1
|
Azevedo LS, Costa FF, Ghani MBA, Viana E, França Y, Medeiros RS, Guiducci R, Morillo SG, Primo D, Lopes RD, Gomes-Gouvêa MS, da Costa AC, Luchs A. Full genotype characterization of Brazilian canine G3P[3] strains during a 10-year survey (2012-2021) of rotavirus infection in domestic dogs and cats. Arch Virol 2023; 168:176. [PMID: 37306860 DOI: 10.1007/s00705-023-05807-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 04/25/2023] [Indexed: 06/13/2023]
Abstract
There is a dearth of information on the molecular epidemiology of rotaviruses in pets in Brazil. The aim of this study was to monitor rotavirus infections in household dogs and cats, determine full-genotype constellations, and obtain data on evolutionary relationships. Between 2012 and 2021, 600 fecal samples from dogs and cats (516 and 84, respectively) were collected at small animal clinics in São Paulo state, Brazil. Rotavirus screening was conducted using ELISA, PAGE, RT-PCR, sequencing, and phylogenetic analysis. Rotavirus type A (RVA) was detected in 0.5% (3/600) of the animals. No non-RVA types were detected. The three canine RVA strains were found to have a novel genetic constellation, G3-P[3] -I2-R3-C2-M3-A9-N2-T3-E3-H6, which has never been reported in dogs. As expected, all of the viral genes, except those encoding NSP2 and VP7, were closely related to the corresponding genes from canine, feline, and canine-like-human RVA strains. A novel N2 (NSP2) lineage was identified, grouping together Brazilian canine, human, rat and bovine strains, suggesting that genetic reassortment had occurred. Uruguayan G3 strains obtained from sewage contained VP7 genes that were phylogenetically close to those of the Brazilian canine strains, which suggests that these strains are widely distributed in pet populations in South American countries. For the NSP2 (I2), NSP3 (T3), NSP4 (E3), NSP5 (H6), VP1 (R3), VP3 (M3), and VP6 (I2) segments, phylogenetic analysis revealed possibly new lineages. The epidemiological and genetic data presented here point out the necessity for collaborative efforts to implement the One Health strategy in the field of RVA research and to provide an updated understanding of RVA strains circulating canines in Brazil.
Collapse
Affiliation(s)
- Lais Sampaio Azevedo
- Enteric Diseases Laboratory, Virology Center, Adolfo Lutz Institute, São Paulo, Brazil
| | | | | | - Ellen Viana
- Enteric Diseases Laboratory, Virology Center, Adolfo Lutz Institute, São Paulo, Brazil
| | - Yasmin França
- Enteric Diseases Laboratory, Virology Center, Adolfo Lutz Institute, São Paulo, Brazil
| | | | - Raquel Guiducci
- Enteric Diseases Laboratory, Virology Center, Adolfo Lutz Institute, São Paulo, Brazil
| | | | - Dieli Primo
- Enteric Diseases Laboratory, Virology Center, Adolfo Lutz Institute, São Paulo, Brazil
| | | | - Michele Soares Gomes-Gouvêa
- Laboratorio de Gastroenterologia e Hepatologia Tropical-LIM07, Departamento de Gastroenterologia, Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Antonio Charlys da Costa
- Laboratorio de Parasitologia Médica-LIM46, Departamento de Doenças Infecciosas e Parasitárias, Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Adriana Luchs
- Enteric Diseases Laboratory, Virology Center, Adolfo Lutz Institute, São Paulo, Brazil.
- Instituto Adolfo Lutz, Centro de Virologia, Núcleo de Doenças Entéricas, Av. Dr Arnaldo, nº 355, São Paulo, SP, 01246-902, Brazil.
| |
Collapse
|
2
|
Abstract
Rotaviruses are the most common viral agents associated with foal diarrhea. Between 2014 and 2017, the annual prevalence of rotavirus in diarrheic foals ranged between 18 and 28% in Haryana (India). Whole-genome sequencing of two equine rotavirus A (ERVA) isolates (RVA/Horse-wt/IND/ERV4/2017 and RVA/Horse-wt/IND/ERV6/2017) was carried out to determine the genotypic constellations (GCs) of ERVAs. The GCs of both the isolates were G3-P[3]-I8-R3-C3-M3-A9-N3-T3-E3-H6, a unique combination reported for ERVAs so far. Both the isolates carried VP6 of genotype I8, previously unreported from equines. Upon comparison with RVAs of other species, the GC of both isolates was identical to that of a bat rotavirus strain, MSLH14, isolated from China in 2012. The nucleotide sequences of the genes encoding VP3, NSP2, and NSP3 shared >95.81% identity with bat RVA strains isolated from Africa (Gabon). The genes encoding VP1, VP2, VP7, NSP1, and NSP4 shared 94.82% to 97.12% nucleotide identities with the human strains which have zoonotic links to bats (RCH272 and MS2015-1-0001). The VP6 genes of both strains were distinct and had the highest similarity of only 87.08% with that of CMH222, a human strain of bat origin. The phylogenetic analysis and lineage studies revealed that VP7 of both isolates clustered in a new lineage (lineage X) of the G3 genotype with bat, human, and alpaca strains. Similarly, VP4 clustered in a distinct P[3] lineage. These unusual findings highlight the terra incognita of the genomic diversity of equine rotaviruses and support the need for the surveillance of RVAs in animals and humans with a "one health" approach. IMPORTANCE Rotaviruses are globally prevalent diarrheal pathogens in young animals including foals, piglets, calves, goats, sheep, cats, and dogs along with humans. The genome of rotaviruses consists of 11 segments, which enables them to undergo reshuffling by reassortment of segments from multiple species during mixed infections. In this study, the prevalence of equine rotaviruses was 32.11% in organized equine farms of North India. The complete genome analysis of two ERVA isolates revealed an unusual genomic constellation, which was previously reported only in a bat RVA strain. A segment-wise phylogenetic analysis revealed that most segments of both isolates were highly similar either to bat or to bat-like human rotaviruses. The occurrence of unusual bat-like rotaviruses in equines emphasizes the need of extensive surveillance of complete genomes of both animal and human rotaviruses with a "one health" approach.
Collapse
|
3
|
Abstract
This review briefly describes the virus classification, clinical signs, epidemiology,
diagnosis, disinfection, and vaccines related equine group A rotavirus (RVA) infection.
Equine RVA is one of the most important pathogens causing diarrhoea in foals. The main
transmission route is faecal–oral, and the clinical signs are diarrhoea, fever, lethargy,
and anorexia (decreased suckling). Some human RVA rapid antigen detection kits based on
the principles of the immunochromatographic assay are useful for the diagnosis of equine
RVA infection. The kits are used in daily clinical practice because of their rapidity and
ease of handling. Equine RVA is a non-enveloped virus and is more resistant to
disinfectants than enveloped viruses such as equine influenza virus and equine
herpesvirus. Although amphoteric soaps and quaternary ammonium compounds are commonly used
in veterinary hygiene, they are generally ineffective against equine RVA. Alcohol
products, aldehydes, and chlorine- and iodine-based compounds are effective against equine
RVA. Inactivated vaccines have been used for equine RVA infection in some countries.
Pregnant mares are intramuscularly inoculated with a vaccine, and thus their colostrum has
abundant antibodies against RVA at the time of birth. According to G and P classification
defined in accordance with the VP7 and VP4 genes, respectively, the predominant equine
RVAs circulating in horse populations globally are G3P[12] and G14P[12] equine RVAs, but
the vaccines contain only the G3P[12] equine RVA strain. Ideally, a G14P[12] equine RVA
should be added as a vaccine strain to obtain a better vaccine effect.
Collapse
Affiliation(s)
- Manabu Nemoto
- Equine Research Institute, Japan Racing Association, Tochigi 329-0412, Japan
| | - Tomio Matsumura
- Equine Research Institute, Japan Racing Association, Tochigi 329-0412, Japan
| |
Collapse
|
4
|
Nomura M, Kuroda T, Tamura N, Muranaka M, Niwa H. Mortality, clinical findings, predisposing factors and treatment of Clostridioides difficile colitis in Japanese thoroughbred racehorses. Vet Rec 2020; 187:e14. [PMID: 32201380 DOI: 10.1136/vr.105605] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 12/26/2019] [Accepted: 02/10/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND Although Clostridioides difficile-associated diseases (CDAD) is considered to be associated with colitis in horses, few studies have been performed with a focus on the characteristics of CDAD in thoroughbred racehorses. METHODS Between 2010 and 2018, a test for C. difficile was performed using faecal samples from 137 thoroughbred racehorses with colitis presenting with diarrhoea and fever. The mortality rate, clinical findings, predisposing factors and the selected treatments were investigated in a retrospective manner. RESULTS Twenty-four cases were diagnosed as CDAD and 113 as non-CDAD. The mortality rate was significantly higher in the CDAD group (83 per cent) than that in the non-CDAD group (34 per cent). The levels of serum amyloid A, blood urea nitrogen and packed cell volume at initial presentation were also significantly higher, and those of total protein and albumin were significantly lower in the CDAD group. The development of CDAD was associated with the administration of antimicrobials, surgery and hospitalisation. No significant improvement in mortality was observed for any of the selected treatment in both groups. CONCLUSION CDAD in thoroughbred racehorses was identified as a high mortality disease with rapid progression of systemic inflammation and deterioration of the circulatory state. Further investigation is required to improve the treatment.
Collapse
Affiliation(s)
- Motoi Nomura
- The Horse Racing School, Japan Racing Association, Shiroi, Chiba, Japan
| | - Taisuke Kuroda
- Clinical Science & Pathobiology Division, Equine Research Institute, Japan Racing Association, Shimotsuke, Tochigi, Japan
| | - Norihisa Tamura
- Clinical Science & Pathobiology Division, Equine Research Institute, Japan Racing Association, Shimotsuke, Tochigi, Japan
| | - Masanori Muranaka
- Racehorse Hospital, Miho Training Center, Japan Racing Association, Inashiki, Ibaraki, Japan
| | - Hidekazu Niwa
- Microbiology Division, Equine Research Institute, Japan Racing Association, Shimotsuke, Tochigi, Japan
| |
Collapse
|
5
|
Nemoto M, Niwa H, Murakami S, Miki R, Higuchi T, Bannai H, Tsujimura K, Kokado H. Molecular analyses of G3A/G3B and G14 equine group A rotaviruses detected between 2012 and 2018 in Japan. J Gen Virol 2019; 100:913-931. [PMID: 31090536 DOI: 10.1099/jgv.0.001265] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Equine group A rotaviruses (RVAs) cause diarrhoea in foals. We investigated the G genotypes of 360 RVA-positive samples obtained from diarrhoeic foals between 2012 and 2018 in the Hidaka district of Hokkaido, Japan, through sequence analysis of VP7. All samples were classified into genotypes G3A, G3B and G14. G3B RVAs were detected until 2016, and G3A RVAs were detected from 2016 to 2018. G14 RVAs were detected from 2012 to 2018. Although G3B RVAs had been circulating in Japan for a long time, G3A RVAs suddenly emerged in 2016, and have replaced G3B RVAs since 2017. Molecular analyses of VP7 and VP4 showed that these Japanese G3A RVAs are closely related to North American G3A RVAs detected in 2017. Additionally, whole-genome analyses suggested that genetic reassortments occurred between G3A and G14 RVAs in NSP1, NSP2, NSP4 and NSP5.
Collapse
Affiliation(s)
- Manabu Nemoto
- 1 Equine Research Institute, Japan Racing Association, Shimotsuke, Tochigi, Japan
| | - Hidekazu Niwa
- 1 Equine Research Institute, Japan Racing Association, Shimotsuke, Tochigi, Japan
| | | | - Ryoka Miki
- 2 Thermo Fisher Scientific, Tokyo, Japan
| | - Tohru Higuchi
- 3 Mitsuishi Animal Medical Center, Hokkaido South Agricultural Mutual Aid Association, Shinhidaka-cho, Hokkaido, Japan
| | - Hiroshi Bannai
- 1 Equine Research Institute, Japan Racing Association, Shimotsuke, Tochigi, Japan
| | - Koji Tsujimura
- 1 Equine Research Institute, Japan Racing Association, Shimotsuke, Tochigi, Japan
| | - Hiroshi Kokado
- 1 Equine Research Institute, Japan Racing Association, Shimotsuke, Tochigi, Japan
| |
Collapse
|
6
|
Nemoto M, Inagaki M, Tamura N, Bannai H, Tsujimura K, Yamanaka T, Kokado H. Evaluation of inactivated vaccines against equine group A rotaviruses by use of a suckling mouse model. Vaccine 2018; 36:5551-5555. [PMID: 30076106 DOI: 10.1016/j.vaccine.2018.07.057] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/20/2018] [Accepted: 07/22/2018] [Indexed: 11/30/2022]
Abstract
BACKGROUND Equine group A rotaviruses (RVAs) cause diarrhea in suckling foals. The dominant RVAs circulating among horses worldwide, including Japan, are G3P[12] and/or G14P[12] genotypes. Inactivated vaccines containing a G3P[12] RVA are commercially available in some countries for prevention of diarrhea caused by equine RVAs. However, there is no reported evidence whether vaccines containing a G3P[12] RVA are effective against G14P[12] RVAs or whether using a G14P[12] RVA results in a more effective vaccine. This study used a suckling mouse model to evaluate the effectiveness of inactivated vaccines containing G3P[12] (G3 vaccine) or G14P[12] (G14 vaccine) RVAs against G3P[12] and G14P[12] RVAs. METHODS Female mice were inoculated twice with G3 or G14 vaccines, and were then mated. After parturition, suckling mice were challenged with one of either two G3P[12] RVAs, two G14P[12] RVAs, or one G13P[18] RVA. After virus inoculation, suckling mice were observed for diarrhea, and the incidence rates of diarrhea in the vaccinated groups were compared with those in the non-vaccinated groups. RESULTS Following G3P[12] RVA challenge, suckling mice in the G3 and G14 vaccinated groups had significantly lower rates of diarrhea incidence than did those in the non-vaccinated group, and the rates in the G3 vaccinated group tended to be lower than in the G14 vaccinated group. Following G14P[12] RVA challenge, suckling mice in the G14 vaccinated group had significantly lower rates of diarrhea incidence than did those in the non-vaccinated and G3 vaccinated groups. The G3 and G14 vaccines did not reduce the rate when challenged with the G13P[18] RVA. CONCLUSION The mouse model showed that the G3 and G14 vaccines were both effective against G3P[12] RVAs, and that the G14 vaccine was effective against G14P[12] RVAs. These results suggest that at least a G14 RVA strain should be included in as a vaccine strain.
Collapse
Affiliation(s)
- Manabu Nemoto
- Equine Research Institute, Japan Racing Association, 1400-4 Shiba, Shimotsuke, Tochigi 329-0412, Japan.
| | - Mizuho Inagaki
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan
| | - Norihisa Tamura
- Equine Research Institute, Japan Racing Association, 1400-4 Shiba, Shimotsuke, Tochigi 329-0412, Japan
| | - Hiroshi Bannai
- Equine Research Institute, Japan Racing Association, 1400-4 Shiba, Shimotsuke, Tochigi 329-0412, Japan
| | - Koji Tsujimura
- Equine Research Institute, Japan Racing Association, 1400-4 Shiba, Shimotsuke, Tochigi 329-0412, Japan
| | - Takashi Yamanaka
- Equine Research Institute, Japan Racing Association, 1400-4 Shiba, Shimotsuke, Tochigi 329-0412, Japan
| | - Hiroshi Kokado
- Equine Research Institute, Japan Racing Association, 1400-4 Shiba, Shimotsuke, Tochigi 329-0412, Japan
| |
Collapse
|
7
|
Miño S, Adúriz M, Barrandeguy M, Parreño V. Molecular Characterization of Equine Rotavirus Group A Detected in Argentinean Foals During 2009–2014. J Equine Vet Sci 2017. [DOI: 10.1016/j.jevs.2017.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Naseer O, Jarvis MC, Ciarlet M, Marthaler DG. Genotypic and epitope characteristics of group A porcine rotavirus strains circulating in Canada. Virology 2017; 507:53-63. [PMID: 28399437 DOI: 10.1016/j.virol.2017.03.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 03/20/2017] [Accepted: 03/21/2017] [Indexed: 02/04/2023]
Abstract
Surveillance of Rotavirus A (RVA) infections in North America swine populations are limited and not performed over a significant time period to properly assess the diversity of RVA strains in swine. The VP7 (G) and VP4 (P) genes of 32 Canadian RVA strains, circulating between 2009 and 2015 were sequenced, identifying the G3P[13], G5P[7], G9P[7], G9[13], and G9[19] genotype combinations. The Canadian RVA strains were compared to the RVA strains present in the swine ProSystems RCE rotavirus vaccine. The comparison revealed multiple amino acid differences in the G and P antigenic epitopes, regardless of the G and P genotypes but specifically in the Canadian G3, P[13] and P[19] genotypes. Our study further contributes to the characterization of RVA's evolution and disease mitigation among swine, which may optimize target vaccine design, thereby minimizing RVA disease in this economically important animal population.
Collapse
Affiliation(s)
- Omer Naseer
- Department of Clinical Medicine and Surgery, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Matthew C Jarvis
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States
| | - Max Ciarlet
- Vaccines Clinical Research and Development, GlaxoSmithKline Vaccines, Cambridge, MA, United States
| | - Douglas G Marthaler
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States.
| |
Collapse
|
9
|
Guerra SFS, Soares LS, Lobo PS, Penha Júnior ET, Sousa Júnior EC, Bezerra DAM, Vaz LR, Linhares AC, Mascarenhas JDP. Detection of a novel equine-like G3 rotavirus associated with acute gastroenteritis in Brazil. J Gen Virol 2016; 97:3131-3138. [PMID: 27902376 DOI: 10.1099/jgv.0.000626] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Genotype G3P[8] of rotavirus A (RVA) is detected worldwide, usually associated with Wa-like constellation and exhibiting a long RNA migration pattern. More recently, a novel inter-genogroup, G3P[8] reassortant variant with a short electropherotype, has emerged in Asia, Oceania and Europe, denoting an overall potential of unusual rotavirus strains. During a RVA surveillance in Brazil, G3P[8] strains were found displaying a short electropherotype pattern, which had not been detected before in this region. This study aims to characterize the complete genome of 10 G3P[8] strains detected in the northern region of Brazil. All G3P[8] samples were subjected to partial sequencing, and the whole-genome phylogenetic analysis demonstrated that all strains possessed I2-R2-C2-M2-A2-N1-T2-E2-H2 genotype background, representing reassortants with an equine-like G3 VP7 and amino acid changes in VP4 and VP7 antigenic regions as compared to vaccine strains. Phylogenetic analysis demonstrated high nucleotide identity in almost all RNA segments of G3P[8] DS-1 samples detected in Asia, Oceania and Europe as well as G3P[4] strains in Japan. This study reports a novel, equine-like G3P[8] strain circulating in Brazil and isolated from children hospitalized for severe gastroenteritis, and highlights the complex dynamics of RVA molecular epidemiology. Our findings point to a novel RVA strain emerging in this region, and studies should be done to detect whether this may represent a challenge to current vaccine strategies.
Collapse
Affiliation(s)
| | - Luana Silva Soares
- Evandro Chagas Institute, Health Surveillance Secretariat, Belém, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Miño S, Barrandeguy M, Parreño V, Parra GI. Genetic linkage of capsid protein-encoding RNA segments in group A equine rotaviruses. J Gen Virol 2016; 97:912-921. [PMID: 26758293 DOI: 10.1099/jgv.0.000397] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rotavirus virions are formed by three concentric protein layers that enclose the 11 dsRNA genome segments and the viral proteins VP1 and VP3. Interactions amongst the capsid proteins (VP2, VP6, VP7 and VP4) have been described to play a major role in viral fitness, whilst restricting the reassortment of the genomic segments during co-infection with different rotavirus strains. In this work we describe and characterize the linkage between VP6 and VP7 proteins based on structural and genomic analyses of group A rotavirus strains circulating in Argentinean horses. Strains with the VP7 genotype G3 showed a strong association with the VP6 genotype I6, whilst strains with G14 were associated with the I2 genotype. Most of the differences on the VP6 and VP7 proteins were observed in interactive regions between the two proteins, suggesting that VP6 : VP7 interactions may drive the co-evolution and co-segregation of their respective gene segments.
Collapse
Affiliation(s)
- Samuel Miño
- Instituto de Virología, CICVyA, INTA Castelar, Nicolás Repetto y De los Reseros s/n (CP 1816), Hurlingham, Buenos Aires, Argentina
| | - María Barrandeguy
- Instituto de Virología, CICVyA, INTA Castelar, Nicolás Repetto y De los Reseros s/n (CP 1816), Hurlingham, Buenos Aires, Argentina.,Escuela de Veterinaria, Universidad del Salvador, Champagnat 1599, Ruta Panamericana km54.5 (B1630AHU), Pilar, Buenos Aires, Argentina
| | - Viviana Parreño
- Instituto de Virología, CICVyA, INTA Castelar, Nicolás Repetto y De los Reseros s/n (CP 1816), Hurlingham, Buenos Aires, Argentina
| | - Gabriel I Parra
- Departamento de Biología Molecular y Genética, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, Asunción, Paraguay
| |
Collapse
|