, Van Cuong N, Anh PH, Rabaa MA, Baker S, Simmonds P, Woolhouse ME. Evolution and phylogeographic dissemination of endemic porcine picornaviruses in Vietnam. Virus Evol 2016; 2:vew001. [PMID: 27774295 PMCID: PMC4989877 DOI: 10.1093/ve/vew001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Members of the Picornaviridae are important and often zoonotic viruses responsible for a variety of human and animal diseases. However, the evolution and spatial dissemination of different picornaviruses circulating in domestic animals are not well studied. We examined the rate of evolution and time of origin of porcine enterovirus G (EV-G) and porcine kobuvirus species C lineages (PKV-C) circulating in pig farms in Vietnam and from other countries. We further explored the spatiotemporal spread of EV-G and PKV-C in Southwest Vietnam using phylogeographic models. Multiple types of EV-G are co-circulating in Vietnam. The two dominant EV-G types among isolates from Vietnam (G1 and G6) showed strong phylogenetic clustering. Three clades of PKV-C (PKV-C1-3) represent more recent introductions into Vietnam; PKV-C2 is closely related to PKV-C from Southwest China, indicating possible cross-border dissemination. In addition, high virus lineage migration rates were estimated within four districts in Dong Thap province in Vietnam for both EV-G types (G1, G6) and all PKV-C (C1-3) clades. We found that Chau Thanh district is a primary source of both EV-G and PKV-C clades, consistent with extensive pig trading in and out of the district. Understanding the evolution and spatial dissemination of endemic picornaviruses in pigs may inform future strategies for the surveillance and control of picornaviruses.
Collapse
Affiliation(s)
- Lu Lu
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Ashworth Laboratories, Kings Buildings, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| | - Nguyen Van Dung
- Infection and Immunity Division, Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK
| | - Juliet E Bryant
- Oxford University Clinical Research Unit, 764 Vo Van Kiet, W.1, Dist. 5, Ho Chi Minh City, Vietnam,; Nuffield Department of Medicine, Oxford University, Old Rd, Oxford OX3 7LF, UK and
| | - Juan Carrique-Mas
- Oxford University Clinical Research Unit, 764 Vo Van Kiet, W.1, Dist. 5, Ho Chi Minh City, Vietnam
| | - Nguyen Van Cuong
- Oxford University Clinical Research Unit, 764 Vo Van Kiet, W.1, Dist. 5, Ho Chi Minh City, Vietnam
| | - Pham Honh Anh
- Oxford University Clinical Research Unit, 764 Vo Van Kiet, W.1, Dist. 5, Ho Chi Minh City, Vietnam
| | - Maia A Rabaa
- Oxford University Clinical Research Unit, 764 Vo Van Kiet, W.1, Dist. 5, Ho Chi Minh City, Vietnam
| | - Stephen Baker
- Oxford University Clinical Research Unit, 764 Vo Van Kiet, W.1, Dist. 5, Ho Chi Minh City, Vietnam,; Nuffield Department of Medicine, Oxford University, Old Rd, Oxford OX3 7LF, UK and; The London School of Hygiene and Tropical Medicine, Keppel St, Bloomsbury, London WC1E 7HT, UK
| | - Peter Simmonds
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Ashworth Laboratories, Kings Buildings, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK,; Infection and Immunity Division, Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK
| | - Mark E Woolhouse
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Ashworth Laboratories, Kings Buildings, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| |
Collapse
|
14
|
Zhou W, Ullman K, Chowdry V, Reining M, Benyeda Z, Baule C, Juremalm M, Wallgren P, Schwarz L, Zhou E, Pedrero SP, Hennig-Pauka I, Segales J, Liu L. Molecular investigations on the prevalence and viral load of enteric viruses in pigs from five European countries. Vet Microbiol 2015; 182:75-81. [PMID: 26711031 PMCID: PMC7125590 DOI: 10.1016/j.vetmic.2015.10.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 10/14/2015] [Accepted: 10/16/2015] [Indexed: 11/25/2022]
Abstract
Porcine astrovirus type 4 was prevalent in the 49 European farms with a high viral load. Rotaviruses were mainly found in diarrheic pigs. Kobuvirus and porcine circovirus 2 were ubiquitous.
Enteric viral infections in pigs may cause diarrhea resulting in ill-thrift and substantial economic losses. This study reports the enteric infections with porcine astrovirus type 4 (PAstV4), porcine group A rotavirus (GARV), porcine group C rotavirus (GCRV), porcine circovirus type 2 (PCV2) and porcine kobuvirus (PKoV) in 419 pigs, comprising both healthy and diarrheic animals, from 49 farms in five European countries (Austria, Germany, Hungary, Spain and Sweden). Real-time RT-PCR assays were developed to test fecal samples and to compare the prevalence and viral load in relation to health status, farms of origin and age groups. The results showed that PAstV4 (70.4%) was the dominant virus species, followed by PKoV (56.7%), PCV2 (42.2%), GCRV (3%) and GARV (0.9%). Diarrheic pigs had a higher viral load of PAstV4 in the nursery and growing-finishing groups. Rotaviruses were mainly detected in diarrheic pigs, whereas PCV2 was more often detected in clinically healthy than in diarrheic pigs, suggesting that most PCV2 infections were subclinical. PAstV4, PCV2 and PKoV were considered ubiquitous in the European pig livestock and co-infections among them were frequent, independently of the disease status, in contrast to a low prevalence of classical rotavirus infections.
Collapse
Affiliation(s)
- Weiguang Zhou
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture, Hohhot, China; National Veterinary Institute (SVA), Uppsala, Sweden
| | - Karin Ullman
- National Veterinary Institute (SVA), Uppsala, Sweden
| | - Vinay Chowdry
- National Veterinary Institute (SVA), Uppsala, Sweden
| | | | | | - Claudia Baule
- National Veterinary Institute (SVA), Uppsala, Sweden
| | | | - Per Wallgren
- National Veterinary Institute (SVA), Uppsala, Sweden
| | - Lukas Schwarz
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Enmin Zhou
- College of Veterinary Medicine Northwest A&F University, Shaanxi, China
| | - Sonia Pina Pedrero
- Centre de Recerca en Sanitat Animal (CReSA)-Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Barcelona, Spain
| | - Isabel Hennig-Pauka
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Joaquim Segales
- Centre de Recerca en Sanitat Animal (CReSA)-Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Barcelona, Spain; Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Lihong Liu
- National Veterinary Institute (SVA), Uppsala, Sweden.
| |
Collapse
|
15
|
Jin WJ, Yang Z, Zhao ZP, Wang WY, Yang J, Qin AJ, Yang HC. Genetic characterization of porcine kobuvirus variants identified from healthy piglets in China. INFECTION GENETICS AND EVOLUTION 2015; 35:89-95. [PMID: 26238210 DOI: 10.1016/j.meegid.2015.07.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 07/28/2015] [Accepted: 07/29/2015] [Indexed: 01/20/2023]
Abstract
In this study, two porcine kobuvirus strains, JS-01-CHN and JS-02a-CHN were detected from piglets with diarrhea and asymptomatic, respectively. The sequences of the two strains were analyzed using a bioinformatics software package. The full-length genome of JS-02a-CHN, was detected in healthy piglets was 8121 nucleotides (nt) long excluding the poly(A) tail. There was a 30 amino acid deletion in the 2B-coding region of JS-02a-CHN. We are the first to report a 30 amino acid deletion in porcine kobuvirus from asymptomatic piglets, indicating that porcine kobuvirus may have evolved differently based on geography and host differences. Fecal samples were obtained from pigs with diarrhea (n=91) and healthy (n=126) pigs and analyzed using RT-PCR. Of these, 64.8% (59/91) of diarrheic piglets and 19.8% (25/126) of healthy piglets were positive for PKV using VP1 specific primers. Twenty-eight (28) virus positive samples were randomly selected and the VP1 gene was analyzed. Phylogenetic analysis indicated that the 15 strains isolated from pigs with diarrhea clustered into different branches, while the VP1 sequences from clinically healthy pigs clustered into a single large group. These results indicate that the VP1 gene is diverse in pigs with diarrhea but conserved in healthy pigs in the Jiangsu Province.
Collapse
Affiliation(s)
- Wen-Jie Jin
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China; College of Veterinary Medicine, Yangzhou University, Ministry of Education Key Lab for Avian Preventive Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China.
| | - Zhen Yang
- College of Veterinary Medicine, Yangzhou University, Ministry of Education Key Lab for Avian Preventive Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
| | - Zhen-Peng Zhao
- College of Veterinary Medicine, Yangzhou University, Ministry of Education Key Lab for Avian Preventive Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
| | - Wan-Yi Wang
- College of Veterinary Medicine, Yangzhou University, Ministry of Education Key Lab for Avian Preventive Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
| | - Juan Yang
- College of Veterinary Medicine, Yangzhou University, Ministry of Education Key Lab for Avian Preventive Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
| | - Ai-Jian Qin
- College of Veterinary Medicine, Yangzhou University, Ministry of Education Key Lab for Avian Preventive Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China.
| | - Han-Chun Yang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
16
|
Infection of farmed pigs with porcine kobuviruses in Italy. Arch Virol 2015; 160:1533-6. [PMID: 25809018 DOI: 10.1007/s00705-015-2397-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 03/08/2015] [Indexed: 12/18/2022]
Abstract
Two-hundred eight swine fecal samples from six Italian farms were tested using a kobuvirus-specific RT-PCR with primers that amplify a region within the 3D gene. All farms were kobuvirus positive, with prevalence rates ranging between 24 % and 84 %. Overall, 57.5 % of asymptomatic pigs and 49.7 % of animals with diarrhea were positive for kobuvirus. Sequence analysis showed a different predominant strain circulating on each farm and indicated that the strains detected were related to both European and Asiatic strains. A possible pathogenic role of kobuvirus should be investigated further, since infections with this virus occur frequently in pigs of different ages.
Collapse
|