1
|
Chen X, Zhang J. Understanding Post-Translational Modifications in Porcine Reproductive and Respiratory Syndrome Virus Infection. Vet Sci 2024; 11:654. [PMID: 39728994 DOI: 10.3390/vetsci11120654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/02/2024] [Accepted: 12/12/2024] [Indexed: 12/28/2024] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a highly contagious virus affecting pigs with significant impacts to the swine industry worldwide. This review provides a comprehensive understanding of post-translational modifications (PTMs) associated with PRRSV infection. We discuss the various types of PTMs, including phosphorylation, ubiquitination, SUMoylation, acetylation, glycosylation, palmitoylation, and lactylation, that occur during PRRSV infection. We emphasize how these modifications affect the function and activity of viral proteins, thereby influencing virus replication, assembly, and egress. Additionally, we delve into the host cellular responses triggered by PRRSV, particularly the PTMs that regulate host signaling pathways and immune responses. Furthermore, we summarize the current understandings of how PTMs facilitate the ability of virus to evade the host immune system, enabling it to establish persistent infections. Finally, we address the implications of these modifications in the development of novel antiviral strategies and the potential for exploiting PTMs as therapeutic targets. This review highlights the significance of PTMs in shaping viral pathogenicity and host antiviral mechanisms and provides valuable insights for future research aimed at developing effective interventions against PRRSV infections.
Collapse
Affiliation(s)
- Xiaoyong Chen
- Xingzhi College, Zhejiang Normal University, Lanxi 321100, China
| | - Jianlong Zhang
- Pingliang Vocational and Technical College, Pingliang 744000, China
| |
Collapse
|
2
|
Sarkar S, Ganguly S, Ganguly NK, Sarkar DP, Sharma NR. Chandipura Virus Forms Cytoplasmic Inclusion Bodies through Phase Separation and Proviral Association of Cellular Protein Kinase R and Stress Granule Protein TIA-1. Viruses 2024; 16:1027. [PMID: 39066190 PMCID: PMC11281494 DOI: 10.3390/v16071027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/01/2024] [Accepted: 06/07/2024] [Indexed: 07/28/2024] Open
Abstract
Negative-strand RNA viruses form cytoplasmic inclusion bodies (IBs) representing virus replication foci through phase separation or biomolecular condensation of viral and cellular proteins, as a hallmark of their infection. Alternatively, mammalian cells form stalled mRNA containing antiviral stress granules (SGs), as a consequence of phosphorylation of eukaryotic initiation factor 2α (eIF2α) through condensation of several RNA-binding proteins including TIA-1. Whether and how Chandipura virus (CHPV), an emerging human pathogen causing influenza-like illness, coma and death, forms IBs and evades antiviral SGs remain unknown. By confocal imaging on CHPV-infected Vero-E6 cells, we found that CHPV infection does not induce formation of distinct canonical SGs. Instead, CHPV proteins condense and co-localize together with SG proteins to form heterogeneous IBs, which ensued independent of the activation of eIF2α and eIF2α kinase, protein kinase R (PKR). Interestingly, siRNA-mediated depletion of PKR or TIA-1 significantly decreased viral transcription and virion production. Moreover, CHPV infection also caused condensation and recruitment of PKR to IBs. Compared to SGs, IBs exhibited significant rapidity in disassembly dynamics. Altogether, our study demonstrating that CHPV replication co-optimizes with SG proteins and revealing an unprecedented proviral role of TIA-1/PKR may have implications in understanding the mechanisms regulating CHPV-IB formation and designing antiviral therapeutics. Importance: CHPV is an emerging tropical pathogen reported to cause acute influenza-like illness and encephalitis in children with a very high mortality rate of ~70%. Lack of vaccines and an effective therapy against CHPV makes it a potent pathogen for causing an epidemic in tropical parts of globe. Given these forewarnings, it is of paramount importance that CHPV biology must be understood comprehensively. Targeting of host factors offers several advantages over targeting the viral components due to the generally higher mutation rate in the viral genome. In this study, we aimed at understanding the role of SGs forming cellular RNA-binding proteins in CHPV replication. Our study helps understand participation of cellular factors in CHPV replication and could help develop effective therapeutics against the virus.
Collapse
Affiliation(s)
- Sharmistha Sarkar
- Department of Molecular Medicine, School of Interdisciplinary Studies, Jamia Hamdard University, Hamdard Nagar, New Delhi 110062, India; (S.S.); (S.G.)
| | - Surajit Ganguly
- Department of Molecular Medicine, School of Interdisciplinary Studies, Jamia Hamdard University, Hamdard Nagar, New Delhi 110062, India; (S.S.); (S.G.)
| | - Nirmal K. Ganguly
- Department of Education and Research, AERF, Artemis Hospitals, Gurugram 122001, India;
| | - Debi P. Sarkar
- Department of Biochemistry, University of Delhi South Campus, New Delhi 110021, India
| | - Nishi Raj Sharma
- Department of Molecular Medicine, School of Interdisciplinary Studies, Jamia Hamdard University, Hamdard Nagar, New Delhi 110062, India; (S.S.); (S.G.)
- Department of Education and Research, AERF, Artemis Hospitals, Gurugram 122001, India;
| |
Collapse
|
3
|
Mo G, Wei P, Hu B, Nie Q, Zhang X. Advances on genetic and genomic studies of ALV resistance. J Anim Sci Biotechnol 2022; 13:123. [PMID: 36217167 PMCID: PMC9550310 DOI: 10.1186/s40104-022-00769-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/14/2022] [Indexed: 12/01/2022] Open
Abstract
Avian leukosis (AL) is a general term for a variety of neoplastic diseases in avian caused by avian leukosis virus (ALV). No vaccine or drug is currently available for the disease. Therefore, the disease can result in severe economic losses in poultry flocks. Increasing the resistance of poultry to ALV may be one effective strategy. In this review, we provide an overview of the roles of genes associated with ALV infection in the poultry genome, including endogenous retroviruses, virus receptors, interferon-stimulated genes, and other immune-related genes. Furthermore, some methods and techniques that can improve ALV resistance in poultry are discussed. The objectives are willing to provide some valuable references for disease resistance breeding in poultry.
Collapse
Affiliation(s)
- Guodong Mo
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.,Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Ping Wei
- Institute for Poultry Science and Health, Guangxi University, Nanning, 530001, Guangxi, China
| | - Bowen Hu
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.,Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Qinghua Nie
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.,Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Xiquan Zhang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China. .,Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China. .,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
| |
Collapse
|
4
|
Zapatero-Belinchón FJ, Moeller R, Lasswitz L, van Ham M, Becker M, Brogden G, Rosendal E, Bi W, Carriquí-Madroñal B, Islam K, Lenman A, Gunesch AP, Kirui J, Pietschmann T, Överby AK, Jänsch L, Gerold G. Fluvastatin mitigates SARS-CoV-2 infection in human lung cells. iScience 2021; 24:103469. [PMID: 34812415 PMCID: PMC8599137 DOI: 10.1016/j.isci.2021.103469] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 09/08/2021] [Accepted: 11/15/2021] [Indexed: 02/06/2023] Open
Abstract
Clinical data of patients suffering from COVID-19 indicates that statin therapy, used to treat hypercholesterolemia, is associated with a better disease outcome. Whether statins directly affect virus replication or influence the clinical outcome through modulation of immune responses is unknown. We therefore investigated the effect of statins on SARS-CoV-2 infection in human lung cells and found that only fluvastatin inhibited low and high pathogenic coronaviruses in vitro and ex vivo in a dose-dependent manner. Quantitative proteomics revealed that fluvastatin and other tested statins modulated the cholesterol synthesis pathway without altering innate antiviral immune responses in infected lung epithelial cells. However, fluvastatin treatment specifically downregulated proteins that modulate protein translation and viral replication. Collectively, these results support the notion that statin therapy poses no additional risk to individuals exposed to SARS-CoV-2 and that fluvastatin has a moderate beneficial effect on SARS-CoV-2 infection of human lung cells.
Collapse
Affiliation(s)
- Francisco J. Zapatero-Belinchón
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Medical School Hannover and the Helmholtz Centre for Infection Research, 30625 Hannover, Germany
- Department of Clinical Microbiology, Virology, Umeå University, 90185 Umeå, Sweden
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, 90185 Umeå, Sweden
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Rebecca Moeller
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Medical School Hannover and the Helmholtz Centre for Infection Research, 30625 Hannover, Germany
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Lisa Lasswitz
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Medical School Hannover and the Helmholtz Centre for Infection Research, 30625 Hannover, Germany
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Marco van Ham
- Cellular Proteome Research Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Miriam Becker
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Medical School Hannover and the Helmholtz Centre for Infection Research, 30625 Hannover, Germany
- Department of Clinical Microbiology, Virology, Umeå University, 90185 Umeå, Sweden
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, 90185 Umeå, Sweden
| | - Graham Brogden
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Medical School Hannover and the Helmholtz Centre for Infection Research, 30625 Hannover, Germany
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Ebba Rosendal
- Department of Clinical Microbiology, Virology, Umeå University, 90185 Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), R893+F4 Umeå, Sweden
| | - Wenjie Bi
- Cellular Proteome Research Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Belén Carriquí-Madroñal
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Medical School Hannover and the Helmholtz Centre for Infection Research, 30625 Hannover, Germany
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Koushikul Islam
- Department of Clinical Microbiology, Virology, Umeå University, 90185 Umeå, Sweden
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, 90185 Umeå, Sweden
| | - Annasara Lenman
- Department of Clinical Microbiology, Virology, Umeå University, 90185 Umeå, Sweden
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, 90185 Umeå, Sweden
| | - Antonia P. Gunesch
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Medical School Hannover and the Helmholtz Centre for Infection Research, 30625 Hannover, Germany
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany
- German Centre for Infection Research (DZIF), Partner site Hannover-Braunschweig, 30625 Hannover, Germany
| | - Jared Kirui
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Medical School Hannover and the Helmholtz Centre for Infection Research, 30625 Hannover, Germany
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Thomas Pietschmann
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Medical School Hannover and the Helmholtz Centre for Infection Research, 30625 Hannover, Germany
- German Centre for Infection Research (DZIF), Partner site Hannover-Braunschweig, 30625 Hannover, Germany
| | - Anna K. Överby
- Department of Clinical Microbiology, Virology, Umeå University, 90185 Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), R893+F4 Umeå, Sweden
| | - Lothar Jänsch
- Cellular Proteome Research Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Gisa Gerold
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Medical School Hannover and the Helmholtz Centre for Infection Research, 30625 Hannover, Germany
- Department of Clinical Microbiology, Virology, Umeå University, 90185 Umeå, Sweden
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, 90185 Umeå, Sweden
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| |
Collapse
|
5
|
Wei J, Zang S, Li C, Zhang X, Gao P, Qin Q. Grouper PKR activation inhibits red-spotted grouper nervous necrosis virus (RGNNV) replication in infected cells. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 111:103744. [PMID: 32442443 DOI: 10.1016/j.dci.2020.103744] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/10/2020] [Accepted: 05/09/2020] [Indexed: 06/11/2023]
Abstract
The double-stranded RNA-activated protein kinase (PKR) is a Type I interferon (IFN) stimulated gene that has important biological and immunological functions. In viral infections, PKR inhibits or promotes viral replication. In the present study, PKR homologues of orange-spotted grouper (Epinephelus coioides) (EcPKR) were cloned and the involvement of EcPKR during Red-spotted grouper nervous necrosis virus (RGNNV) infection was investigated. EcPKR encodes a 621-amino acid polypeptide that is closely related to the equivalent protein in Larimichthys crocea. EcPKR encoded two dsRNA binding domains and a Serine/Threonine protein kinase domain. Quantitative real-time PCR (qRT-PCR) analysis indicated that EcPKR was present in all examined tissues, with higher expression in spleen, intestine and gill. When stimulated with poly(I:C), the expression of EcPKR in the grouper spleen was increased, with highest expression 12 h post stimulation. EcPKR concentration was significantly increased in RGNNV-infected cells, with highest expression at 36 h post stimulation. EcPKR is mainly present in the cytoplasm. Overexpression of EcPKR in grouper spleen (GS) cells inhibits the transcription of the RGNNV genes. Furthermore, our results show that EcPKR overexpression significantly enhances the immune response of interferon and the activation of interferon-beta (IFN-β), interferon stimulated response element (ISRE) and nuclear factor-kappa B (NF-κB). Taken together, these results are important for better understanding of the function of PKR in fish and reveal its involvement in host response to immune challenges in RGNNV.
Collapse
Affiliation(s)
- Jingguang Wei
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Shaoqing Zang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, 266000, China; State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266000, China; CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Chen Li
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Xin Zhang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Pin Gao
- State Key Laboratory Breeding Base for Sustainable Exploitation of Tropical Biotic Resources, College of Marine Science, Hainan University, Haikou, 570228, China
| | - Qiwei Qin
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China.
| |
Collapse
|
6
|
Catanzaro N, Meng XJ. Induction of the unfolded protein response (UPR) suppresses porcine reproductive and respiratory syndrome virus (PRRSV) replication. Virus Res 2019; 276:197820. [PMID: 31743697 DOI: 10.1016/j.virusres.2019.197820] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/06/2019] [Accepted: 11/15/2019] [Indexed: 10/25/2022]
Abstract
Replication of most RNA viruses is closely associated with the endoplasmic reticulum (ER) within permissive cells. As such, viruses often induce tremendous amounts of stress on cells during viral replication. To cope with the stress, cells initiate the unfolded protein response (UPR) to promote cellular survival. Porcine reproductive and respiratory syndrome virus (PRRSV), an economically important swine pathogen, was previously shown to induce cellular stress at late stages post-infection resulting in the formation of stress granules (SGs). Here in this study, we demonstrate that PRRSV also induces additional cellular response pathways, including the UPR. Confocal microscopy analysis demonstrated significant morphological changes in the ER of PRRSV-infected cells, indicative of pronounced ER stress. Further investigation revealed induction of all three branches of the UPR, including eukaryotic translation initiation factor 2-alpha kinase 3 (PERK), serine-threonine protein kinase/endoribonuclease (IRE1), and cyclic AMP-dependent transcription factor (ATF6). Activation of these sensors resulted in significant transcriptional upregulation of downstream UPR effectors. Additionally, UPR activation was shown to be detrimental to PRRSV replication, as treatment of cells with chemical ER stress inducers potently suppressed viral replication and RNA synthesis. Further investigation into the molecular mechanisms of UPR suppression of PRRSV replication revealed that PERK exacerbates the PRRSV-induced cytokine response. Collectively, these results demonstrate that PRRSV infection induces UPR activation through all three branches, and that UPR signaling may play a role in PRRSV pathogenesis. The results of this study further our understanding of the underlying molecular mechanisms of PRRSV replication and host-pathogen interactions.
Collapse
Affiliation(s)
- Nicholas Catanzaro
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Xiang-Jin Meng
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| |
Collapse
|
7
|
Liu K, Ma G, Liu X, Lu Y, Xi S, Ou A, Wei J, Li B, Shao D, Li Y, Qiu Y, Miao D, Ma Z. Porcine reproductive and respiratory syndrome virus counteracts type I interferon-induced early antiviral state by interfering IRF7 activity. Vet Microbiol 2018; 229:28-38. [PMID: 30642596 DOI: 10.1016/j.vetmic.2018.12.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 12/12/2018] [Accepted: 12/13/2018] [Indexed: 11/30/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is an economically important disease with a significant impact on the pig industry. It is caused by PRRS virus (PRRSV), which predominantly infects and replicates in porcine pulmonary alveolar macrophages (PAMs). We pretreated PAMs with porcine interferon (IFN)-α to induce an antiviral state within the cells and subsequently infected them with highly pathogenic PRRSV. Changes in global gene expression in IFN-α-pretreated PAMs in response to PRRSV infection were determined by RNA-sequence analysis and confirmed by real-time PCR. We found that IRF7 and other antiviral interferon stimulating genes (ISG)s were suppressed by PRRSV infection. Further studies demonstrated that PRRSV could down-regulate the expression of IRF7 by the non-structure protein 7 (nsp7). In conclusion, PRRSV infection had a strong immunosuppressive effect of IFN. PRRSV nsp7 inhibits the expression of IRF7, thereby down-regulating the expression of IFN and downstream ISGs and facilitated the virus to replicate.
Collapse
Affiliation(s)
- Ke Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai, 200241, PR China; Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 200240, PR China
| | - Gaini Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai, 200241, PR China; Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, PR China
| | - Xiqian Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai, 200241, PR China
| | - Yan Lu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai, 200241, PR China
| | - Shumin Xi
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai, 200241, PR China
| | - Anni Ou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai, 200241, PR China
| | - Jianchao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai, 200241, PR China
| | - Beibei Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai, 200241, PR China
| | - Donghua Shao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai, 200241, PR China
| | - Yuming Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai, 200241, PR China
| | - Yafeng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai, 200241, PR China.
| | - Denian Miao
- Institute of Animal Husbandry & Veterinary Science, Shanghai Academy of Agricultural Science, 201106, PR China
| | - Zhiyong Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai, 200241, PR China.
| |
Collapse
|
8
|
Zhou Y, Fang L, Wang D, Cai K, Chen H, Xiao S. Porcine Reproductive and Respiratory Syndrome Virus Infection Induces Stress Granule Formation Depending on Protein Kinase R-like Endoplasmic Reticulum Kinase (PERK) in MARC-145 Cells. Front Cell Infect Microbiol 2017; 7:111. [PMID: 28421170 PMCID: PMC5378712 DOI: 10.3389/fcimb.2017.00111] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/20/2017] [Indexed: 11/21/2022] Open
Abstract
Stress granules (SGs) are sites of mRNA storage that are formed in response to various conditions of stress, including viral infections. Porcine reproductive and respiratory syndrome virus (PRRSV) is an Arterivirus that has been devastating the swine industry worldwide since the late 1980s. In this study, we found that infection of PRRSV strain WUH3 (genotype 2 PRRSV) induced stable formation of robust SGs in MARC-145 cells, as demonstrated by the recruitment of marker proteins of SGs, including TIA1, G3BP1, and eIF3η. Treatment with specific inhibitors or siRNAs against the stress kinases that are involved in SG formation revealed that PRRSV induced SG formation through a PERK (protein kinase R–like endoplasmic reticulum kinase)-dependent mechanism. Impairment of SG assembly by concomitant knockdown of the SG marker proteins (TIA1, G3BP1, and TIAR) did not affect PRRSV growth, while significantly enhanced PRRSV-induced NF-κB subunit p65 phosphorylation and inflammatory cytokine production. Taken together, our results demonstrate that PRRSV induces SG formation via a PERK-dependent pathway and that SGs are involved in the signaling pathway of the PRRSV-induced inflammatory response in MARC-145 cells.
Collapse
Affiliation(s)
- Yanrong Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural UniversityWuhan, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural UniversityWuhan, China
| | - Dang Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural UniversityWuhan, China
| | - Kaimei Cai
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural UniversityWuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural UniversityWuhan, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural UniversityWuhan, China
| |
Collapse
|
9
|
Rappe JCF, García-Nicolás O, Flückiger F, Thür B, Hofmann MA, Summerfield A, Ruggli N. Heterogeneous antigenic properties of the porcine reproductive and respiratory syndrome virus nucleocapsid. Vet Res 2016; 47:117. [PMID: 27871316 PMCID: PMC5118883 DOI: 10.1186/s13567-016-0399-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/27/2016] [Indexed: 12/21/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is an arterivirus responsible for a widespread contagious disease of domestic pigs with high economic impact. Switzerland is one of the rare PRRSV-free countries in Europe, although sporadic outbreaks have occurred in the past. The PRRSV isolate IVI-1173 from the short outbreak in Switzerland in 2012 was entirely sequenced, and a functional full-length cDNA clone was constructed. Genetic and antigenic characterization of IVI-1173 revealed the importance of amino acid 90 of the nucleocapsid protein N as part of a conformational epitope. IVI-1173 was not detected by SDOW17, a monoclonal antibody against N widely used to detect PRRSV-infected cells. Substitution of alanine at position 90 of N [N(A90)] with a threonine [N(T90)] restored reactivity of vIVI1173-N(T90) to SDOW17 completely. The relevance of this amino acid for the conformational SDOW17 epitope of PRRSV N was further confirmed by the opposite substitution in a functional cDNA clone of the genotype 2 isolate RVB-581. Finally, N proteins from ten genotype 1 strains differing from threonine at position 90 were analysed for reactivity with SDOW17. N(A90) totally disrupted or severely affected the epitope in 7 out of 8 strains tested. Based on these findings, 225 genotype 1 strains were screened for the prevalence of N(A90). N(A90) is rare in classical subtype 1 and in subtype 3 strains, but is frequent in Russian subtype 1 (70%) and in subtype 2 (45%) isolates. In conclusion, this study highlights the variable antigenic properties of N among genotype 1 PRRSV strains.
Collapse
Affiliation(s)
- Julie C F Rappe
- The Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | | | | | - Barbara Thür
- The Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland.,Office for Consumer Protection, Canton Aargau, Obere Vorstadt 14, 5000, Aarau, Switzerland
| | - Martin A Hofmann
- The Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland
| | - Artur Summerfield
- The Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Nicolas Ruggli
- The Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland.
| |
Collapse
|
10
|
Abstract
Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS) are the most severe coronavirus (CoV)-associated diseases in humans. The causative agents, SARS-CoV and MERS-CoV, are of zoonotic origin but may be transmitted to humans, causing severe and often fatal respiratory disease in their new host. The two coronaviruses are thought to encode an unusually large number of factors that allow them to thrive and replicate in the presence of efficient host defense mechanisms, especially the antiviral interferon system. Here, we review the recent progress in our understanding of the strategies that highly pathogenic coronaviruses employ to escape, dampen, or block the antiviral interferon response in human cells.
Collapse
Affiliation(s)
- E Kindler
- University of Bern, Bern, Switzerland; Institute of Virology and Immunology, Bern and Mittelhäusern, Switzerland
| | - V Thiel
- University of Bern, Bern, Switzerland; Institute of Virology and Immunology, Bern and Mittelhäusern, Switzerland
| | - F Weber
- Institute of Virology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany.
| |
Collapse
|
11
|
Downregulation of protein kinase PKR activation by porcine reproductive and respiratory syndrome virus at its early stage infection. Vet Microbiol 2016; 187:1-7. [PMID: 27066702 DOI: 10.1016/j.vetmic.2016.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/03/2016] [Accepted: 03/04/2016] [Indexed: 11/23/2022]
Abstract
The interferon-induced double-strand RNA activated protein kinase (PKR) plays an important role in antiviral response. The objective of this study was to assess the effect of porcine reproductive and respiratory syndrome virus (PRRSV) on PKR activation. Here we report that PRRSV inhibited PKR activation during its early stage infection of primary pulmonary alveolar macrophages (PAMs). PRRSV infection led to lower level of phosphorylated PKR in comparison with mock-infected cells. The PKR inhibition was sustained until 10h post infection in the presence of polyI:C, a synthetic analog of double-stranded RNA activating PKR. PKR-mediated phosphorylation of the eukaryotic translation initiation factor eIF2α was also lower in the PRRSV-infected PAMs during the early stage infection. Interestingly, inactivated PRRSV was capable to inhibit the PKR activation until 6h post infection. This suggests that structural components of PRRSV virions were responsible for the inhibition, although PRRSV replication was needed for longer inhibition. These results indicate that the downregulation of PKR activation during early infection stage should be essential for PRRSV to avoid the antiviral response to initiate replication. This finding contributes to our understanding on PRRSV interaction with host innate immune response and reveal a target for control of PRRSV infection.
Collapse
|