1
|
Gómez-Romero N, Arias CF, Verdugo-Rodríguez A, López S, Valenzuela-Moreno LF, Cedillo-Peláez C, Basurto-Alcántara FJ. Immune protection induced by E2 recombinant glycoprotein of bovine viral diarrhea virus in a murine model. Front Vet Sci 2023; 10:1168846. [PMID: 37426077 PMCID: PMC10324609 DOI: 10.3389/fvets.2023.1168846] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/30/2023] [Indexed: 07/11/2023] Open
Abstract
Bovine viral diarrhea virus (BVDV) is considered the most important viral pathogen in ruminants worldwide due to the broad range of clinical manifestations displayed by infected animals. Therefore, infection with BVDV leads to severe economic losses in several countries' beef and dairy industries. Vaccination prevents reproductive failure and gastrointestinal and respiratory disorders caused by BVDV infection. However, considering their limitations, conventional vaccines such as live, attenuated, and killed viruses have been applied. Hence, different studies have described subunit vaccines as an effective and safe alternative for BVDV protection. Therefore, in this study, the ectodomain of E2 (E2e) glycoprotein from NADL BVDV strain was expressed in mammalian cells and used in two vaccine formulations to evaluate immunogenicity and protection against BVDV conferred in a murine model. Formulations consisted of solo E2e glycoprotein and E2e glycoprotein emulsified in adjuvant ISA 61 VG. Five groups of 6 mice of 6-to-8-week-old were immunized thrice on days 1, 15, and 30 by intraperitoneal injection with the mentioned formulations and controls. To evaluate the conferred protection against BVDV, mice were challenged six weeks after the third immunization. In addition, the humoral immune response was evaluated after vaccination and challenge. Mice groups inoculated with solo E2e and the E2e + ISA 61 VG displayed neutralizing titers; however, the E2 antibody titers in the E2e + ISA 61 VG group were significantly higher than the mice group immunized with the solo E2e glycoprotein. In addition, immunization using E2e + ISA 61 VG prevents animals from developing severe lesions in surveyed tissues. Moreover, this group acquired protection against the BVDV challenge, evidenced by a significant reduction of positive staining for BVDV antigen in the lungs, liver, and brain between the experimental groups. Our findings demonstrated that using E2e + ISA 61 VG induces greater BVDV protection by an early humoral response and reduced histopathological lesions and BVDV antigen detection in affected organs, indicating that E2e + ISA 61 VG subunit formulation can be considered as a putative vaccine candidate against BVDV. The efficacy and safety of this vaccine candidate in cattle requires further investigation.
Collapse
Affiliation(s)
- Ninnet Gómez-Romero
- Vaccinology Laboratory, Department of Microbiology and Immunology, Facultad de Medicina Veterinaria y Zootecnia-Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Carlos F. Arias
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Antonio Verdugo-Rodríguez
- Molecular Microbiology Laboratory, Department of Microbiology and Immunology, Facultad de Medicina Veterinaria y Zootecnia-Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Susana López
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | | | - Carlos Cedillo-Peláez
- Laboratorio de Inmunología Experimental, Instituto Nacional de Pediatría, Mexico City, Mexico
| | - Francisco Javier Basurto-Alcántara
- Vaccinology Laboratory, Department of Microbiology and Immunology, Facultad de Medicina Veterinaria y Zootecnia-Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
2
|
Liu Y, Wu C, Chen N, Li Y, Fan C, Zhao S, Bai T, Zhao Z, Chen J, Su S, Zhang Z, Zhou Y, Zhu Z. PD-1 Blockade Restores the Proliferation of Peripheral Blood Lymphocyte and Inhibits Lymphocyte Apoptosis in a BALB/c Mouse Model of CP BVDV Acute Infection. Front Immunol 2021; 12:727254. [PMID: 34552590 PMCID: PMC8450576 DOI: 10.3389/fimmu.2021.727254] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/19/2021] [Indexed: 01/08/2023] Open
Abstract
Acute infection of bovine viral diarrhea virus (BVDV) is associated with immune dysfunction and can cause peripheral blood lymphopenia and lymphocyte apoptosis. Our previous study has confirmed that programmed death-1 (PD-1) blockade inhibits peripheral blood lymphocytes (PBL) apoptosis and restores proliferation and anti-viral immune functions of lymphocytes after BVDV infection in vitro. However, the situation in vivo remains to be further studied and confirmed. Therefore, in this study, we established a BALB/c mouse model of acute BVDV infection with cytopathic (CP) BVDV (strain NADL) and non-cytopathic (NCP) BVDV (strain NY-1). Then, we examined the mRNA and protein levels of PD-1 and programmed death-ligand 1 (PD-L1) in peripheral blood mononuclear cells (PBMC) from BVDV-infected mice and analyzed the effects of PD-1 blockade on the proportions of CD3+, CD4+, and CD8+ T cell subsets, the apoptosis and proliferation of PBL, and the production of IL-2 and IFN-γ. We found that leukopenia, lymphocytopenia, and thrombocytopenia were developed in both CP and NCP BVDV-infected mice at day 7 of post-infection. The mRNA and protein expression of PD-1 and PD-L1 were significantly upregulated in CP and NCP BVDV-infected mice. Moreover, PD-1/PD-L1 upregulation was accompanied by leukopenia and lymphopenia. Additionally, PD-1 blockade inhibited PBL apoptosis and virus replication, restored the proportions of CD3+, CD4+, and CD8+ T cell subsets, and increased IFN-γ production and p-ERK expression in BVDV-infected mice. However, blocking PD-1 did not significantly affect PBL proliferation and IL-2 production in NCP BVDV-infected mice. Our findings further confirmed the immunomodulatory role of PD-1 in peripheral blood lymphocytopenia in vivo and provided a scientific basis for exploring the molecular mechanism of immune dysfunction caused by acute BVDV infection.
Collapse
Affiliation(s)
- Yu Liu
- College of Animal Science and Veterinary Medicine, HeiLongJiang BaYi Agricultural University, Daqing, China
- Heilongjiang Provincial Engineering Research Center for Prevention and Control of Cattle Diseases, HeiLongJiang BaYi Agricultural University, Daqing, China
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, HeiLongJiang BaYi Agricultural University, Daqing, China
| | - Chenhua Wu
- College of Animal Science and Veterinary Medicine, HeiLongJiang BaYi Agricultural University, Daqing, China
| | - Nannan Chen
- College of Animal Science and Veterinary Medicine, HeiLongJiang BaYi Agricultural University, Daqing, China
| | - Yang Li
- Heilongjiang Provincial Engineering Research Center for Prevention and Control of Cattle Diseases, HeiLongJiang BaYi Agricultural University, Daqing, China
- College of Engineering, HeiLongJiang BaYi Agricultural University, Daqing, China
| | - Chunling Fan
- College of Animal Science and Veterinary Medicine, HeiLongJiang BaYi Agricultural University, Daqing, China
| | - Shangqi Zhao
- College of Animal Science and Veterinary Medicine, HeiLongJiang BaYi Agricultural University, Daqing, China
| | - Tongtong Bai
- College of Animal Science and Veterinary Medicine, HeiLongJiang BaYi Agricultural University, Daqing, China
| | - Zhibo Zhao
- College of Animal Science and Veterinary Medicine, HeiLongJiang BaYi Agricultural University, Daqing, China
| | - Jinwei Chen
- College of Animal Science and Veterinary Medicine, HeiLongJiang BaYi Agricultural University, Daqing, China
| | - Siyu Su
- College of Animal Science and Veterinary Medicine, HeiLongJiang BaYi Agricultural University, Daqing, China
| | - Zecai Zhang
- College of Animal Science and Veterinary Medicine, HeiLongJiang BaYi Agricultural University, Daqing, China
- Heilongjiang Provincial Engineering Research Center for Prevention and Control of Cattle Diseases, HeiLongJiang BaYi Agricultural University, Daqing, China
| | - Yulong Zhou
- College of Animal Science and Veterinary Medicine, HeiLongJiang BaYi Agricultural University, Daqing, China
- Heilongjiang Provincial Engineering Research Center for Prevention and Control of Cattle Diseases, HeiLongJiang BaYi Agricultural University, Daqing, China
| | - Zhanbo Zhu
- College of Animal Science and Veterinary Medicine, HeiLongJiang BaYi Agricultural University, Daqing, China
- Heilongjiang Provincial Engineering Research Center for Prevention and Control of Cattle Diseases, HeiLongJiang BaYi Agricultural University, Daqing, China
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, HeiLongJiang BaYi Agricultural University, Daqing, China
- Heilongjiang Province Cultivating Collaborative Innovation Center for The Beidahuang Modern Agricultural Industry Technology, HeiLongJiang BaYi Agricultural University, Daqing, China
| |
Collapse
|
3
|
DDIT3 Targets Innate Immunity via the DDIT3-OTUD1-MAVS Pathway To Promote Bovine Viral Diarrhea Virus Replication. J Virol 2021; 95:JVI.02351-20. [PMID: 33361422 DOI: 10.1128/jvi.02351-20] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023] Open
Abstract
DNA damage-inducible transcript 3 (DDIT3) plays important roles in endoplasmic reticulum (ER) stress-induced apoptosis and autophagy, but its role in innate immunity is not clear. Here, we report that DDIT3 inhibits the antiviral immune response during bovine viral diarrhea virus (BVDV) infection by targeting mitochondrial antiviral signaling (MAVS) in Madin-Darby bovine kidney (MDBK) cells and in mice. BVDV infection induced high DDIT3 mRNA and protein expression. DDIT3 overexpression inhibited type I interferon (IFN-I) and IFN-stimulated gene production, thereby promoting BVDV replication, while DDIT3 knockdown promoted the antiviral innate immune response to suppress viral replication. DDIT3 promoted NF-κB-dependent ovarian tumor (OTU) deubiquitinase 1 (OTUD1) expression. Furthermore, OTUD1 induced upregulation of the E3 ubiquitin ligase Smurf1 by deubiquitinating Smurf1, and Smurf1 degraded MAVS in MDBK cells in a ubiquitination-dependent manner, ultimately inhibiting IFN-I production. Moreover, knocking out DDIT3 promoted the antiviral innate immune response to reduce BVDV replication and pathological changes in mice. These findings provide direct insights into the molecular mechanisms by which DDIT3 inhibits IFN-I production by regulating MAVS degradation.IMPORTANCE Extensive studies have demonstrated roles of DDIT3 in apoptosis and autophagy during viral infection. However, the role of DDIT3 in innate immunity remains largely unknown. Here, we show that DDIT3 is positively regulated in bovine viral diarrhea virus (BVDV)-infected Madin-Darby bovine kidney (MDBK) cells and could significantly enhance BVDV replication. Importantly, DDIT3 induced OTU deubiquitinase 1 (OTUD1) expression by activating the NF-κB signaling pathway, thus increasing intracellular Smurf1 protein levels to degrade MAVS and inhibit IFN-I production during BVDV infection. Together, these results indicate that DDIT3 plays critical roles in host innate immunity repression and viral infection facilitation.
Collapse
|
4
|
Quintana ME, Barone LJ, Trotta MV, Turco C, Mansilla FC, Capozzo AV, Cardoso NP. In-vivo Activity of IFN-λ and IFN-α Against Bovine-Viral-Diarrhea Virus in a Mouse Model. Front Vet Sci 2020; 7:45. [PMID: 32118067 PMCID: PMC7015039 DOI: 10.3389/fvets.2020.00045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/17/2020] [Indexed: 12/16/2022] Open
Abstract
Bovine-viral-diarrhea virus (BVDV) can cause significant economic losses in livestock. The disease is controlled with vaccination and bovines are susceptible until vaccine immunity develops and may remain vulnerable if a persistently infected animal is left on the farm; therefore, an antiviral agent that reduces virus infectivity can be a useful tool in control programs. Although many compounds with promising in-vitro efficacy have been identified, the lack of laboratory-animal models limited their potential for further clinical development. Recently, we described the activity of type I and III interferons, IFN-α and IFN-λ respectively, against several BVDV strains in-vitro. In this study, we analyzed the in-vivo efficacy of both IFNs using a BALB/c-mouse model. Mice infected with two type-2 BVDV field strains developed a viremia with different kinetics, depending on the infecting strain's virulence, that persisted for 56 days post-infection (dpi). Mice infected with the low-virulence strain elicited high systemic TNF-α levels at 2 dpi. IFNs were first applied subcutaneously 1 day before or after infection. The two IFNs reduced viremia with different kinetics, depending on whether either one was applied before or after infection. In a second experiment, we increased the number of applications of both IFNs. All the treatments reduced viremia compared to untreated mice. The application of IFN-λ pre- and post-infection reduced viremia over time. This study is the first proof of the concept of the antiviral potency of IFN-λ against BVDV in-vivo, thus encouraging further trails for a potential use of this cytokine in cattle.
Collapse
Affiliation(s)
- María Eugenia Quintana
- Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, Instituto de Virología e Innovaciones Tecnológicas, Instituto Nacional de Tecnología Agropecuaria, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Lucas José Barone
- Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, Instituto de Virología e Innovaciones Tecnológicas, Instituto Nacional de Tecnología Agropecuaria, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Myrian Vanesa Trotta
- Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, Instituto de Virología e Innovaciones Tecnológicas, Instituto Nacional de Tecnología Agropecuaria, Buenos Aires, Argentina
| | - Cecilia Turco
- Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, Instituto de Virología e Innovaciones Tecnológicas, Instituto Nacional de Tecnología Agropecuaria, Buenos Aires, Argentina
| | - Florencia Celeste Mansilla
- Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, Instituto de Virología e Innovaciones Tecnológicas, Instituto Nacional de Tecnología Agropecuaria, Buenos Aires, Argentina
| | - Alejandra Victoria Capozzo
- Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, Instituto de Virología e Innovaciones Tecnológicas, Instituto Nacional de Tecnología Agropecuaria, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Nancy Patricia Cardoso
- Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, Instituto de Virología e Innovaciones Tecnológicas, Instituto Nacional de Tecnología Agropecuaria, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| |
Collapse
|
5
|
Lee KH, Han DG, Kim S, Choi EJ, Choi KS. Experimental infection of mice with noncytopathic bovine viral diarrhea virus 2 increases the number of megakaryocytes in bone marrow. Virol J 2018; 15:115. [PMID: 30055639 PMCID: PMC6064063 DOI: 10.1186/s12985-018-1030-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 07/20/2018] [Indexed: 11/20/2022] Open
Abstract
Background Bovine viral diarrhea virus (BVDV) causes significant economic losses worldwide in the cattle industry through decrease in productive performance and immunosuppression of animals in herds. Recent studies conducted by our group showed that mice can be infected with BVDV-1 by the oral route. The purpose of this study was to assess the clinical signs, hematological changes, histopathological lesions in lymphoid tissues, and the distribution of the viral antigen after oral inoculation with a Korean noncytopathic (ncp) BVDV-2 field isolate in mice. Methods Mice were orally administered a low or high dose of BVDV-2; blood and tissue samples were collected on days 2, 5, and 9 postinfection (pi). We monitored clinical signs, hematological changes, histopathological lesions, and tissue distribution of a viral antigen by reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry (IHC) and then compared these parameters with those in ncp BVDV-1 infections. Results None of the infected mice developed any clinical signs of the illness. Significant thrombocytopenia was found in both low- and high-dose-inoculated mice on day 2 pi. Leukopenia was apparent only in low-dose-inoculated mice on day 2 pi, whereas lymphopenia was not observed in any ncp BVDV-2-infected animal. Viral RNA was found in the spleen in of low- and high-dose-inoculated mice by RT-PCR. According to the results of IHC, the viral antigen was consistently detected in lymphocytes of bone marrow and spleen and less frequently in bronchus-associated lymphoid tissue (BALT), mesenteric lymph nodes, and Peyer’s patches. Despite the antigen detection in BALT and mesenteric lymph nodes, histopathological lesions were not observed in these tissues. Lympholysis, infiltration by inflammatory cells, and increased numbers of megakaryocytes were seen in Peyer’s patches, spleens, and bone marrow, respectively. In contrast to ncp BVDV-1 infection, lympholysis was found in the spleen of ncp BVDV-2-infected mice. These histopathological lesions were more severe in high-dose-inoculated mice than in low-dose-inoculated mice. Conclusions Our results provide insight into the pathogenesis of ncp BVDV-2 infection in mice. Collectively, these results highlight significant differences in pathogenesis between ncp BVDV-1 and ncp BVDV-2 infections in a murine model.
Collapse
Affiliation(s)
- Kyung-Hyun Lee
- Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea
| | - Du-Gyeong Han
- Department of Animal Science and Biotechnology, College of Ecology and Environmental Science, Kyungpook National University, Sangju, 37224, Republic of Korea
| | - Suhee Kim
- Animal Disease & Biosecurity Team, National Institute of Animal Science, Rural Development Administration, Wanju-Gun, 55365, Republic of Korea
| | - Eun-Jin Choi
- Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea
| | - Kyoung-Seong Choi
- Department of Animal Science and Biotechnology, College of Ecology and Environmental Science, Kyungpook National University, Sangju, 37224, Republic of Korea.
| |
Collapse
|
6
|
Shi H, Leng C, Xu Q, Jiao Z, Shi H, Sun S, Qiu R, Kan Y, Yao L. Experimental infection of BALB/c mice with a caprine Pestivirus H isolate. Vet Microbiol 2018; 221:1-7. [PMID: 29981694 DOI: 10.1016/j.vetmic.2018.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/23/2018] [Accepted: 05/23/2018] [Indexed: 10/16/2022]
Abstract
To data, small animal Pestivirus H infection models have not been established. In order to develop a new infection model, BALB/c mice were inoculated with Pestivirus H strain HN1507. The virus-inoculated mice displayed nasal discharge and fever clinical signs. Histopathological changes in Pestivirus H-infected mice included alveolar septa thickening and alveolar atrophy in the lungs from 1 to 11 days post-inoculation (PI). Furthermore, we observed tracheal epithelial cell abscission and inflammatory cell infiltration in the tracheas from 1 to 9 days PI, infiltration of eosinophils in the spleens from 1 to 9 days PI, intestinal villi abscission and lysis of epithelial cells in the intestines from 1 to 11 days PI. The results of virus isolation showed that Pestivirus H replicated well in the lungs, tracheas, spleens, and intestines of infected BALB/c mice, and peak viral titers were observed 3 days PI. RT-PCR and immunofluorescence results were in agreement with the virus isolation results; however, the hearts of infected mice from 1 to 3 days PI were positive while virus isolation results were negative. To the best of our knowledge, this is the first study reporting Pestivirus H detection in BALB/c mice. Our findings indicated that Pestivirus H strain HN1507 was pathogenic to BALB/c mice and caused clinical signs and histopathological lesions in Pestivirus H-infected BALB/c mice.
Collapse
Affiliation(s)
- Hongfei Shi
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, China-UK-NYNU-RRes Joint Libratory of Insect Biology, Nanyang Normal University, Nanyang, PR China
| | - Chaoliang Leng
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, China-UK-NYNU-RRes Joint Libratory of Insect Biology, Nanyang Normal University, Nanyang, PR China
| | - Qian Xu
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, China-UK-NYNU-RRes Joint Libratory of Insect Biology, Nanyang Normal University, Nanyang, PR China
| | - Zhujin Jiao
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, China-UK-NYNU-RRes Joint Libratory of Insect Biology, Nanyang Normal University, Nanyang, PR China
| | - Hongling Shi
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, China-UK-NYNU-RRes Joint Libratory of Insect Biology, Nanyang Normal University, Nanyang, PR China
| | - Shiyu Sun
- Liaoning Center for Animal Disease Control and Prevention, Shenyang, PR China
| | - Reng Qiu
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, China-UK-NYNU-RRes Joint Libratory of Insect Biology, Nanyang Normal University, Nanyang, PR China
| | - Yunchao Kan
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, China-UK-NYNU-RRes Joint Libratory of Insect Biology, Nanyang Normal University, Nanyang, PR China.
| | - Lunguang Yao
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, China-UK-NYNU-RRes Joint Libratory of Insect Biology, Nanyang Normal University, Nanyang, PR China.
| |
Collapse
|
7
|
More S, Bøtner A, Butterworth A, Calistri P, Depner K, Edwards S, Garin-Bastuji B, Good M, Gortázar Schmidt C, Michel V, Miranda MA, Nielsen SS, Raj M, Sihvonen L, Spoolder H, Stegeman JA, Thulke HH, Velarde A, Willeberg P, Winckler C, Baldinelli F, Broglia A, Dhollander S, Beltrán-Beck B, Kohnle L, Bicout D. Assessment of listing and categorisation of animal diseases within the framework of the Animal Health Law (Regulation (EU) No 2016/429): bovine viral diarrhoea (BVD). EFSA J 2017; 15:e04952. [PMID: 32625618 PMCID: PMC7009957 DOI: 10.2903/j.efsa.2017.4952] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Bovine viral diarrhoea (BVD) has been assessed according to the criteria of the Animal Health Law (AHL), in particular criteria of Article 7 on disease profile and impacts, Article 5 on the eligibility of BVD to be listed, Article 9 for the categorisation of BVD according to disease prevention and control rules as in Annex IV and Article 8 on the list of animal species related to BVD. The assessment has been performed following a methodology composed of information collection and compilation, expert judgement on each criterion at individual and, if no consensus was reached before, also at collective level. The output is composed of the categorical answer, and for the questions where no consensus was reached, the different supporting views are reported. Details on the methodology used for this assessment are explained in a separate opinion. According to the assessment performed, BVD can be considered eligible to be listed for Union intervention as laid down in Article 5(3) of the AHL. The disease would comply with the criteria as in Sections 4 and 5 of Annex IV of the AHL, for the application of the disease prevention and control rules referred to in points (d) and (e) of Article 9(1). The assessment here performed on compliance with the criteria as in Section 3 of Annex IV referred to in point (c) of Article 9(1) is inconclusive. The animal species to be listed for BVD according to Article 8(3) criteria are mainly species of the families Bovidae, Cervidae and Camelidae as susceptible species and several mammalian species as reservoirs.
Collapse
|
8
|
Experimental infection with non-cytopathic bovine viral diarrhea virus 1 in mice induces inflammatory cell infiltration in the spleen. Arch Virol 2016; 161:2527-35. [PMID: 27376375 DOI: 10.1007/s00705-016-2952-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 06/24/2016] [Indexed: 10/21/2022]
Abstract
Previously, our study showed that oral inoculation of mice with cytopathic (cp) bovine viral diarrhea virus (BVDV) led to lymphocyte depletion and increased numbers of megakaryocytes in the spleen as well as thrombocytopenia and lymphopenia. In the present study, to investigate the possible differences in the detection of viral antigen, histopathological lesions, and hematologic changes between non-cytopathic (ncp) BVDV1 and cp BVDV1, mice were orally administered low and high doses of ncp BVDV1 and were necropsied at days 0, 2, 5, and 9 postinfection (pi). None of the ncp BVDV1-infected mice exhibited clinical signs of illness, unlike those infected with cp BVDV1. Statistically significant thrombocytopenia was observed during ncp BVDV1 infection, and lymphopenia was found only in mice infected with a high dose at day 9 pi. Interestingly, ncp BVDV1 infection increased the numbers of basophils, eosinophils, neutrophils, and monocytes in some infected mice. Viral antigen was detected in the lymphocytes of the spleen, mesenteric lymph nodes, Peyer's patches, and bone marrow by immunohistochemistry. Lymphoid depletion was evident in the mesenteric lymph nodes of mice infected with a high dose and also found in the Peyer's patches of some infected mice. Infiltration of inflammatory cells, including neutrophils and monocytes, and an increased number of megakaryocytes were seen in the spleen. These results suggest that the distribution of viral antigens is not associated with the presence of histopathological lesions. Inflammatory cell infiltration was observed in the spleens as a result of viral replication and may be attributable to the host reaction to ncp BVDV1 infection. Together, these findings support the possibility that mice can be used as an animal model for BVDV infection.
Collapse
|