1
|
Bakker JW, Esser HJ, Sprong H, Godeke GJ, Hoornweg TE, de Boer WF, Pijlman GP, Koenraadt CJM. Differential susceptibility of geographically distinct Ixodes ricinus populations to tick-borne encephalitis virus and louping ill virus. Emerg Microbes Infect 2024; 13:2321992. [PMID: 38484290 PMCID: PMC10946273 DOI: 10.1080/22221751.2024.2321992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Tick-borne encephalitis virus (TBEV) is an emerging pathogen in the Netherlands. Multiple divergent viral strains are circulating and the focal distribution of TBEV remains poorly understood. This may, however, be explained by differences in the susceptibility of tick populations for specific viruses and viral strains, and by viral strains having higher infection success in their local tick population. We investigated this hypothesis by exposing Dutch Ixodes ricinus ticks to two different TBEV strains: TBEV-NL from the Netherlands and TBEV-Neudoerfl from Austria. In addition, we exposed ticks to louping Ill virus (LIV), which is endemic to large parts of the United Kingdom and Ireland, but has not been reported in the Netherlands. Ticks were collected from two locations in the Netherlands: one location without evidence of TBEV circulation and one location endemic for the TBEV-NL strain. Ticks were infected in a biosafety level 3 laboratory using an artificial membrane feeding system. Ticks collected from the region without evidence of TBEV circulation had lower infection rates for TBEV-NL as compared to TBEV-Neudoerfl. Vice versa, ticks collected from the TBEV-NL endemic region had higher infection rates for TBEV-NL compared to TBEV-Neudoerfl. In addition, LIV infection rates were much lower in Dutch ticks compared to TBEV, which may explain why LIV is not present in the Netherlands. Our findings show that ticks from two distinct geographical populations differ in their susceptibility to TBEV strains, which could be the result of differences in the genetic background of the tick populations.
Collapse
Affiliation(s)
- Julian W. Bakker
- Laboratory of Entomology, Wageningen University & Research, Wageningen, Netherlands
| | - Helen J. Esser
- Wildlife Ecology and Conservation Group, Wageningen University & Research, Wageningen, Netherlands
| | - Hein Sprong
- Centre for Infectious Disease Control, National Institute of Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Gert-Jan Godeke
- Centre for Infectious Disease Control, National Institute of Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Tabitha E. Hoornweg
- Centre for Infectious Disease Control, National Institute of Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Willem F. de Boer
- Wildlife Ecology and Conservation Group, Wageningen University & Research, Wageningen, Netherlands
| | - Gorben P. Pijlman
- Laboratory of Virology, Wageningen University & Research, Wageningen, Netherlands
| | | |
Collapse
|
2
|
Elgueta I, Allen K, Liatis T, Gonzalo-Nadal V, Laming E, Dagleish MP, Jamieson PM, Innocent G, Rocchi MS. Seropositivity to louping ill virus in dogs in the UK. Vet Rec 2024; 195:e4702. [PMID: 39344584 DOI: 10.1002/vetr.4702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/09/2024] [Accepted: 08/29/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Louping ill virus (LIV) is a tick-borne flavivirus that can cause fatal meningoencephalomyelitis in dogs. Four dogs with confirmed LIV infection and a case series of dogs with suspected flavivirus infection have been reported in the UK. However, underreporting of LIV infection due to lack of testing is suspected. METHODS Surplus serum/plasma from 220 dogs was used to determine the seroprevalence of LIV by haemagglutination inhibition (HAI) test. Signalment and environmental factors were investigated for potential correlations with a positive titre (serum dilution of 1:20 or more). RESULTS Two hundred and two dogs were suitable for inclusion in the study, nine of which (4.5%) were seropositive. Among the dogs investigated for neurological disease (40/202; 19.8%), six (15%) were seropositive. Ectoparasiticide use approached significance (p = 0.055) for being protective against LIV seropositivity. LIMITATIONS The main limitations were the specificity of the HAI test, the relatively small number of samples, the low number of seropositive dogs, the poor geographical distribution of the samples and the inherent limitations of questionnaire-based research. CONCLUSION The seroprevalence of LIV in the UK dog population appears to be low. However, LIV should be considered in dogs presenting with unexplained acute or subacute progressive neurological clinical signs, especially because of the recent reports of several dogs with clinical flavivirus infections.
Collapse
Affiliation(s)
- Iris Elgueta
- Internal Medicine Service, Vets Now Referral Hospital, Glasgow, UK
| | - Kayleigh Allen
- Virus Surveillance Unit, Moredun Research Institute, Penicuik, UK
| | - Theofanis Liatis
- Neurology & Neurosurgery Service, Queen Mother Hospital for Animals, Royal Veterinary College, Hatfield, UK
| | | | - Eleanor Laming
- Virus Surveillance Unit, Moredun Research Institute, Penicuik, UK
| | - Mark P Dagleish
- Division of Veterinary Pathology, Public Health and Disease Investigation, School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | | | | | - Mara S Rocchi
- Virus Surveillance Unit, Moredun Research Institute, Penicuik, UK
| |
Collapse
|
3
|
Nurmukanova V, Matsvay A, Gordukova M, Shipulin G. Square the Circle: Diversity of Viral Pathogens Causing Neuro-Infectious Diseases. Viruses 2024; 16:787. [PMID: 38793668 PMCID: PMC11126052 DOI: 10.3390/v16050787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Neuroinfections rank among the top ten leading causes of child mortality globally, even in high-income countries. The crucial determinants for successful treatment lie in the timing and swiftness of diagnosis. Although viruses constitute the majority of infectious neuropathologies, diagnosing and treating viral neuroinfections remains challenging. Despite technological advancements, the etiology of the disease remains undetermined in over half of cases. The identification of the pathogen becomes more difficult when the infection is caused by atypical pathogens or multiple pathogens simultaneously. Furthermore, the modern surge in global passenger traffic has led to an increase in cases of infections caused by pathogens not endemic to local areas. This review aims to systematize and summarize information on neuroinvasive viral pathogens, encompassing their geographic distribution and transmission routes. Emphasis is placed on rare pathogens and cases involving atypical pathogens, aiming to offer a comprehensive and structured catalog of viral agents with neurovirulence potential.
Collapse
Affiliation(s)
- Varvara Nurmukanova
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, 119121 Moscow, Russia
| | - Alina Matsvay
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, 119121 Moscow, Russia
| | - Maria Gordukova
- G. Speransky Children’s Hospital No. 9, 123317 Moscow, Russia
| | - German Shipulin
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, 119121 Moscow, Russia
| |
Collapse
|
4
|
Kholodilov IS, Belova OA, Ivannikova AY, Gadzhikurbanov MN, Makenov MT, Yakovlev AS, Polienko AE, Dereventsova AV, Litov AG, Gmyl LV, Okhezin EV, Luchinina SV, Klimentov AS, Karganova GG. Distribution and Characterisation of Tick-Borne Flavi-, Flavi-like, and Phenuiviruses in the Chelyabinsk Region of Russia. Viruses 2022; 14:v14122699. [PMID: 36560703 PMCID: PMC9780909 DOI: 10.3390/v14122699] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022] Open
Abstract
In this work, we presented data from a two-year study of flavi-, flavi-like, and phenuiviruses circulation in the population of ixodid ticks in the Chelyabinsk region. We isolated three tick-borne encephalitis virus (TBEV) strains from I. persulcatus, which was not detected in the ticks of the genus Dermacentor. The virus prevalence ranged from 0.66% to 2.28%. The Yanggou tick virus (YGTV) is widespread in steppe and forest-steppe zones and is mainly associated with ticks of the genus Dermacentor. We isolated 26 strains from D. reticulatus, D. marginatus, and I. persulcatus ticks in the HAE/CTVM8 tick cell line. The virus prevalence ranged from 1.58% to 4.18% in D. reticulatus, ranged from 0.78% to 3.93% in D. marginatus, and was 0.66% in I. persulcatus. There was combined focus of TBEV and YGTV in the territory of the Chelyabinsk region. The Alongshan virus (ALSV) was found to be associated with I. persulcatus ticks and is spread in forest zone. We detected 12 amplicons and isolated 7 strains of ALSV in tick cells. The virus prevalence ranged from 1.13% to 6.00%. The phlebovirus Gomselga and unclassified phenuivirus Stavropol were associated with I. persulcatus and D. reticulatus ticks, respectively. Virus prevalence of the unclassified phenuivirus Stavropol in the Chelyabinsk region is lower than that in neighbouring regions.
Collapse
Affiliation(s)
- Ivan S. Kholodilov
- Laboratory of Biology of Arboviruses, FSASI Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS, 108819 Moscow, Russia
| | - Oxana A. Belova
- Laboratory of Biology of Arboviruses, FSASI Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS, 108819 Moscow, Russia
| | - Anna Y. Ivannikova
- Laboratory of Biology of Arboviruses, FSASI Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS, 108819 Moscow, Russia
| | - Magomed N. Gadzhikurbanov
- Laboratory of Biology of Arboviruses, FSASI Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS, 108819 Moscow, Russia
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Marat T. Makenov
- Department of Molecular Diagnostics and Epidemiology, Central Research Institute of Epidemiology, 111123 Moscow, Russia
| | - Alexander S. Yakovlev
- Laboratory of Biology of Arboviruses, FSASI Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS, 108819 Moscow, Russia
| | - Alexandra E. Polienko
- Laboratory of Biology of Arboviruses, FSASI Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS, 108819 Moscow, Russia
| | - Alena V. Dereventsova
- Laboratory of Biochemistry, FSASI Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS, 108819 Moscow, Russia
| | - Alexander G. Litov
- Laboratory of Biology of Arboviruses, FSASI Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS, 108819 Moscow, Russia
| | - Larissa V. Gmyl
- Laboratory of Biology of Arboviruses, FSASI Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS, 108819 Moscow, Russia
| | - Egor V. Okhezin
- Laboratory of Biology of Arboviruses, FSASI Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS, 108819 Moscow, Russia
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | | | - Alexander S. Klimentov
- Laboratory of Biochemistry, FSASI Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS, 108819 Moscow, Russia
| | - Galina G. Karganova
- Laboratory of Biology of Arboviruses, FSASI Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS, 108819 Moscow, Russia
- Correspondence:
| |
Collapse
|
5
|
Delimitation of the Tick-Borne Flaviviruses. Resolving the Tick-Borne Encephalitis virus and Louping-Ill Virus Paraphyletic Taxa. Mol Phylogenet Evol 2022; 169:107411. [PMID: 35032647 DOI: 10.1016/j.ympev.2022.107411] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/22/2021] [Accepted: 12/27/2021] [Indexed: 11/22/2022]
Abstract
The tick-borne flavivirus (TBFV) group contains at least 12 members where five of them are important pathogens of humans inducing diseases with varying severity (from mild fever forms to acute encephalitis). The taxonomy structure of TBFV is not fully clarified at present. In particular, there is a number of paraphyletic issues of tick-borne encephalitis virus (TBEV) and louping-ill virus (LIV). In this study, we aimed to apply different bioinformatic approaches to analyze all available complete genome amino acid sequences to delineate TBFV members at the species level. Results showed that the European subtype of TBEV (TBEV-E) is a distinct species unit. LIV, in turn, should be separated into two species. Additional analysis of TBEV and LIV antigenic determinant diversity also demonstrate that TBEV-E and LIV are significantly different both from each other and from the other TBEV subtypes. The analysis of available literature provided data on other virus phenotypic particularities that supported our hypothesis. So, within the TBEV+LIV paraphyletic group, we offer to assign four species to get a more accurate understanding of the TBFV interspecies structure according to the modern monophyletic conception.
Collapse
|
6
|
Clark JJ, Gilray J, Orton RJ, Baird M, Wilkie G, Filipe ADS, Johnson N, McInnes CJ, Kohl A, Biek R. Population genomics of louping ill virus provide new insights into the evolution of tick-borne flaviviruses. PLoS Negl Trop Dis 2020; 14:e0008133. [PMID: 32925939 PMCID: PMC7515184 DOI: 10.1371/journal.pntd.0008133] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 09/24/2020] [Accepted: 08/07/2020] [Indexed: 12/30/2022] Open
Abstract
The emergence and spread of tick-borne arboviruses pose an increased challenge to human and animal health. In Europe this is demonstrated by the increasingly wide distribution of tick-borne encephalitis virus (TBEV, Flavivirus, Flaviviridae), which has recently been found in the United Kingdom (UK). However, much less is known about other tick-borne flaviviruses (TBFV), such as the closely related louping ill virus (LIV), an animal pathogen which is endemic to the UK and Ireland, but which has been detected in other parts of Europe including Scandinavia and Russia. The emergence and potential spatial overlap of these viruses necessitates improved understanding of LIV genomic diversity, geographic spread and evolutionary history. We sequenced a virus archive composed of 22 LIV isolates which had been sampled throughout the UK over a period of over 80 years. Combining this dataset with published virus sequences, we detected no sign of recombination and found low diversity and limited evidence for positive selection in the LIV genome. Phylogenetic analysis provided evidence of geographic clustering as well as long-distance movement, including movement events that appear recent. However, despite genomic data and an 80-year time span, we found that the data contained insufficient temporal signal to reliably estimate a molecular clock rate for LIV. Additional analyses revealed that this also applied to TBEV, albeit to a lesser extent, pointing to a general problem with phylogenetic dating for TBFV. The 22 LIV genomes generated during this study provide a more reliable LIV phylogeny, improving our knowledge of the evolution of tick-borne flaviviruses. Our inability to estimate a molecular clock rate for both LIV and TBEV suggests that temporal calibration of tick-borne flavivirus evolution should be interpreted with caution and highlight a unique aspect of these viruses which may be explained by their reliance on tick vectors. Tick-borne pathogens represent a major emerging threat to public health and in recent years have been expanding into new areas. LIV is a neglected virus endemic to the UK and Ireland (though it has been detected in Scandinavia and Russia) which is closely related to the major human pathogen TBEV, but predominantly causes disease in sheep and grouse. The recent detection of TBEV in the UK, which has also emerged elsewhere in Europe, requires more detailed understanding of the spread and sequence diversity of LIV. This could be important for diagnosis and vaccination, but also to improve our understanding of the evolution and emergence of these tick-borne viruses. Here we describe the sequencing of 22 LIV isolates which have been sampled from several host species across the past century. We have utilised this dataset to investigate the evolutionary pressures that LIV is subjected to and have explored the evolution of LIV using phylogenetic analysis. Crucially we were unable to estimate a reliable molecular clock rate for LIV and found that this problem also extends to a larger phylogeny of TBEV sequences. This work highlights a previously unknown caveat of tick-borne flavivirus evolutionary analysis which may be important for understanding the evolution of these important pathogens.
Collapse
Affiliation(s)
- Jordan J. Clark
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
- Moredun Research Institute, Edinburgh, United Kingdom
- * E-mail: (JC); (RB)
| | - Janice Gilray
- Moredun Research Institute, Edinburgh, United Kingdom
| | - Richard J. Orton
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Margaret Baird
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Gavin Wilkie
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Ana da Silva Filipe
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Nicholas Johnson
- Animal and Plant Health Agency, Addlestone, Surrey, United Kingdom
- Faculty of Health and Medical Science, University of Surrey, Guildford, Surrey, United Kingdom
| | | | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Roman Biek
- Institute of Biodiversity, Animal Health and Comparative Medicine - University of Glasgow, Glasgow, United Kingdom
- * E-mail: (JC); (RB)
| |
Collapse
|
7
|
A Fatal Case of Louping-ill in a Dog: Immunolocalization and Full Genome Sequencing of the Virus. J Comp Pathol 2018; 165:23-32. [PMID: 30502792 PMCID: PMC6302148 DOI: 10.1016/j.jcpa.2018.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/28/2018] [Accepted: 09/11/2018] [Indexed: 11/25/2022]
Abstract
Louping-ill (LI), caused by louping-ill virus (LIV), results in a frequently fatal encephalitis primarily affecting sheep and red grouse (Lagopus lagopus scotica), but it does occur in other species. An adult male Border collie dog was definitively diagnosed with fatal LI and the lesion profile, LIV antigen distribution and full genome sequence of the LIV responsible were investigated to determine if this differed significantly from sheep-derived LIV. No gross lesions were present. The histological lesions were confined to the central nervous system and comprised of lymphocytic perivascular cuffs, glial foci, neuronal necrosis and neuronophagia. Immunolocalization of viral antigen showed small amounts present in neurons only. These histological and immunohistochemical findings were similar to those reported in affected sheep. Compared with published full genome sequences of sheep-derived LIV, only very minor differences were present and phylogenetically the virus clustered individually between a subclade containing Scottish strains, LIV 369/T2 and G and another subclade containing an English isolate LIV A. The LIV isolated from the dog shares a common progenitor with LIV A. These findings suggest there is no canine-specific LIV strain, dogs are susceptible to sheep-associated strains of LI and with the increase in tick prevalence, and therefore exposure to LIV, a safe, effective vaccine for dogs may be required.
Collapse
|
8
|
Kuno G, Mackenzie JS, Junglen S, Hubálek Z, Plyusnin A, Gubler DJ. Vertebrate Reservoirs of Arboviruses: Myth, Synonym of Amplifier, or Reality? Viruses 2017; 9:E185. [PMID: 28703771 PMCID: PMC5537677 DOI: 10.3390/v9070185] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/10/2017] [Accepted: 07/10/2017] [Indexed: 02/07/2023] Open
Abstract
The rapid succession of the pandemic of arbovirus diseases, such as dengue, West Nile fever, chikungunya, and Zika fever, has intensified research on these and other arbovirus diseases worldwide. Investigating the unique mode of vector-borne transmission requires a clear understanding of the roles of vertebrates. One major obstacle to this understanding is the ambiguity of the arbovirus definition originally established by the World Health Organization. The paucity of pertinent information on arbovirus transmission at the time contributed to the notion that vertebrates played the role of reservoir in the arbovirus transmission cycle. Because this notion is a salient feature of the arbovirus definition, it is important to reexamine its validity. This review addresses controversial issues concerning vertebrate reservoirs and their role in arbovirus persistence in nature, examines the genesis of the problem from a historical perspective, discusses various unresolved issues from multiple points of view, assesses the present status of the notion in light of current knowledge, and provides options for a solution to resolve the issue.
Collapse
Affiliation(s)
- Goro Kuno
- Formerly at the Division of Vector-Borne Infectious Diseases, Centers for Control and Prevention, Fort Collins, CO, USA.
| | - John S Mackenzie
- Faculty of Medical Sciences, Curtin University, GPO Box U1987, Perth, WA 6845, Australia.
- Division of Microbiology & Infectious Diseases, PathWest, Nedlands, Western Australia 6009.
| | - Sandra Junglen
- Institute of Virology, Charité-Universitätsmedizin Berlin, Helmut-Ruska-Haus, Chariteplatz 1, 10117 Berlin, Germany.
| | - Zdeněk Hubálek
- Institute of Vertebrate Biology, Academy of Sciences of Czech Republic, 60365 Brno, Czech Republic.
| | - Alexander Plyusnin
- Department of Virology, University of Helsinki, Haartmaninkatu 3, University of Helsinki, 00014 Helsinki, Finland.
| | - Duane J Gubler
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Rd., Singapore 169857 Singapore.
| |
Collapse
|