1
|
Lin W, Zhang S, Zhang H, Deng X, Jiang T, Chen X, Dong L, Yan Q, Zang L, Xing Y, Wang Z, Zhang Q, Du K, Shen H, Zhang J, Zhou T. The transcriptional analysis of pepper shed light on a proviral role of light-harvesting chlorophyll a/b binding protein 13 during infection of pepper mild mottle virus. FRONTIERS IN PLANT SCIENCE 2025; 16:1533151. [PMID: 39931497 PMCID: PMC11808148 DOI: 10.3389/fpls.2025.1533151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 01/07/2025] [Indexed: 02/13/2025]
Abstract
Pepper mild mottle virus (PMMoV), a member of the genus Tobamovirus, causes severe damage on pepper worldwide. Despite its impact, the pathogenicity mechanisms of PMMoV and the pepper plant's response to infection remain poorly understood. Here, we compared the transcriptomic changes in a susceptible pepper inbred line 21C241 with a resistant inbred line 21C385 seedlings, following systemic PMMoV infection using RNA sequencing. Our results revealed that PMMoV induced more pronounced mosaic symptoms and higher viral accumulation levels in the susceptible line 21C241 compared to the resistant line 21C385. We identified 462 and 401 differentially expressed genes (DEGs) in the systemically-infected leaves of the susceptible and resistant lines, respectively, when compared to their healthy counterparts. The majority of these DEGs were involved in photosynthesis and the biosynthesis of secondary metabolites, with 28 DEGs exhibiting distinct expression patterns between the two lines. Notably, the expression level of the chlorophyll a-b binding protein 13 (CAB13) was significantly up-regulated in resistant line 21C385 following PMMoV infection. Functional analysis through silencing of CAB13 in pepper and Nicotiana benthamiana demonstrated a reduction in PMMoV accumulation, suggesting that CAB13 plays a positive role in facilitating PMMoV infection in pepper plants. Taken together, our findings highlight the distinct gene expression profiles between susceptible and resistant pepper lines in response to PMMoV infection and confirm the proviral role of CAB13. This study provides valuable insights into the molecular mechanisms underlying resistance and susceptibility in pepper plants and may inform future strategies for disease management.
Collapse
Affiliation(s)
- Weihong Lin
- Key Laboratory for Pest Monitoring and Green Management of Ministry of Agriculture and Rural Affairs, and Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Shugen Zhang
- Laboratory of Plant Tissue Culture Technology of Haidian District, Beijing, China
| | - Hao Zhang
- Key Laboratory for Pest Monitoring and Green Management of Ministry of Agriculture and Rural Affairs, and Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Xiaomei Deng
- Laboratory of Plant Tissue Culture Technology of Haidian District, Beijing, China
| | - Tong Jiang
- College of Agriculture and Biology, Liaocheng University, Liaocheng, China
| | - Xifeng Chen
- Key Laboratory for Pest Monitoring and Green Management of Ministry of Agriculture and Rural Affairs, and Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Laihua Dong
- Key Laboratory for Pest Monitoring and Green Management of Ministry of Agriculture and Rural Affairs, and Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Qin Yan
- Key Laboratory for Pest Monitoring and Green Management of Ministry of Agriculture and Rural Affairs, and Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Lianyi Zang
- Key Laboratory for Pest Monitoring and Green Management of Ministry of Agriculture and Rural Affairs, and Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Yongping Xing
- Laboratory of Plant Tissue Culture Technology of Haidian District, Beijing, China
| | - Zhenquan Wang
- Laboratory of Plant Tissue Culture Technology of Haidian District, Beijing, China
| | - Qin Zhang
- Laboratory of Plant Tissue Culture Technology of Haidian District, Beijing, China
| | - Kaitong Du
- Key Laboratory for Pest Monitoring and Green Management of Ministry of Agriculture and Rural Affairs, and Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Huolin Shen
- College of Horticulture, China Agricultural University, Beijing, China
| | - Junmin Zhang
- Laboratory of Plant Tissue Culture Technology of Haidian District, Beijing, China
| | - Tao Zhou
- Key Laboratory for Pest Monitoring and Green Management of Ministry of Agriculture and Rural Affairs, and Department of Plant Pathology, China Agricultural University, Beijing, China
| |
Collapse
|
2
|
Jiao M, Yin Y, Tian Y, Lei J, Lin L, Wu J, Lu Y, Zheng H, Yan F, Wang J, Peng J. Adoption of the 2A Ribosomal Skip Principle to Track Assembled Virions of Pepper Mild Mottle Virus in Nicotiana benthamiana. PLANTS (BASEL, SWITZERLAND) 2024; 13:928. [PMID: 38611458 PMCID: PMC11013369 DOI: 10.3390/plants13070928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/11/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024]
Abstract
The coat protein (CP) is an important structural protein that plays many functional roles during the viral cycle. In this study, the CP of pepper mild mottle virus (PMMoV) was genetically fused to GFP using the foot-and-mouth disease virus peptide 2A linker peptide and the construct (PMMoV-GFP2A) was shown to be infectious. The systemic spread of the virus was monitored by its fluorescence in infected plants. Electron microscopy and immunocolloidal gold labelling confirmed that PMMoV-GFP2A forms rod-shaped particles on which GFP is displayed. Studies of tissue ultrastructure and virion self-assembly confirmed that PMMoV-GFP2A could be used to monitor the real-time dynamic changes of CP location during virus infection. Aggregations of GFP-tagged virions appeared as fluorescent plaques in confocal laser microscopy. Altogether, PMMoV-GFP2A is a useful tool for studying the spatial and temporal changes of PMMoV CP during viral infection.
Collapse
Affiliation(s)
- Mengting Jiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (M.J.); (Y.T.); (J.L.); (L.L.); (J.W.); (Y.L.); (H.Z.); (F.Y.)
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Biocontrol Engineering Research Center of Crop Disease & Pest of Yunnan Province, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Yueyan Yin
- Institute of Biotechnology and Germplasm Resources, Yunnan Academy of Agricultural Sciences, Kunming 650223, China;
| | - Yanzhen Tian
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (M.J.); (Y.T.); (J.L.); (L.L.); (J.W.); (Y.L.); (H.Z.); (F.Y.)
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jianing Lei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (M.J.); (Y.T.); (J.L.); (L.L.); (J.W.); (Y.L.); (H.Z.); (F.Y.)
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Lin Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (M.J.); (Y.T.); (J.L.); (L.L.); (J.W.); (Y.L.); (H.Z.); (F.Y.)
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jian Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (M.J.); (Y.T.); (J.L.); (L.L.); (J.W.); (Y.L.); (H.Z.); (F.Y.)
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Yuwen Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (M.J.); (Y.T.); (J.L.); (L.L.); (J.W.); (Y.L.); (H.Z.); (F.Y.)
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Hongying Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (M.J.); (Y.T.); (J.L.); (L.L.); (J.W.); (Y.L.); (H.Z.); (F.Y.)
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (M.J.); (Y.T.); (J.L.); (L.L.); (J.W.); (Y.L.); (H.Z.); (F.Y.)
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jianguang Wang
- Biocontrol Engineering Research Center of Crop Disease & Pest of Yunnan Province, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Jiejun Peng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (M.J.); (Y.T.); (J.L.); (L.L.); (J.W.); (Y.L.); (H.Z.); (F.Y.)
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| |
Collapse
|
3
|
Zheng K, Zhang R, Wan Q, Zhang G, Lu Y, Zheng H, Yan F, Peng J, Wu J. Pepper mild mottle virus can infect and traffick within Nicotiana benthamiana plants in non-virion forms. Virology 2023; 587:109881. [PMID: 37703796 DOI: 10.1016/j.virol.2023.109881] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/28/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023]
Abstract
Virions are responsible for the long-distance transport of many viruses, such as Pepper mild mottle virus (PMMoV). Emerging evidence indicates viral traffic in the form of ribonucleoprotein complexes (RNP), yet comprehensive analysis is scarce. In this study, we inoculated plants with PMMoV-GFP, both with and without the coding sequence for the coat protein (CP). PMMoV-GFP was detected in systemic leaves, even in the absence of the CP, despite the presence of much smaller infection areas. Moreover, using leaf extracts from PMMoV-infected plants to perform a root-irrigation experiment, we confirmed that PMMoV can infect plants through root transmission. Diluting the leaf extracts significantly diminished infectivity, and attempts to compensate for the dilution of other components by adding virions above the original level proved ineffective. Our findings strongly indicate that PMMoV can infect and traffick within plants in non-virion forms. Future studies should aim to identify the specific forms involved.
Collapse
Affiliation(s)
- Kaiyue Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Ruihao Zhang
- Horticulture Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205, Yunnan, China
| | - Qionglian Wan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, Zhejiang, China; School of Chemistry, Biology and Environment, Yuxi Normal University, Yuxi, 653100, Yunnan, China
| | - Ge Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Yuwen Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Hongying Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Jiejun Peng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, Zhejiang, China.
| | - Jian Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, Zhejiang, China.
| |
Collapse
|
4
|
Han K, Zheng H, Yan D, Zhou H, Jia Z, Zhai Y, Wu J, Lu Y, Wu G, Rao S, Chen J, Peng J, Qi R, Yan F. Pepper mild mottle virus coat protein interacts with pepper chloroplast outer envelope membrane protein OMP24 to inhibit antiviral immunity in plants. HORTICULTURE RESEARCH 2023; 10:uhad046. [PMID: 37180740 PMCID: PMC10170409 DOI: 10.1093/hr/uhad046] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/07/2023] [Indexed: 05/16/2023]
Abstract
Pepper mild mottle virus (PMMoV) is a devastating viral pathogen of pepper (Capsicum annuum) but it is unclear whether and how peppers protect against PMMoV infection. The expression of the chloroplast outer membrane protein 24 (OMP24) of C. annuum was upregulated under PMMoV infection and it interacted with PMMoV coat protein (CP). Silencing of OMP24 in either C. annuum or Nicotiana benthamiana facilitated PMMoV infection, whereas overexpression of N. benthamiana OMP24 in transgenic plants inhibited PMMoV infection. Both C. annuum OMP24 (CaOMP24) and N. benthamiana OMP24 (NbOMP24) localized to the chloroplast and have a moderately hydrophobic transmembrane domain that is necessary for their localization. Overexpression of CaOMP24 induced stromules, perinuclear chloroplast clustering, and accumulation of reactive oxygen species (ROS), the typical defense responses of chloroplasts transferring the retrograde signaling to the nucleus to regulate resistance genes. The expression of PR1 and PR2 was also upregulated significantly in plants overexpressing OMP24. Self-interaction of OMP24 was demonstrated and was required for OMP24-mediated plant defense. Interaction with PMMoV CP interfered with the self-interaction of OMP24 and impaired OMP24-induced stromules, perinuclear chloroplast clustering and ROS accumulation. The results demonstrate the defense function of OMP24 in pepper during viral infection and suggest a possible mechanism by which PMMoV CP modulates the plant defense to facilitate viral infection.
Collapse
Affiliation(s)
- Kelei Han
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei, Anhui 230031, China
| | - Hongying Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Dankan Yan
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei, Anhui 230031, China
| | - Huijie Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Zhaoxing Jia
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Yushan Zhai
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Jian Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Yuwen Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Guanwei Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Shaofei Rao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | | | - Rende Qi
- Corresponding author. E-mail: , ,
| | - Fei Yan
- Corresponding author. E-mail: , ,
| |
Collapse
|
5
|
Yang Y, Hu D, Wang S, Wang Z, Zu G, Song B. First Discovery of Novel Cytosine Derivatives Containing a Sulfonamide Moiety as Potential Antiviral Agents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6026-6036. [PMID: 35575698 DOI: 10.1021/acs.jafc.2c00922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A series of cytosine derivatives containing a sulfonamide moiety were designed and synthesized, and their antiviral activities against pepper mild mottle virus (PMMoV) were systematically evaluated. Then, a three-dimensional quantitative structure-activity relationship (3D-QSAR) model was constructed to study the structure-activity relationship according to the pEC50 of the compounds' protective activities. Next, compound A32 with preferable antiviral activity on PMMoV was obtained based on the CoMSIA and CoMFA models, with an EC50 of 19.5 μg/mL, which was superior to the template molecule A25 (21.3 μg/mL) and ningnanmycin (214.0 μg/mL). In addition, further studies showed that the antiviral activity of compound A32 against PMMoV was in accord with the up-regulation of proteins expressed in the defense response and carbon fixation in photosynthetic organisms. These results indicated that cytosine derivatives containing a sulfonamide moiety could be used as novel potential antiviral agents for further research and development.
Collapse
Affiliation(s)
- Yuyuan Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Shaobo Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Zhijia Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Guangcheng Zu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Baoan Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
6
|
Shi J, He H, Hu D, Song B. Defense Mechanism of Capsicum annuum L. Infected with Pepper Mild Mottle Virus Induced by Vanisulfane. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3618-3632. [PMID: 35297641 DOI: 10.1021/acs.jafc.2c00659] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pepper mild mottle virus (PMMoV), an RNA virus, is one of the most devastating pathogens in pepper crops and has a significant influence on global crop yields. PMMoV poses a major threat to the global shortage of pepper plants and other Solanaceae crops due to the lack of an effective antiviral agent. In this study, we have developed a plant immune inducer (vanisulfane), as a "plant vaccine" that boosts plant immunity against PMMoV, and studied its resistance mechanism. The protective activity of vanisulfane against PMMoV was 59.4%. Vanisulfane can enhance the activity of defense enzymes and improve the content of chlorophyll, flavonoids, and total phenols for removing harmful free radicals from plants. Furthermore, vanisulfane was found to enhance defense genes. Label-free quantitative proteomics would tackle disease resistance pathways of vanisulfane. According to Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, differentially abundant proteins (DAPs) are mainly involved in starch and sucrose metabolism, photosynthesis, MAPK signaling pathway, and oxidative phosphorylation pathway. These results are crucial for the discovery of new pesticides, understanding the improvement of plant immunity and the antiviral activity of plant immune inducers.
Collapse
Affiliation(s)
- Jing Shi
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Hongfu He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Baoan Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
7
|
Zhao W, Wu S, Du L, Li T, Cheng Z, Zhou Y, Ji Y. Development of a reverse-transcription loop-mediated isothermal amplification assay for the detection of Tobacco mild green mosaic virus (TMGMV). J Virol Methods 2021; 298:114277. [PMID: 34492235 DOI: 10.1016/j.jviromet.2021.114277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 08/02/2021] [Accepted: 09/02/2021] [Indexed: 11/22/2022]
Abstract
Tobacco mild green mosaic virus (TMGMV), a member species of the genus Tobamovirus, infects pepper (Capsicum annuum) and a number of other economically important species in the Solanaceae family. TMGMV infections had seriously impacted pepper production worldwide, including China. A reverse-transcription loop-mediated isothermal amplification (RT-LAMP) assay was developed to detect TMGMV in pepper field samples and seed. This assay was based on four primers that matched to six sequences in the C-terminal region of the TMGMV genome. RT-LAMP assay could detect the presence of the virus in 3.0 × 10-7 µg of total RNA extract from pepper leaves, which was ten times more sensitive than the corresponding reverse-transcription polymerase chain reaction (RT-PCR) assay. This method specifically detected TMGMV but not the closely related species of the same genus Pepper mild mottle virus, Cucumber green mottle mosaic virus and Tomato mosaic virus. In addition, the use of SYBR Green I facilitated the detection of the TMGMV RT-LAMP products by the naked eye. These results indicated that the RT-LAMP assay was a simple, sensitive, specific and affordable diagnostic tool that has the potential to detect and monitor TMGMV infection in field samples.
Collapse
Affiliation(s)
- Wenhao Zhao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences/Key Lab of Food Quality and Safety of Jiangsu Province - State Key Laboratory Breeding Base, Nanjing 210014, China
| | - Shuhua Wu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences/Key Lab of Food Quality and Safety of Jiangsu Province - State Key Laboratory Breeding Base, Nanjing 210014, China
| | - Linlin Du
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences/Key Lab of Food Quality and Safety of Jiangsu Province - State Key Laboratory Breeding Base, Nanjing 210014, China
| | - Tingfang Li
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences/Key Lab of Food Quality and Safety of Jiangsu Province - State Key Laboratory Breeding Base, Nanjing 210014, China
| | - Zhaobang Cheng
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences/Key Lab of Food Quality and Safety of Jiangsu Province - State Key Laboratory Breeding Base, Nanjing 210014, China
| | - Yijun Zhou
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences/Key Lab of Food Quality and Safety of Jiangsu Province - State Key Laboratory Breeding Base, Nanjing 210014, China
| | - Yinghua Ji
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences/Key Lab of Food Quality and Safety of Jiangsu Province - State Key Laboratory Breeding Base, Nanjing 210014, China.
| |
Collapse
|
8
|
Peng J, Yin Y, Liang H, Lu Y, Zheng H, Wu G, Rao S, Chen J, Yan F, Hu J. Tumor Microenvironment Responsive Pepper Mild Mottle Virus-Based Nanotubes for Targeted Delivery and Controlled Release of Paclitaxel. Front Bioeng Biotechnol 2021; 9:763661. [PMID: 34660562 PMCID: PMC8514841 DOI: 10.3389/fbioe.2021.763661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 09/17/2021] [Indexed: 11/13/2022] Open
Abstract
Plant virus nanoparticles (PVNPs) have been widely used for drug delivery, antibody development and medical imaging because of their good biodegradation and biocompatibility. Particles of pepper mild mottle virus (PMMoV) are elongated and may be useful as drug carriers because their shape favours long circulation, preferential distribution and increased cellular uptake. Moreover, its effective degradation in an acidic microenvironment enables a pH-responsive release of the encapsulated drug. In this study, genetic engineering techniques were used to form rod-shaped structures of nanoparticles (PMMoV) and folated-modified PMMoV nanotubes were prepared by polyethylene glycol (PEG) to provide targeted delivery of paclitaxel (PTX). FA@PMMoV@PTX nanotubes were designed to selectively target tumor cells and to release the encapsulated PTX in response to pH. Efficient cell uptake of FA@PMMoV@PTX nanotubes was observed when incubated with tumor cells, and FA@PMMoV@PTX nanotubes had superior cytotoxicity to free PTX, as reflected by cell survival and apoptosis. This system is a strong candidate for use in developing improved strategies for targeted treatment of tumors.
Collapse
Affiliation(s)
- Jiejun Peng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Yueyan Yin
- College of Plant Protection, Yunnan Agricultural University, Kunming, China.,Institute of Alpine Economic Plants, Yunnan Academy of Agricultural Sciences, Lijiang, China
| | - Hongze Liang
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, China
| | - Yuwen Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Hongying Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Guanwei Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Shaofei Rao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jingbo Hu
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, China
| |
Collapse
|
9
|
D'Aoust PM, Graber TE, Mercier E, Montpetit D, Alexandrov I, Neault N, Baig AT, Mayne J, Zhang X, Alain T, Servos MR, Srikanthan N, MacKenzie M, Figeys D, Manuel D, Jüni P, MacKenzie AE, Delatolla R. Catching a resurgence: Increase in SARS-CoV-2 viral RNA identified in wastewater 48 h before COVID-19 clinical tests and 96 h before hospitalizations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021. [PMID: 33508669 DOI: 10.1016/j.scitotenv.2021.145319l] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Curtailing the Spring 2020 COVID-19 surge required sweeping and stringent interventions by governments across the world. Wastewater-based COVID-19 epidemiology programs have been initiated in many countries to provide public health agencies with a complementary disease tracking metric and non-discriminating surveillance tool. However, their efficacy in prospectively capturing resurgences following a period of low prevalence is unclear. In this study, the SARS-CoV-2 viral signal was measured in primary clarified sludge harvested every two days at the City of Ottawa's water resource recovery facility during the summer of 2020, when clinical testing recorded daily percent positivity below 1%. In late July, increases of >400% in normalized SARS-CoV-2 RNA signal in wastewater were identified 48 h prior to reported >300% increases in positive cases that were retrospectively attributed to community-acquired infections. During this resurgence period, SARS-CoV-2 RNA signal in wastewater preceded the reported >160% increase in community hospitalizations by approximately 96 h. This study supports wastewater-based COVID-19 surveillance of populations in augmenting the efficacy of diagnostic testing, which can suffer from sampling biases or timely reporting as in the case of hospitalization census.
Collapse
Affiliation(s)
- Patrick M D'Aoust
- Department of Civil Engineering, University of Ottawa, Ottawa K1N 6N5, Canada
| | - Tyson E Graber
- Children's Hospital of Eastern Ontario Research Institute, Ottawa K1H 8L1, Canada
| | - Elisabeth Mercier
- Department of Chemical Engineering, University of Ottawa, K1N 6N5, Canada
| | - Danika Montpetit
- Department of Chemical Engineering, University of Ottawa, K1N 6N5, Canada
| | - Ilya Alexandrov
- ActivSignal LLC., 27 Strathmore Rd., Natick, MA 01760, United States
| | - Nafisa Neault
- Children's Hospital of Eastern Ontario Research Institute, Ottawa K1H 8L1, Canada
| | - Aiman Tariq Baig
- Children's Hospital of Eastern Ontario Research Institute, Ottawa K1H 8L1, Canada
| | - Janice Mayne
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Xu Zhang
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Tommy Alain
- Children's Hospital of Eastern Ontario Research Institute, Ottawa K1H 8L1, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Mark R Servos
- Department of Biology, University of Waterloo, Waterloo N2L 3G1, Canada
| | | | - Malcolm MacKenzie
- ActivSignal LLC., 27 Strathmore Rd., Natick, MA 01760, United States
| | - Daniel Figeys
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa K1H 8M5, Canada; Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa K1N 6N5, Canada; Canadian Institute for Advanced Research, Toronto M5G 1M1, Canada
| | - Douglas Manuel
- Department of Family Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Peter Jüni
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto M5T 3M6, Canada
| | - Alex E MacKenzie
- Children's Hospital of Eastern Ontario Research Institute, Ottawa K1H 8L1, Canada
| | - Robert Delatolla
- Department of Civil Engineering, University of Ottawa, Ottawa K1N 6N5, Canada.
| |
Collapse
|
10
|
D'Aoust PM, Graber TE, Mercier E, Montpetit D, Alexandrov I, Neault N, Baig AT, Mayne J, Zhang X, Alain T, Servos MR, Srikanthan N, MacKenzie M, Figeys D, Manuel D, Jüni P, MacKenzie AE, Delatolla R. Catching a resurgence: Increase in SARS-CoV-2 viral RNA identified in wastewater 48 h before COVID-19 clinical tests and 96 h before hospitalizations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 770:145319. [PMID: 33508669 PMCID: PMC7826013 DOI: 10.1016/j.scitotenv.2021.145319] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/17/2021] [Accepted: 01/17/2021] [Indexed: 04/14/2023]
Abstract
Curtailing the Spring 2020 COVID-19 surge required sweeping and stringent interventions by governments across the world. Wastewater-based COVID-19 epidemiology programs have been initiated in many countries to provide public health agencies with a complementary disease tracking metric and non-discriminating surveillance tool. However, their efficacy in prospectively capturing resurgences following a period of low prevalence is unclear. In this study, the SARS-CoV-2 viral signal was measured in primary clarified sludge harvested every two days at the City of Ottawa's water resource recovery facility during the summer of 2020, when clinical testing recorded daily percent positivity below 1%. In late July, increases of >400% in normalized SARS-CoV-2 RNA signal in wastewater were identified 48 h prior to reported >300% increases in positive cases that were retrospectively attributed to community-acquired infections. During this resurgence period, SARS-CoV-2 RNA signal in wastewater preceded the reported >160% increase in community hospitalizations by approximately 96 h. This study supports wastewater-based COVID-19 surveillance of populations in augmenting the efficacy of diagnostic testing, which can suffer from sampling biases or timely reporting as in the case of hospitalization census.
Collapse
Affiliation(s)
- Patrick M D'Aoust
- Department of Civil Engineering, University of Ottawa, Ottawa K1N 6N5, Canada
| | - Tyson E Graber
- Children's Hospital of Eastern Ontario Research Institute, Ottawa K1H 8L1, Canada
| | - Elisabeth Mercier
- Department of Chemical Engineering, University of Ottawa, K1N 6N5, Canada
| | - Danika Montpetit
- Department of Chemical Engineering, University of Ottawa, K1N 6N5, Canada
| | - Ilya Alexandrov
- ActivSignal LLC., 27 Strathmore Rd., Natick, MA 01760, United States
| | - Nafisa Neault
- Children's Hospital of Eastern Ontario Research Institute, Ottawa K1H 8L1, Canada
| | - Aiman Tariq Baig
- Children's Hospital of Eastern Ontario Research Institute, Ottawa K1H 8L1, Canada
| | - Janice Mayne
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Xu Zhang
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Tommy Alain
- Children's Hospital of Eastern Ontario Research Institute, Ottawa K1H 8L1, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Mark R Servos
- Department of Biology, University of Waterloo, Waterloo N2L 3G1, Canada
| | | | - Malcolm MacKenzie
- ActivSignal LLC., 27 Strathmore Rd., Natick, MA 01760, United States
| | - Daniel Figeys
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa K1H 8M5, Canada; Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa K1N 6N5, Canada; Canadian Institute for Advanced Research, Toronto M5G 1M1, Canada
| | - Douglas Manuel
- Department of Family Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Peter Jüni
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto M5T 3M6, Canada
| | - Alex E MacKenzie
- Children's Hospital of Eastern Ontario Research Institute, Ottawa K1H 8L1, Canada
| | - Robert Delatolla
- Department of Civil Engineering, University of Ottawa, Ottawa K1N 6N5, Canada.
| |
Collapse
|
11
|
Jiao Y, An M, Li X, Yu M, Zhao X, Xia Z, Wu Y. Transcriptomic and functional analyses reveal an antiviral role of autophagy during pepper mild mottle virus infection. BMC PLANT BIOLOGY 2020; 20:495. [PMID: 33121441 PMCID: PMC7596970 DOI: 10.1186/s12870-020-02711-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 10/20/2020] [Indexed: 05/03/2023]
Abstract
BACKGROUND Pepper mild mottle virus (PMMoV) is a member in the genus Tobamovirus and infects mainly solanaceous plants. However, the mechanism of virus-host interactions remains unclear. To explore the responses of pepper plants to PMMoV infection, we analyzed the transcriptomic changes in pepper plants after PMMoV infection using a high-throughput RNA sequencing approach and explored the roles of host autophagy in regulating PMMoV infection. RESULTS A total of 197 differentially expressed genes (DEGs) were obtained after PMMoV infection, including 172 significantly up-regulated genes and 25 down-regulated genes. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses revealed that most up-regulated DEGs were involved in plant abiotic and biotic stresses. Further analyses showed the expressions of multiple autophagy-related genes (ATGs) were increased after PMMoV infection in pepper and Nicotiana benthamiana plants. Through confocal microscopy and transmission electron microscopy, we have found that PMMoV infection in plant can induce autophagy, evidenced by the increased number of GFP-ATG8a fluorescent punctate and the appearance of double membrane autophagic structures in cells of N. benthamiana. Additionally, inhibition of autophagy significantly increased PMMoV RNA accumulation and aggravated systemic PMMoV symptoms through autophagy inhibitor (3-MA and E64d) treatment and silencing of NbATG expressions by a Tobacco rattle virus-induced gene silencing assays. These results indicated that autophagy played a positive role in plant resistance to PMMoV infection. CONCLUSIONS Taken together, our results provide a transcriptomic insight into pepper responding to PMMoV infection and reveal that autophagy induced by PMMoV infection has an antiviral role in regulating PMMoV infection. These results also help us to better understand the mechanism controlling PMMoV infection in plants and to develop better strategies for breeding projects for virus-resistant crops.
Collapse
Affiliation(s)
- Yubing Jiao
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Mengnan An
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xiaodong Li
- General Station of Forest and Grassland Pest and Diseases Control, National Forestry and Grassland Administration, Shenyang, 110034, China
| | - Man Yu
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xiuxiang Zhao
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Zihao Xia
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Yuanhua Wu
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
12
|
Ko S, Kim NK, Lee HJ, Ryu TH, Hong JS, Jeong RD. Detection of Plant Pathogenic Viruses in Commercial Gochujang (Fermented Red Pepper Paste) from Korea. THE PLANT PATHOLOGY JOURNAL 2020; 36:503-508. [PMID: 33082735 PMCID: PMC7542032 DOI: 10.5423/ppj.nt.06.2020.0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 01/01/2020] [Accepted: 01/01/2020] [Indexed: 06/11/2023]
Abstract
The potential transmission of plant pathogenic viruses through processed foods could be a source of concern for global crop production; however, there is a lack of supporting evidence. The present study was conducted to investigate the presence of plant pathogenic viruses in five samples of gochujang (fermented red pepper paste) manufactured in Korea. Several viruses infecting pepper were detected by reverse transcriptionpolymerase chain reaction, among which the pepper mild mottle virus (PMMoV) was detected in all five samples, at concentrations ranging from 2.8 to 7.0 (log10 copies/ml). In addition, PMMoV was observed by transmission electron microscopy in all five samples. The samples exhibited viral pathogenicity to Nicotiana benthamiana plants, indicating that global trade of processed products could be a possible source of the transmission of plant viruses.
Collapse
Affiliation(s)
- Seoyeon Ko
- Department of Applied Biology, Institute of Environmentally Friendly Agriculture, Chonnam National University, Gwangju 685, Korea
| | - Na-Kyeong Kim
- Department of Applied Biology, Institute of Environmentally Friendly Agriculture, Chonnam National University, Gwangju 685, Korea
| | - Hyo-Jeong Lee
- Department of Applied Biology, Institute of Environmentally Friendly Agriculture, Chonnam National University, Gwangju 685, Korea
| | - Tae-Ho Ryu
- Department of Applied Biology, Institute of Environmentally Friendly Agriculture, Chonnam National University, Gwangju 685, Korea
| | - Jin-Sung Hong
- Department of Applied Biology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 4341, Korea
| | - Rae-Dong Jeong
- Department of Applied Biology, Institute of Environmentally Friendly Agriculture, Chonnam National University, Gwangju 685, Korea
| |
Collapse
|
13
|
Han K, Zheng H, Ji M, Cui W, Hu S, Peng J, Zhao J, Lu Y, Lin L, Liu Y, Chen J, Yan F. A single amino acid in coat protein of Pepper mild mottle virus determines its subcellular localization and the chlorosis symptom on leaves of pepper. J Gen Virol 2020; 101:565-570. [PMID: 32149597 PMCID: PMC7414450 DOI: 10.1099/jgv.0.001398] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/30/2020] [Indexed: 11/29/2022] Open
Abstract
Pepper mild mottle virus (PMMoV) causes serious economic losses in pepper production in China. In a survey for viral diseases on pepper, two PMMoV isolates (named PMMoV-ZJ1 and PMMoV-ZJ2) were identified with different symptoms in Zhejiang province. Sequence alignment analysis suggested there were only four amino acid differences between the isolates: Val262Gly, Ile629Met and Ala1164Thr in the replicase, and Asp20Asn in the coat protein. Infectious cDNA clones of both isolates were constructed and shown to cause distinctive symptoms. Chlorosis symptoms appeared only on PMMoV-ZJ2-infected plants and the Asp20Asn substitution in the CP was shown to be responsible. Confocal assays revealed that the subcellular localization pattern of the two CPs was different, CP20Asp was mainly located at the cell periphery, whereas most CP20Asn located in the chloroplast. Thus, a single amino acid in the CP determined the chlorosis symptom, accompanied by an altered subcellular localization.
Collapse
Affiliation(s)
- Kelei Han
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Hongying Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, PR China
| | - Mengfei Ji
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, PR China
| | - Weijun Cui
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, PR China
| | - Shuzhen Hu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Jiejun Peng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, PR China
| | - Jinping Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, PR China
| | - Yuwen Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, PR China
| | - Lin Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, PR China
| | - Yong Liu
- Hunan Institute of Plant Protection, Changsha 410125, PR China
| | - Jianping Chen
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, PR China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, PR China
- Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang Province, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, PR China
- Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang Province, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| |
Collapse
|
14
|
Yu M, Liu H, Zheng H, Yan F, Zhao X, Xia Z, An M, Wu Y. Viral sequences required for efficient viral infection differ between two Chinese pepper mild mottle virus isolates. Virus Res 2019; 267:9-15. [PMID: 31039366 DOI: 10.1016/j.virusres.2019.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/18/2019] [Accepted: 04/21/2019] [Indexed: 11/16/2022]
Abstract
Pepper mild mottle virus (PMMoV) causes mosaic symptoms and malformation on both leaf and fruit of pepper, reduces considerable economical yields and poses threats to human health. In this study, infectious clone of PMMoV Huludao (HLD) isolate (pCB-PMMoV-HLD) was constructed and its infectious ablility in Nicotiana benthamiana was confirmed by virions observation and Northern blot analysis. The mutant PMMoV (HLD-fsCP) that cannot express coat protein (CP) showed reduced viral accumulation but can systemically infect N. benthamiana. We constructed several chimeric mutant viruses (ZA-HB-HC, HA-ZB-HC, HA-HB-ZC and HA-ZB-ZC) by sequences substitution between PMMoV-HLD and PMMoV Zhejiang isolates (PMMoV-ZJ) and analyzed their infectious abilities in N. benthamiana and Capsicum annuum. The results showed that the chimera virus expressed by pCB-ZA-HB-HC, pCB-HA-HB-ZC and pCB-HA-ZB-ZC, but not by pCB-HA-ZB-HC, exhibited reduced infectious ability compared with wild-type PMMoV-ZJ and PMMoV-HLD, which indicated that RNA sequences required for efficient infection of PMMoV differ between the two virus isolates. The differential requirement of viral RNA sequences for efficient PMMoV infection provided theoretical value to further understand the infection and pathogenesis of PMMoV.
Collapse
Affiliation(s)
- Man Yu
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - He Liu
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Hongying Zheng
- Institute of Plant Virology, Ningbo University, Ningbo, 315200, China
| | - Fei Yan
- Institute of Plant Virology, Ningbo University, Ningbo, 315200, China
| | - Xiuxiang Zhao
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Zihao Xia
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Mengnan An
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Yuanhua Wu
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
15
|
Symonds EM, Rosario K, Breitbart M. Pepper mild mottle virus: Agricultural menace turned effective tool for microbial water quality monitoring and assessing (waste)water treatment technologies. PLoS Pathog 2019; 15:e1007639. [PMID: 30998781 PMCID: PMC6472819 DOI: 10.1371/journal.ppat.1007639] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Erin M. Symonds
- College of Marine Science, University of South Florida, Saint Petersburg, Florida, United States of America
| | - Karyna Rosario
- College of Marine Science, University of South Florida, Saint Petersburg, Florida, United States of America
| | - Mya Breitbart
- College of Marine Science, University of South Florida, Saint Petersburg, Florida, United States of America
| |
Collapse
|
16
|
Symonds EM, Nguyen KH, Harwood VJ, Breitbart M. Pepper mild mottle virus: A plant pathogen with a greater purpose in (waste)water treatment development and public health management. WATER RESEARCH 2018; 144:1-12. [PMID: 30005176 PMCID: PMC6162155 DOI: 10.1016/j.watres.2018.06.066] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/26/2018] [Accepted: 06/28/2018] [Indexed: 05/06/2023]
Abstract
An enteric virus surrogate and reliable domestic wastewater tracer is needed to manage microbial quality of food and water as (waste)water reuse becomes more prevalent in response to population growth, urbanization, and climate change. Pepper mild mottle virus (PMMoV), a plant pathogen found at high concentrations in domestic wastewater, is a promising surrogate for enteric viruses that has been incorporated into over 29 water- and food-related microbial quality and technology investigations around the world. This review consolidates the available literature from across disciplines to provide guidance on the utility of PMMoV as either an enteric virus surrogate and/or domestic wastewater marker in various situations. Synthesis of the available research supports PMMoV as a useful enteric virus process indicator since its high concentrations in source water allow for identifying the extent of virus log-reductions in field, pilot, and full-scale (waste)water treatment systems. PMMoV reduction levels during many forms of wastewater treatment were less than or equal to the reduction of other viruses, suggesting this virus can serve as an enteric virus surrogate when evaluating new treatment technologies. PMMoV excels as an index virus for enteric viruses in environmental waters exposed to untreated domestic wastewater because it was detected more frequently and in higher concentrations than other human viruses in groundwater (72.2%) and surface waters (freshwater, 94.5% and coastal, 72.2%), with pathogen co-detection rates as high as 72.3%. Additionally, PMMoV is an important microbial source tracking marker, most appropriately associated with untreated domestic wastewater, where its pooled-specificity is 90% and pooled-sensitivity is 100%, as opposed to human feces where its pooled-sensitivity is only 11.3%. A limited number of studies have also suggested that PMMoV may be a useful index virus for enteric viruses in monitoring the microbial quality of fresh produce and shellfish, but further research is needed on these topics. Finally, future work is needed to fill in knowledge gaps regarding PMMoV's global specificity and sensitivity.
Collapse
Affiliation(s)
- E M Symonds
- University of South Florida, College of Marine Science, 140 7th Avenue South, St. Petersburg, FL, USA.
| | - Karena H Nguyen
- University of South Florida, Department of Integrative Biology, 4202 E. Fowler Avenue, Tampa, FL, USA.
| | - V J Harwood
- University of South Florida, Department of Integrative Biology, 4202 E. Fowler Avenue, Tampa, FL, USA.
| | - M Breitbart
- University of South Florida, College of Marine Science, 140 7th Avenue South, St. Petersburg, FL, USA.
| |
Collapse
|
17
|
Complete Genome Sequence of a Pepper mild mottle virus Isolate from Northeast China. GENOME ANNOUNCEMENTS 2018; 6:6/9/e01500-17. [PMID: 29496844 PMCID: PMC5834335 DOI: 10.1128/genomea.01500-17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The complete genome sequence of a Pepper mild mottle virus (PMMoV) isolate obtained from Northeast China was determined by reverse transcription-PCR (RT-PCR) and rapid amplification of cDNA ends (RACE). Phylogenetic analysis showed that the virus isolate is closely related to Japanese, Chinese, Spanish, and U.S. isolates.
Collapse
|
18
|
Rosiles-González G, Ávila-Torres G, Moreno-Valenzuela OA, Acosta-González G, Leal-Bautista RM, Grimaldo-Hernández CD, Brown JK, Chaidez-Quiroz C, Betancourt WQ, Gerba CP, Hernández-Zepeda C. Occurrence of Pepper Mild Mottle Virus (PMMoV) in Groundwater from a Karst Aquifer System in the Yucatan Peninsula, Mexico. FOOD AND ENVIRONMENTAL VIROLOGY 2017; 9:487-497. [PMID: 28646449 DOI: 10.1007/s12560-017-9309-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/20/2017] [Indexed: 05/27/2023]
Abstract
The Yucatan Peninsula of Mexico hosts a karst aquifer system that is the only source of freshwater for the area; however, it is vulnerable to human-mediated contamination. Pepper mild mottle virus (PMMoV) is one of the most abundant RNA viruses associated with human feces, making it a viable indicator for tracking fecal pollution in aquatic environments, including groundwater. In this study, groundwater samples collected from a karst aquifer from fresh and brackish water locations were analyzed for fecal indicator bacteria, somatic and male F+ specific coliphages, and PMMoV during the rainy and dry seasons. Total coliform bacteria were detected at all sites, whereas Escherichia coli were found at relatively low levels <40 MPN/100 ml. The highest average concentrations of somatic and male F+ specific coliphages were 920 and 330 plaque forming units per 100 ml, respectively, detected in freshwater during the rainy season. PMMoV RNA was detected in 85% of the samples with gene sequences sharing 99-100% of nucleotide identity with PMMoV sequences available in GenBank. Quantification of PMMoV genome copies (GC) by quantitative real-time PCR indicated concentrations ranging from 1.7 × 101 to 1.0 × 104 GC/L, with the highest number of GC detected during the rainy season. No significant correlation was observed between PMMoV occurrence by season or water type (p > 0.05). Physicochemical and indicator bacteria were not correlated with PMMoV concentrations. The abundance and prevalence of PMMoV in the karst aquifer may reflect its environmental persistence and its potential as a fecal indicator in this karst aquifer system.
Collapse
Affiliation(s)
- Gabriela Rosiles-González
- Unidad de Ciencias del Agua, Centro de Investigación Científica de Yucatán A.C., Calle 8, No 39, Mz 29, SM 64, CP 77524, Cancún, Quintana Roo, México
| | - Gerardo Ávila-Torres
- Unidad de Ciencias del Agua, Centro de Investigación Científica de Yucatán A.C., Calle 8, No 39, Mz 29, SM 64, CP 77524, Cancún, Quintana Roo, México
| | - Oscar A Moreno-Valenzuela
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán A.C., Calle 43, No 130, Col. Chuburná de Hidalgo, CP 97205, Mérida, Yucatán, México
| | - Gilberto Acosta-González
- Unidad de Ciencias del Agua, Centro de Investigación Científica de Yucatán A.C., Calle 8, No 39, Mz 29, SM 64, CP 77524, Cancún, Quintana Roo, México
| | - Rosa María Leal-Bautista
- Unidad de Ciencias del Agua, Centro de Investigación Científica de Yucatán A.C., Calle 8, No 39, Mz 29, SM 64, CP 77524, Cancún, Quintana Roo, México
| | - Cinthya D Grimaldo-Hernández
- Unidad de Ciencias del Agua, Centro de Investigación Científica de Yucatán A.C., Calle 8, No 39, Mz 29, SM 64, CP 77524, Cancún, Quintana Roo, México
| | - Judith K Brown
- School of Plant Sciences, The University of Arizona, Tucson, AZ, 85721, USA
| | - Cristóbal Chaidez-Quiroz
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria, Centro de Investigación en Alimentación y Desarrollo A.C., Carretera a El Dorado Km5.5, Col. Campo El Diez, CP 80129, Culiacán, Sinaloa, México
| | - Walter Q Betancourt
- Water and Energy Sustainable Technology (WEST) Center, The University of Arizona, 2959 West Calle Agua Nueva, Tucson, AZ, 85745, USA
| | - Charles P Gerba
- Water and Energy Sustainable Technology (WEST) Center, The University of Arizona, 2959 West Calle Agua Nueva, Tucson, AZ, 85745, USA
| | - Cecilia Hernández-Zepeda
- Unidad de Ciencias del Agua, Centro de Investigación Científica de Yucatán A.C., Calle 8, No 39, Mz 29, SM 64, CP 77524, Cancún, Quintana Roo, México.
| |
Collapse
|