1
|
Tang Y, Zhou M, Yang C, Liu R, Du H, Ma M. Advances in isolated phages that affect Ralstonia solanacearum and their application in the biocontrol of bacterial wilt in plants. Lett Appl Microbiol 2024; 77:ovae037. [PMID: 38573829 DOI: 10.1093/lambio/ovae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/25/2024] [Accepted: 04/03/2024] [Indexed: 04/06/2024]
Abstract
Bacterial wilt is a widespread and devastating disease that impacts the production of numerous crucial crops worldwide. The main causative agent of the disease is Ralstonia solanacearum. Due to the pathogen's broad host range and prolonged survival in the soil, it is challenging to control the disease with conventional strategies. Therefore, it is of great importance to develop effective alternative disease control strategies. In recent years, phage therapy has emerged as an environmentally friendly and sustainable biocontrol alternative, demonstrating significant potential in controlling this severe disease. This paper summarized basic information about isolated phages that infect R. solanacearum, and presented some examples of their application in the biocontrol of bacterial wilt. The risks of phage application and future prospect in this area were also discussed. Overall, R. solanacearum phages have been isolated from various regions and environments worldwide. These phages belong mainly to the Inoviridae, Autographiviridae, Peduoviridae, and Cystoviridae families, with some being unclassified. Studies on the application of these phages have demonstrated their ability to reduce pathogenicity of R. solanacearum through direct lysis or indirect alteration of the pathogen's physiological properties. These findings suggested bacteriophage is a promising tool for biocontrol of bacterial wilt in plants.
Collapse
Affiliation(s)
- You Tang
- Chongqing Key Laboratory of Scientific Utilization of Tobacco Resources, China Tobacco Chongqing Industrial Co Ltd, Nan'an, Chongqing 400060, China
| | - Moxi Zhou
- Chongqing Key Laboratory of Scientific Utilization of Tobacco Resources, China Tobacco Chongqing Industrial Co Ltd, Nan'an, Chongqing 400060, China
| | - Chuyun Yang
- Chongqing Key Laboratory of Scientific Utilization of Tobacco Resources, China Tobacco Chongqing Industrial Co Ltd, Nan'an, Chongqing 400060, China
| | - Rong Liu
- Chongqing Key Laboratory of Scientific Utilization of Tobacco Resources, China Tobacco Chongqing Industrial Co Ltd, Nan'an, Chongqing 400060, China
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Hongyi Du
- Chongqing Key Laboratory of Scientific Utilization of Tobacco Resources, China Tobacco Chongqing Industrial Co Ltd, Nan'an, Chongqing 400060, China
| | - Ming Ma
- Chongqing Key Laboratory of Scientific Utilization of Tobacco Resources, China Tobacco Chongqing Industrial Co Ltd, Nan'an, Chongqing 400060, China
| |
Collapse
|
2
|
Zhang M, Hao Y, Yi Y, Liu S, Sun Q, Tan X, Tang S, Xiao X, Jian H. Unexplored diversity and ecological functions of transposable phages. THE ISME JOURNAL 2023; 17:1015-1028. [PMID: 37069234 PMCID: PMC10284936 DOI: 10.1038/s41396-023-01414-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 04/02/2023] [Accepted: 04/05/2023] [Indexed: 04/19/2023]
Abstract
Phages are prevalent in diverse environments and play major ecological roles attributed to their tremendous diversity and abundance. Among these viruses, transposable phages (TBPs) are exceptional in terms of their unique lifestyle, especially their replicative transposition. Although several TBPs have been isolated and the life cycle of the representative phage Mu has been extensively studied, the diversity distribution and ecological functions of TBPs on the global scale remain unknown. Here, by mining TBPs from enormous microbial genomes and viromes, we established a TBP genome dataset (TBPGD), that expands the number of accessible TBP genomes 384-fold. TBPs are prevalent in diverse biomes and show great genetic diversity. Based on taxonomic evaluations, we propose the categorization of TBPs into four viral groups, including 11 candidate subfamilies. TBPs infect multiple bacterial phyla, and seem to infect a wider range of hosts than non-TBPs. Diverse auxiliary metabolic genes (AMGs) are identified in the TBP genomes, and genes related to glycoside hydrolases and pyrimidine deoxyribonucleotide biosynthesis are highly enriched. Finally, the influences of TBPs on their hosts are experimentally examined by using the marine bacterium Shewanella psychrophila WP2 and its infecting transposable phage SP2. Collectively, our findings greatly expand the genetic diversity of TBPs, and comprehensively reveal their potential influences in various ecosystems.
Collapse
Affiliation(s)
- Mujie Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yali Hao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Yi
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Shunzhang Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Qingyang Sun
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoli Tan
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Shan Tang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiang Xiao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Sanya, China
| | - Huahua Jian
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
- Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Sanya, China.
| |
Collapse
|
3
|
Characterization and complete genome sequence analysis of the novel phage RPZH3 infecting Ralstonia solanacearum. Arch Virol 2023; 168:105. [PMID: 36899129 DOI: 10.1007/s00705-023-05737-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 02/13/2023] [Indexed: 03/12/2023]
Abstract
A novel lytic Ralstonia phage, RPZH3, was isolated from the soil of a tobacco field via a double agar overlay plaque assay. The phage has an icosahedral head 75 ± 5 nm in diameter with a short tail about 15 ± 5 nm in length. It was able to infect 18 out of 30 tested strains of R. solanacearum isolated from tobacco, sweet potato, tomato, pepper, and eggplant. The latent period of the phage was 80 min, and the burst period was 60 min with a burst size of about 27 pfu/cell. The phage was stable at pH 4-12 at 28°C, and it was also stable at temperatures from 45°C to 60°C at pH 7.0. The complete genome of phage RPZH3 consists of 65,958 bp, with a GC content of 64.93%. The genome contains 93 open reading frames (ORFs) and encodes a tRNA for cysteine. Nucleotide sequence alignment and phylogenetic analysis indicated that RPZH3 is a new member of the genus Gervaisevirus belonging to the class Caudoviricetes.
Collapse
|
4
|
A Capsid Structure of Ralstonia solanacearum podoviridae GP4 with a Triangulation Number T = 9. Viruses 2022; 14:v14112431. [PMID: 36366529 PMCID: PMC9698820 DOI: 10.3390/v14112431] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
GP4, a new Ralstonia solanacearum phage, is a short-tailed phage. Few structures of Ralstonia solanacearum phages have been resolved to near-atomic resolution until now. Here, we present a 3.7 Å resolution structure of the GP4 head by cryo-electron microscopy (cryo-EM). The GP4 head contains 540 copies of major capsid protein (MCP) gp2 and 540 copies of cement protein (CP) gp1 arranged in an icosahedral shell with a triangulation number T = 9. The structures of gp2 and gp1 show a canonical HK97-like fold and an Ig-like fold, respectively. The trimeric CPs stick on the surface of the head along the quasi-threefold axis of the icosahedron generating a sandwiched three-layer electrostatic complementary potential, thereby enhancing the head stability. The assembly pattern of the GP4 head provides a platform for the further exploration of the interaction between Ralstonia solanacearum and corresponding phages.
Collapse
|
5
|
Wang K, Chen D, Liu Q, Zhu P, Sun M, Peng D. Isolation and Characterization of Novel Lytic Bacteriophage vB_RsoP_BMB50 infecting Ralstonia solanacearum. Curr Microbiol 2022; 79:245. [PMID: 35834130 DOI: 10.1007/s00284-022-02940-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 06/17/2022] [Indexed: 11/25/2022]
Abstract
Ralstonia solanacearum is a soil-borne phytopathogen, and it can cause bacterial wilt disease in a variety of key crops around the world, thus resulting in enormous financial losses. However, there is a lack of effective, green, and safe prevention and control measures against increasingly devastating bacterial wilt disease. Bacteriophages (phages) are considered as potential biocontrol agents against bacterial wilt disease. Although many phages infecting R. solanacearum have been isolated, so far, these Ralstonia phages are still insufficient to deal with the diversity of the bacteria of R. solanacearum. In this study, a novel lytic bacteriophage vB_RsoP_BMB50 infecting multiple R. solanacearum was isolated from tomato fields in Dalian, China. Transmission electron microscopy and genomics analysis indicated that vB_RsoP_BMB50 belonged to the subfamily Okabevirinae, Autographiviridae family, and order Caudovirales, and it comprised a double-stranded DNA with a full length of 43,665 bp and a mean G+C content of 61.79%, containing 53 open reading frames (ORFs). This novel phage exhibited a large burst size, high temperature stability (4-50 °C), and strong pH tolerance (pH 5-10). Comparative analyses and phylogenetic analyses revealed that vB_RsoP_BMB50 represented a novel Ralstonia phage genus since it exhibited a low sequence similarity to other phages in the GenBank database. Due to its broad lytic spectrum, high thermal stability, and strong pH tolerance, vB_RsoP_BMB50 is considered as an effective candidate biocontrol agent against bacterial wilt disease caused by R. solanacearum.
Collapse
Affiliation(s)
- Kai Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Dawei Chen
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Quanrong Liu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Pengfei Zhu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Ming Sun
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Donghai Peng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
6
|
A Novel Inducible Prophage from Burkholderia Vietnamiensis G4 is Widely Distributed across the Species and Has Lytic Activity against Pathogenic Burkholderia. Viruses 2020; 12:v12060601. [PMID: 32486377 PMCID: PMC7354579 DOI: 10.3390/v12060601] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 12/30/2022] Open
Abstract
Burkholderia species have environmental, industrial and medical significance, and are important opportunistic pathogens in individuals with cystic fibrosis (CF). Using a combination of existing and newly determined genome sequences, this study investigated prophage carriage across the species B. vietnamiensis, and also isolated spontaneously inducible prophages from a reference strain, G4. Eighty-one B. vietnamiensis genomes were bioinformatically screened for prophages using PHASTER (Phage Search Tool Enhanced Release) and prophage regions were found to comprise up to 3.4% of total genetic material. Overall, 115 intact prophages were identified and there was evidence of polylysogeny in 32 strains. A novel, inducible Mu-like phage (vB_BvM-G4P1) was isolated from B. vietnamiensis G4 that had lytic activity against strains of five Burkholderia species prevalent in CF infections, including the Boston epidemic B. dolosa strain SLC6. The cognate prophage to vB_BvM-G4P1 was identified in the lysogen genome and was almost identical (>93.5% tblastx identity) to prophages found in 13 other B. vietnamiensis strains (17% of the strain collection). Phylogenomic analysis determined that the G4P1-like prophages were widely distributed across the population structure of B. vietnamiensis. This study highlights how genomic characterization of Burkholderia prophages can lead to the discovery of novel bacteriophages with potential therapeutic or biotechnological applications.
Collapse
|
7
|
Castillo JA, Secaira-Morocho H, Maldonado S, Sarmiento KN. Diversity and Evolutionary Dynamics of Antiphage Defense Systems in Ralstonia solanacearum Species Complex. Front Microbiol 2020; 11:961. [PMID: 32508782 PMCID: PMC7251935 DOI: 10.3389/fmicb.2020.00961] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/22/2020] [Indexed: 12/20/2022] Open
Abstract
Over the years, many researchers have reported a great diversity of bacteriophages infecting members of the Ralstonia solanacearum species complex (RSSC). This diversity has driven bacterial evolution by leading the emergence and maintenance of bacterial defense systems to combat phage infection. In this work, we present an in silico study of the arsenal of defense systems that RSSC harbors and their evolutionary history. For this purpose, we used a combination of genomic, phylogenetic and associative methods. We found that in addition to the CRISPR-Cas system already reported, there are eight other antiphage defense systems including the well-known Restriction-Modification and Toxin-Antitoxin systems. Furthermore, we found a tenth defense system, which is dedicated to reducing the incidence of plasmid transformation in bacteria. We undertook an analysis of the gene gain and loss patterns of the defense systems in 15 genomes of RSSC. Results indicate that the dynamics are inclined toward the gain of defense genes as opposed to the rest of the genes that were preferably lost throughout evolution. This was confirmed by evidence on independent gene acquisition that has occurred by profuse horizontal transfer. The mutation and recombination rates were calculated as a proxy of evolutionary rates. Again, genes encoding the defense systems follow different rates of evolution respect to the rest of the genes. These results lead us to conclude that the evolution of RSSC defense systems is highly dynamic and responds to a different evolutionary regime than the rest of the genes in the genomes of RSSC.
Collapse
Affiliation(s)
- José A Castillo
- School of Biological Sciences and Engineering, Yachay Tech University, San Miguel de Urcuquí, Ecuador
| | - Henry Secaira-Morocho
- School of Biological Sciences and Engineering, Yachay Tech University, San Miguel de Urcuquí, Ecuador
| | - Stephanie Maldonado
- School of Biological Sciences and Engineering, Yachay Tech University, San Miguel de Urcuquí, Ecuador
| | - Katlheen N Sarmiento
- School of Biological Sciences and Engineering, Yachay Tech University, San Miguel de Urcuquí, Ecuador
| |
Collapse
|
8
|
Rahimi-Midani A, Kim JO, Kim JH, Lim J, Ryu JG, Kim MK, Choi TJ. Potential use of newly isolated bacteriophage as a biocontrol against Acidovorax citrulli. Arch Microbiol 2019; 202:377-389. [DOI: 10.1007/s00203-019-01754-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 10/18/2019] [Accepted: 10/22/2019] [Indexed: 12/16/2022]
|
9
|
Addy HS, Ahmad AA, Huang Q. Molecular and Biological Characterization of Ralstonia Phage RsoM1USA, a New Species of P2virus, Isolated in the United States. Front Microbiol 2019; 10:267. [PMID: 30837978 PMCID: PMC6389784 DOI: 10.3389/fmicb.2019.00267] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 02/01/2019] [Indexed: 12/11/2022] Open
Abstract
The first Ralstonia-infecting bacteriophage from soil of the United States, designated RsoM1USA, was isolated from a tomato field in Florida. Electron microscopy revealed that phage RsoM1USA is member of the genus P2virus in the family Myoviridae with an icosahedral head of about 66 nm in diameter, a contractile tail of about 152 nm in length, and a long “neck.” Phage RsoM1USA infected 12 of the 30 tested R. solanacearum species complex strains collected worldwide in each of the three Ralstonia species: R. solanacearum, R. pseudosolanacearum, and R. syzygii. The phage completed its infection cycle 180 min post infection with a burst size of about 56 particles per cell. Phage RsoM1USA has a genome of 39,309 nucleotides containing 58 open reading frames (ORFs) and is closely related to Ralstonia phage RSA1 of the species Ralstonia virus RSA1. The genomic organization of phage RsoM1USA is also similar to that of phage RSA1, but their integrases share no sequence homology. In addition, we determined that the integration of phage RsoM1USA into its susceptible R. solanacearum strain K60 is mediated by the 3′ 45-base portion of the threonine tRNA (TGT), not arginine tRNA (CCG) as reported for phage RSA1, confirming that the two phages use different mechanism for integration. Our proteomic analysis of the purified virions supported the annotation of the main structural proteins. Infection of a susceptible R. solanacearum strain RUN302 by phage RsoM1USA resulted in significantly reduced growth of the infected bacterium in vitro, but not virulence in tomato plants, as compared to its uninfected RUN302 strain. Due to its differences from phage RSA1, phage RsoM1USA should be considered the type member of a new species with a proposed species name of Ralstonia virus RsoM1USA.
Collapse
Affiliation(s)
- Hardian Susilo Addy
- Floral and Nursery Plants Research Unit, United States National Arboretum, United States Department of Agriculture-Agricultural Research Service, Beltsville, MD, United States.,Department of Plant Protection, Faculty of Agriculture, University of Jember, Jember, Indonesia
| | - Abdelmonim Ali Ahmad
- Floral and Nursery Plants Research Unit, United States National Arboretum, United States Department of Agriculture-Agricultural Research Service, Beltsville, MD, United States.,Department of Plant Pathology, Faculty of Agriculture, Minia University, El-minia, Egypt
| | - Qi Huang
- Floral and Nursery Plants Research Unit, United States National Arboretum, United States Department of Agriculture-Agricultural Research Service, Beltsville, MD, United States
| |
Collapse
|
10
|
da Silva Xavier A, de Almeida JCF, de Melo AG, Rousseau GM, Tremblay DM, de Rezende RR, Moineau S, Alfenas‐Zerbini P. Characterization of CRISPR-Cas systems in the Ralstonia solanacearum species complex. MOLECULAR PLANT PATHOLOGY 2019; 20:223-239. [PMID: 30251378 PMCID: PMC6637880 DOI: 10.1111/mpp.12750] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPRs) are composed of an array of short DNA repeat sequences separated by unique spacer sequences that are flanked by associated (Cas) genes. CRISPR-Cas systems are found in the genomes of several microbes and can act as an adaptive immune mechanism against invading foreign nucleic acids, such as phage genomes. Here, we studied the CRISPR-Cas systems in plant-pathogenic bacteria of the Ralstonia solanacearum species complex (RSSC). A CRISPR-Cas system was found in 31% of RSSC genomes present in public databases. Specifically, CRISPR-Cas types I-E and II-C were found, with I-E being the most common. The presence of the same CRISPR-Cas types in distinct Ralstonia phylotypes and species suggests the acquisition of the system by a common ancestor before Ralstonia species segregation. In addition, a Cas1 phylogeny (I-E type) showed a perfect geographical segregation of phylotypes, supporting an ancient acquisition. Ralstoniasolanacearum strains CFBP2957 and K60T were challenged with a virulent phage, and the CRISPR arrays of bacteriophage-insensitive mutants (BIMs) were analysed. No new spacer acquisition was detected in the analysed BIMs. The functionality of the CRISPR-Cas interference step was also tested in R. solanacearum CFBP2957 using a spacer-protospacer adjacent motif (PAM) delivery system, and no resistance was observed against phage phiAP1. Our results show that the CRISPR-Cas system in R. solanacearum CFBP2957 is not its primary antiviral strategy.
Collapse
Affiliation(s)
- André da Silva Xavier
- Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO)Universidade Federal de ViçosaViçosaMG36570‐000Brazil
| | - Juliana Cristina Fraleon de Almeida
- Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO)Universidade Federal de ViçosaViçosaMG36570‐000Brazil
| | - Alessandra Gonçalves de Melo
- Département de Biochimie, de Microbiologie, et de Bioinformatique, Faculté des Sciences et de GénieUniversité LavalQuébec CityQCGIV0A6Canada
| | - Geneviève M. Rousseau
- Département de Biochimie, de Microbiologie, et de Bioinformatique, Faculté des Sciences et de GénieUniversité LavalQuébec CityQCGIV0A6Canada
- Félix d'Hérelle Reference Center for Bacterial Viruses, and GREB, Faculté de Médecine DentaireUniversité LavalQuébec CityQCGIV0A6Canada
| | - Denise M. Tremblay
- Département de Biochimie, de Microbiologie, et de Bioinformatique, Faculté des Sciences et de GénieUniversité LavalQuébec CityQCGIV0A6Canada
- Félix d'Hérelle Reference Center for Bacterial Viruses, and GREB, Faculté de Médecine DentaireUniversité LavalQuébec CityQCGIV0A6Canada
| | - Rafael Reis de Rezende
- Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO)Universidade Federal de ViçosaViçosaMG36570‐000Brazil
| | - Sylvain Moineau
- Département de Biochimie, de Microbiologie, et de Bioinformatique, Faculté des Sciences et de GénieUniversité LavalQuébec CityQCGIV0A6Canada
- Félix d'Hérelle Reference Center for Bacterial Viruses, and GREB, Faculté de Médecine DentaireUniversité LavalQuébec CityQCGIV0A6Canada
| | - Poliane Alfenas‐Zerbini
- Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO)Universidade Federal de ViçosaViçosaMG36570‐000Brazil
| |
Collapse
|
11
|
da Silva Xavier A, da Silva FP, Vidigal PMP, Lima TTM, de Souza FO, Alfenas-Zerbini P. Genomic and biological characterization of a new member of the genus Phikmvvirus infecting phytopathogenic Ralstonia bacteria. Arch Virol 2018; 163:3275-3290. [DOI: 10.1007/s00705-018-4006-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 08/10/2018] [Indexed: 02/07/2023]
|
12
|
Abstract
In this paper, I describe the genomic characteristics of a Ralstonia phage infecting Ralstonia solanacearum. The Ralstonia phage RPSC1 was isolated from a soil sample collected in Sichuan Province, in southwestern China. The complete genome of RPSC1 is composed of a linear double-stranded DNA 39,628 bp in length, with G+C content of 61.55%, and 43 putative protein-coding genes. All the putative protein-coding genes were on the same strand. No tRNA-encoding genes were identified. Phylogenetic and comparative genomics analyses indicate that Ralstonia phage RPSC1 should be considered a new member of the family Podoviridae. The wide host range contributes to the potential of Ralstonia phage RPSC1 as a biocontrol agent.
Collapse
Affiliation(s)
- Min Liao
- College of Life Science & Biotechnology, Mianyang Teachers' College, 166# Mianxingdong Rd, Mianyang, 621000, Sichuan, China.
| |
Collapse
|
13
|
Ahmad AA, Stulberg MJ, Huang Q. Prophage Rs551 and Its Repressor Gene orf14 Reduce Virulence and Increase Competitive Fitness of Its Ralstonia solanacearum Carrier Strain UW551. Front Microbiol 2017; 8:2480. [PMID: 29312189 PMCID: PMC5744446 DOI: 10.3389/fmicb.2017.02480] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/29/2017] [Indexed: 12/21/2022] Open
Abstract
We previously characterized a filamentous lysogenic bacteriophage, ϕRs551, isolated directly from the race 3 biovar 2 phylotype IIB sequevar 1 strain UW551 of Ralstonia solanacearum grown under normal culture conditions. The genome of ϕRs551 was identified with 100% identity in the deposited genomes of 11 race 3 biovar 2 phylotype IIB sequevar 1 strains of R. solanacearum, indicating evolutionary and biological importance, and ORF14 of ϕRs551 was annotated as a putative type-2 repressor. In this study, we determined the effect of the prophage and its ORF14 on the virulence and competitive fitness of its carrier strain UW551 by deleting the orf14 gene only (the UW551 orf14 mutant), and nine of the prophage's 14 genes including orf14 and six out of seven structural genes (the UW551 prophage mutant), respectively, from the genome of UW551. The two mutants were increased in extracellular polysaccharide production, twitching motility, expression of targeted virulence and virulence regulatory genes (pilT, egl, pehC, hrPB, and phcA), and virulence, suggesting that the virulence of UW551 was negatively regulated by ϕRs551, at least partially through ORF14. Interestingly, we found that the wt ϕRs551-carrying strain UW551 of R. solanacearum significantly outcompeted the wt strain RUN302 which lacks the prophage in tomato plants co-inoculated with the two strains. When each of the two mutant strains was co-inoculated with RUN302, however, the mutants were significantly out-competed by RUN302 for the same colonization site. Our results suggest that ecologically, ϕRs551 may play an important role by regulating the virulence of and offering a competitive fitness advantage to its carrier bacterial strain for persistence of the bacterium in the environment, which in turn prolongs the symbiotic relationship between the phage ϕRs551 and the R. solanacearum strain UW551. Our study is the first toward a better understanding of the co-existence between a lysogenic phage and its carrier plant pathogenic bacterial strain by determining the effect of the prophage Rs551 and its repressor on the virulence and competitive fitness of its carrier strain UW551 of R. solanacearum.
Collapse
Affiliation(s)
- Abdelmonim Ali Ahmad
- Floral and Nursery Plants Research Unit, United States National Arboretum, United States Department of Agriculture–Agricultural Research Service, Beltsville, MD, United States
- Department of Plant Pathology, Faculty of Agriculture, Minia University, El-minia, Egypt
| | - Michael J. Stulberg
- Floral and Nursery Plants Research Unit, United States National Arboretum, United States Department of Agriculture–Agricultural Research Service, Beltsville, MD, United States
| | - Qi Huang
- Floral and Nursery Plants Research Unit, United States National Arboretum, United States Department of Agriculture–Agricultural Research Service, Beltsville, MD, United States
| |
Collapse
|
14
|
Su J, Sun H, Liu J, Guo Z, Fan G, Gu G, Wang G. Complete genome sequence of a novel lytic bacteriophage isolated from Ralstonia solanacearum. Arch Virol 2017; 162:3919-3923. [PMID: 28929273 DOI: 10.1007/s00705-017-3555-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 07/31/2017] [Indexed: 10/18/2022]
Abstract
A lytic podophage RSPI1 was isolated from tobacco field soil collected in Fujian Province, South China using host bacterium Ralstonia solanacearum Tb15-14. Whole genome sequencing of this phage was performed using the high-throughput Ion Torrent PGM Sequencer. The complete genome of RSPI1 was 43,211 bp in length with a mean DNA G + C content of 61.5%. A total of 48 open reading frames were identified with lengths ranging from 132 bp to 5,061 bp, of which, 11, 12 and 25 were identified as functional, structural and unknown genes, respectively. A BLAST analysis revealed that this phage genome had a query cover of 78-79% and a highest identity of 84% with four podophages that infect Burkholderia pseudomallei. Two neighbor-joining phylogenetic trees were constructed using phage DNA polymerase I and tail fiber protein sequences and showed that this phage is closely related to Burkholderia phage Bp-AMP1, and also related to several phages that infect Ralstonia solanacearum. These findings indicate that RSPI1 is a novel phage that infects the notorious plant pathogen Ralstonia solanacearum.
Collapse
Affiliation(s)
- Jingfang Su
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
| | - Hongwei Sun
- Mudanjiang Tobacco Research Institute, Heilongjiang Branch of China National Tobacco Corporation, Mudangjiang, 157011, China
| | - Junjie Liu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
| | - Zhaokui Guo
- Mudanjiang Tobacco Research Institute, Heilongjiang Branch of China National Tobacco Corporation, Mudangjiang, 157011, China
| | - Guoquan Fan
- Virus-free Seedling, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Gang Gu
- Tobacco Agricultural Institute of Fujian Tobacco Monopoly Bureau, Fuzhou, 350003, China
| | - Guanghua Wang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China.
| |
Collapse
|
15
|
Ahmad AA, Stulberg MJ, Mershon JP, Mollov DS, Huang Q. Molecular and biological characterization of ϕRs551, a filamentous bacteriophage isolated from a race 3 biovar 2 strain of Ralstonia solanacearum. PLoS One 2017; 12:e0185034. [PMID: 28934297 PMCID: PMC5608472 DOI: 10.1371/journal.pone.0185034] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/04/2017] [Indexed: 01/05/2023] Open
Abstract
A filamentous bacteriophage, designated ϕRs551, was isolated and purified from the quarantine and select agent phytopathogen Ralstonia solanacearum race 3 biovar 2 strain UW551 (phylotype IIB sequevar 1) grown under normal culture conditions. Electron microscopy suggested that ϕRs551 is a member of the family Inoviridae, and is about 1200 nm long and 7 nm wide. ϕRs551 has a genome of 7929 nucleotides containing 14 open reading frames, and is the first isolated virion that contains a resolvase (ORF13) and putative type-2 phage repressor (ORF14). Unlike other R. solanacearum phages isolated from soil, the genome sequence of ϕRs551 is not only 100% identical to its prophage sequence in the deposited genome of R. solanacearum strain UW551 from which the phage was isolated, but is also surprisingly found with 100% identity in the deposited genomes of 10 other phylotype II sequevar 1 strains of R. solanacearum. Furthermore, it is homologous to genome RS-09-161, resulting in the identification of a new prophage, designated RSM10, in a R. solanacearum strain from India. When ORF13 and a core attP site of ϕRs551 were either deleted individually or in combination, phage integration was not observed, suggesting that similar to other filamentous R. solanacearum ϕRSM phages, ϕRs551 relies on its resolvase and the core att sequence for site-directed integration into its susceptible R. solanacearum strain. The integration occurred four hours after phage infection. Infection of a susceptible R. solanacearum strain RUN302 by ϕRs551 resulted in less fluidal colonies and EPS production, and reduced motilities of the bacterium. Interestingly, infection of RUN302 by ϕRs551 also resulted in reduced virulence, rather than enhanced or loss of virulence caused by other ϕRSM phages. Study of bacteriophages of R. solanacearum would contribute to a better understanding of the phage-bacterium-environment interactions in order to develop integrated management strategies to combat R. solanacearum.
Collapse
Affiliation(s)
- Abdelmonim Ali Ahmad
- Floral and Nursery Plants Research Unit, United States National Arboretum, U.S. Dept. of Agriculture-Agricultural Research Service, Beltsville, Maryland, United States of America
- Department of Plant Pathology, Faculty of Agriculture, Minia University, El-minia, Egypt
| | - Michael J. Stulberg
- Floral and Nursery Plants Research Unit, United States National Arboretum, U.S. Dept. of Agriculture-Agricultural Research Service, Beltsville, Maryland, United States of America
| | - John Patrick Mershon
- Floral and Nursery Plants Research Unit, United States National Arboretum, U.S. Dept. of Agriculture-Agricultural Research Service, Beltsville, Maryland, United States of America
| | - Dimitre S. Mollov
- National Germplasm Resources Laboratory, U.S. Dept. of Agriculture-Agricultural Research Service, Beltsville, Maryland, United States of America
| | - Qi Huang
- Floral and Nursery Plants Research Unit, United States National Arboretum, U.S. Dept. of Agriculture-Agricultural Research Service, Beltsville, Maryland, United States of America
| |
Collapse
|