1
|
Pienaar RD, Herrero S, Cerqueira de Araujo A, Krupa F, Abd-Alla AMM, Herniou EA. High-throughput screening reveals high diversity and widespread distribution of viruses in black soldier flies (Hermetia illucens). J Invertebr Pathol 2025; 211:108322. [PMID: 40157532 DOI: 10.1016/j.jip.2025.108322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/18/2025] [Accepted: 03/23/2025] [Indexed: 04/01/2025]
Abstract
Virus discovery in mass-reared insects is a growing topic of interest due to outbreak risks and for insect welfare concerns. In the case of black soldier flies (Hermetia illucens, BSF), pioneering bioinformatic studies have uncovered exogenous viruses from the orders Ghabrivirales and Bunyavirales, as well as endogenous viral elements from five virus families. This prompted further virome investigation of BSF metagenomes and metatranscriptomes, including from BSF individuals displaying signs and symptoms of disease. A high-throughput pipeline allowed the simultaneous investigation of 203 next generation sequencing datasets. This revealed the presence of seven viruses belonging to the families Dicistroviridae, Iflaviridae, Rhabdoviridae, Solinviviridae, Inseviridae, Lebotiviridae, and an unclassified Bunyavirales. Here we describe five viruses, which were detected in BSF from multiple origins, outlining the diversity of naturally occurring viruses associated with BSF colonies. As this viral community may also include BSF pathogens, we developed molecular detection tools which could be used for viral surveillance, both in mass-reared and wild populations of BSF.
Collapse
Affiliation(s)
- Robert D Pienaar
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS - Université de Tours 37200 Tours, France; Department of Genetics and University Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100 Burjassot (Valencia), Spain.
| | - Salvador Herrero
- Department of Genetics and University Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100 Burjassot (Valencia), Spain
| | - Alexandra Cerqueira de Araujo
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Franciszek Krupa
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100 1400, Vienna, Austria
| | - Adly M M Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100 1400, Vienna, Austria
| | - Elisabeth A Herniou
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS - Université de Tours 37200 Tours, France
| |
Collapse
|
2
|
Valles SM. Effect of Solenopsis invicta virus 3 on brood mortality and egg hatch in Solenopsis invicta. J Invertebr Pathol 2024; 203:108056. [PMID: 38176676 DOI: 10.1016/j.jip.2023.108056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/26/2023] [Accepted: 12/31/2023] [Indexed: 01/06/2024]
Abstract
Solenopsis invicta virus 3 (SINV-3) has been shown to cause significant mortality among all stages of its host, Solenopsis invicta. One impact of the virus is alteration of worker ant foraging behavior, which results in colony starvation and collapse over time. Additionally, it has been hypothesized that SINV-3 infection of S. invicta may disrupt worker ant brood care behavior. To investigate this possibility, various combinations of SINV-3-infected and -uninfected adult (worker) and immature (brood) stages were placed together and monitored using the response variables, mortality, egg hatch, and virus load. While significant differences in percent cumulative S. invicta worker ant mortality among six combinations of SINV-3-infected and -uninfected stages were observed, no significant differences in percent cumulative mortality of S. invicta larvae or pupae were observed. No significant differences in egg hatch were observed among SINV-3-uninfected, SINV-3-infected (colony-treated and queen-treated), and starved colonies. Eggs hatched normally in 10-12 days for all treatments indicating that egg care by worker ants was unaffected by SINV-3 infection status. The study further clarifies SINV-3 pathogenesis in its host, S. invicta. Larval mortality in SINV-3-infected colonies does not appear to be caused by worker ant neglect. S. invicta brood under the care of SINV-3-infected worker ants did not exhibit higher mortality rates compared with those tended by SINV-3-uninfected worker ants.
Collapse
Affiliation(s)
- Steven M Valles
- Center for Medical, Agricultural and Veterinary Entomology, USDA-ARS, 1600 SW 23(rd) Drive, Gainesville, FL 32608, United States
| |
Collapse
|
3
|
Valles SM. Solenopsis invicta virus 3 infection alters foraging behavior in its host Solenopsisinvicta. Virology 2023; 581:81-88. [PMID: 36933306 DOI: 10.1016/j.virol.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/02/2023] [Accepted: 03/08/2023] [Indexed: 03/13/2023]
Abstract
Solenopsis invicta is an invasive ant introduced into the United States in the early 1900s. Control efforts and damage caused by this ant exceed $8 billion annually. Solenopsis invicta virus 3 (SINV-3) is a positive-sense, single-stranded RNA virus (Solinviviridae) that is being used as a classical natural control agent for S. invicta. S. invicta colonies were exposed to purified preparations of SINV-3 to investigate the impact of the virus on the ant. Food retrieval behavior (i.e., foraging) by worker ants was significantly decreased, which led to mortality among all life stages. Queen fecundity and weight were also significantly decreased. The change in food retrieval was associated with the exhibition of an unusual behavior, whereby the remaining live ant workers wedged dead ant worker corpses into and on top of cricket carcasses (the laboratory colony food source). SINV-3 infection alters foraging behavior in S. invicta, which adversely impacts colony nutrition.
Collapse
Affiliation(s)
- Steven M Valles
- Center for Medical, Agricultural and Veterinary Entomology, USDA-ARS, 1600 SW 23rd Drive, Gainesville, FL, 32608, USA.
| |
Collapse
|
4
|
Field evaluation of Solenopsis invicta virus 3 against its host Solenopsis invicta. J Invertebr Pathol 2022; 191:107767. [DOI: 10.1016/j.jip.2022.107767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/21/2022] [Accepted: 04/24/2022] [Indexed: 11/17/2022]
|
5
|
Feldhaar H, Otti O. Pollutants and Their Interaction with Diseases of Social Hymenoptera. INSECTS 2020; 11:insects11030153. [PMID: 32121502 PMCID: PMC7142568 DOI: 10.3390/insects11030153] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 02/18/2020] [Accepted: 02/24/2020] [Indexed: 12/07/2022]
Abstract
Many insect species, including social insects, are currently declining in abundance and diversity. Pollutants such as pesticides, heavy metals, or airborne fine particulate matter from agricultural and industrial sources are among the factors driving this decline. While these pollutants can have direct detrimental effects, they can also result in negative interactive effects when social insects are simultaneously exposed to multiple stressors. For example, sublethal effects of pollutants can increase the disease susceptibility of social insects, and thereby jeopardize their survival. Here we review how pesticides, heavy metals, or airborne fine particulate matter interact with social insect physiology and especially the insects’ immune system. We then give an overview of the current knowledge of the interactive effects of these pollutants with pathogens or parasites. While the effects of pesticide exposure on social insects and their interactions with pathogens have been relatively well studied, the effects of other pollutants, such as heavy metals in soil or fine particulate matter from combustion, vehicular transport, agriculture, and coal mining are still largely unknown. We therefore provide an overview of urgently needed knowledge in order to mitigate the decline of social insects.
Collapse
|
6
|
Valles SM, Porter SD. Influence of temperature on the pathogenicity of Solenopsis invicta virus 3. J Invertebr Pathol 2019; 166:107217. [PMID: 31325419 DOI: 10.1016/j.jip.2019.107217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/05/2019] [Accepted: 07/16/2019] [Indexed: 10/26/2022]
Abstract
Field evaluations assessing the prevalence of Solenopsis invicta virus 3 (SINV-3) have shown that the virus exhibits a distinct seasonal phenology in the host, Solenopsis invicta, that is negatively correlated with warmer temperatures. Active SINV-3 infections were established in Solenopsis invicta colonies, which were subsequently maintained at 19.1, 22.2, 25.5, 27.7, and 29.3 °C. The quantity of brood declined in all SINV-3-treated colonies regardless of temperature over the initial 30 days. However, the quantity of brood in colonies held at 29.3 °C began increasing (recovering) in the next 40 days until they were statistically equivalent to untreated control colonies. Meanwhile, the quantity of brood continued to decline in colonies held at 19.1, 22.2, 25.5, and 27.7 °C for the duration of the test (81days). By the end of the test, these colonies were in poor health as indicated by decreased brood. Conversely, the amount of brood for colonies held at 29.3 °C increased to above 3, indicating healthy vigorous growth. Worker ants from SINV-3-treated colonies maintained at 19.1, 22.2, and 25.5 °C showed strong production of the VP2 capsid protein by Western blotting; 100% of the colonies sampled (n = 3) showed production of VP2. However, VP2 was detected in only 33% of colonies maintained at 27.7 °C, and the VP2 response was nearly undetectable in all colonies maintained at 29.3 °C. These results indicate that virus assembly does not appear to be occurring efficiently at the higher temperatures. Also, the quantity of SINV-3 detected in queens was significantly lower in those maintained at 29.3 °C compared with the lower temperature treatments. These results indicate that warm summer temperatures combined with fire ant thermoregulatory behavior and perhaps behavioral fevers may explain the low prevalence of SINV-3 in fire ant colonies during the summer.
Collapse
Affiliation(s)
- Steven M Valles
- Center for Medical, Agricultural and Veterinary Entomology, USDA-ARS, 1600 SW 23rd Drive, Gainesville, FL 32608, USA.
| | - Sanford D Porter
- Center for Medical, Agricultural and Veterinary Entomology, USDA-ARS, 1600 SW 23rd Drive, Gainesville, FL 32608, USA
| |
Collapse
|
7
|
Wang RL, Zhu-Salzman K, Elzaki MEA, Huang QQ, Chen S, Ma ZH, Liu SW, Zhang JE. Mikania Micrantha Wilt Virus Alters Insect Vector's Host Preference to Enhance Its Own Spread. Viruses 2019; 11:E336. [PMID: 30970658 PMCID: PMC6521231 DOI: 10.3390/v11040336] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/08/2019] [Accepted: 04/08/2019] [Indexed: 01/29/2023] Open
Abstract
As an invasive weed, Mikaniamicrantha Kunth has caused serious damage to natural forest ecosystems in South China in recent years. Mikania micrantha wilt virus (MMWV), an isolate of the Gentian mosaic virus (GeMV), is transmitted by Myzuspersicae (Sulzer) in a non-persistent manner and can effectively inhibit the growth of M. micrantha. To explore the MMWV-M. micrantha-M. persicae interaction and its impact on the invasion of M. micrantha, volatile compounds (VOCs) emitted from healthy, mock-inoculated, and MMWV-infected plants were collected, and effects on host preference of the apterous and alate aphids were assessed with Y-shaped olfactometers. Gas chromatography-mass spectrometry (GC-MS) analysis indicated that MMWV infection changed the VOC profiles, rendering plants more attractive to aphids. Clip-cages were used to document the population growth rate of M.persicae fed on healthy, mock-inoculated, or MMWV-infected plants. Compared to those reared on healthy plants, the population growth of M. persicae drastically decreased on the MMWV-infected plants. Plant host choice tests based on visual and contact cues were also conducted using alate M.persicae. Interestingly, the initial attractiveness of MMWV-infected plants diminished, and more alate M. persicae moved to healthy plants. Taken together, MMWV appeared to be able to manipulate its plant host to first attract insect vectors to infected plants but then repel viruliferous vectors to promote its own dispersal. Its potential application for invasive weed management is discussed.
Collapse
Affiliation(s)
- Rui-Long Wang
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Keyan Zhu-Salzman
- Departments of Entomology, Texas A&M University, College Station, TX 77843, USA.
| | | | - Qiao-Qiao Huang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Shi Chen
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
| | - Zhi-Hui Ma
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Shi-Wei Liu
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Jia-En Zhang
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
8
|
Valles SM, Rivers AR. Nine new RNA viruses associated with the fire ant Solenopsis invicta from its native range. Virus Genes 2019; 55:368-380. [PMID: 30847760 DOI: 10.1007/s11262-019-01652-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/15/2019] [Indexed: 12/11/2022]
Abstract
The red imported fire ant (Solenopsis invicta) escaped its natural enemies when it was introduced into North America in the 1930s from South America. US efforts have focused on discovery of natural enemies, like viruses, to provide sustainable control of the ant. Nine new virus genomes were sequenced from the invasive fire ant Solenopsis invicta using metagenomic RNA sequencing. The virus genomes were verified by Sanger sequencing and random amplification of cDNA ends reactions. In addition to the nine new virus genomes, the previously described Solenopsis viruses were also detected, including Solenopsis invicta virus 1 (SINV-1), SINV-2, SINV-3, SINV-4, SINV-5, and Solenopsis invicta densovirus. The virus sequences came from S. invicta workers, larvae, pupae, and dead workers taken from midden piles collected from across the ant's native range in Formosa, Argentina. One of the new virus genomes (Solenopsis invicta virus 6) was also detected in populations of North American S. invicta. Phylogenetic analysis of the RNA dependent RNA polymerase, the entire nonstructural polyprotein, and genome characteristics were used to tentatively taxonomically place these new virus genome sequences; these include four new species of Dicistroviridae, one Polycipiviridae, one Iflaviridae, one Totiviridae, and two genome sequences that were too taxonomically divergent to be placed with certainty. The S. invicta virome is the best characterized from any ant species and includes 13 positive-sense, single-stranded RNA viruses (Solenopsis invicta virus 1 to Solenopsis invicta virus 13), one double-stranded RNA virus (Solenopsis midden virus), and one double-stranded DNA virus (Solenopsis invicta densovirus). These new additions to the S. invicta virome offer potentially new classical biological control agents for S. invicta.
Collapse
Affiliation(s)
- Steven M Valles
- Center for Medical, Agricultural and Veterinary Entomology, USDA-ARS, Gainesville, FL, USA.
| | - Adam R Rivers
- Genomics and Bioinformatics Research Unit, USDA-ARS, Gainesville, FL, USA
| |
Collapse
|
9
|
Valles SM, Oi DH, Becnel JJ, Wetterer JK, LaPolla JS, Firth AE. Isolation and characterization of Nylanderia fulva virus 1, a positive-sense, single-stranded RNA virus infecting the tawny crazy ant, Nylanderia fulva. Virology 2016; 496:244-254. [PMID: 27372180 PMCID: PMC4980443 DOI: 10.1016/j.virol.2016.06.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 06/15/2016] [Accepted: 06/16/2016] [Indexed: 12/18/2022]
Abstract
We report the discovery of Nylanderia fulva virus 1 (NfV-1), the first virus identified and characterized from the ant, Nylanderia fulva. The NfV-1 genome (GenBank accession KX024775) is 10,881 nucleotides in length, encoding one large open reading frame (ORF). Helicase, protease, RNA-dependent RNA polymerase, and jelly-roll capsid protein domains were recognized within the polyprotein. Phylogenetic analysis placed NfV-1 in an unclassified clade of viruses. Electron microscopic examination of negatively stained samples revealed particles with icosahedral symmetry with a diameter of 28.7±1.1nm. The virus was detected by RT-PCR in larval, pupal, worker and queen developmental stages. However, the replicative strand of NfV-1 was only detected in larvae. Vertical transmission did not appear to occur, but horizontal transmission was facile. The inter-colonial field prevalence of NfV-1 was 52±35% with some local infections reaching 100%. NfV-1 was not detected in limited samples of other Nylanderia species or closely related ant species.
Collapse
Affiliation(s)
- Steven M Valles
- Center for Medical, Agricultural and Veterinary Entomology, USDA-ARS, 1600 SW 23rd Drive, Gainesville, FL 32608, USA.
| | - David H Oi
- Center for Medical, Agricultural and Veterinary Entomology, USDA-ARS, 1600 SW 23rd Drive, Gainesville, FL 32608, USA
| | - James J Becnel
- Center for Medical, Agricultural and Veterinary Entomology, USDA-ARS, 1600 SW 23rd Drive, Gainesville, FL 32608, USA
| | - James K Wetterer
- Wilkes Honors College, Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL 33458, USA
| | - John S LaPolla
- Department of Biological Sciences, Towson University, 8000 York Road, Towson, MD 21252, USA
| | - Andrew E Firth
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| |
Collapse
|