1
|
Hoa-Tran TN, Nakagomi T, Vu HM, Nguyen TTT, Dao ATH, Nguyen AT, Bines JE, Thomas S, Grabovac V, Kataoka-Nakamura C, Taichiro T, Hasebe F, Kodama T, Kaneko M, Dang HTT, Duong HT, Anh DD, Nakagomi O. Evolution of DS-1-like G8P[8] rotavirus A strains from Vietnamese children with acute gastroenteritis (2014-21): Adaptation and loss of animal rotavirus-derived genes during human-to-human spread. Virus Evol 2024; 10:veae045. [PMID: 38952820 PMCID: PMC11215986 DOI: 10.1093/ve/veae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/27/2024] [Accepted: 06/21/2024] [Indexed: 07/03/2024] Open
Abstract
Animal rotaviruses A (RVAs) are considered the source of emerging, novel RVA strains that have the potential to cause global spread in humans. A case in point was the emergence of G8 bovine RVA consisting of the P[8] VP4 gene and the DS-1-like backbone genes that appeared to have jumped into humans recently. However, it was not well documented what evolutionary changes occurred on the animal RVA-derived genes during circulation in humans. Rotavirus surveillance in Vietnam found that DS-1-like G8P[8] strains emerged in 2014, circulated in two prevalent waves, and disappeared in 2021. This surveillance provided us with a unique opportunity to investigate the whole process of evolutionary changes, which occurred in an animal RVA that had jumped the host species barrier. Of the 843 G8P[8] samples collected from children with acute diarrhoea in Vietnam between 2014 and 2021, fifty-eight strains were selected based on their distinctive electropherotypes of the genomic RNA identified using polyacrylamide gel electrophoresis. Whole-genome sequence analysis of those fifty-eight strains showed that the strains dominant during the first wave of prevalence (2014-17) carried animal RVA-derived VP1, NSP2, and NSP4 genes. However, the strains from the second wave of prevalence (2018-21) lost these genes, which were replaced with cognate human RVA-derived genes, thus creating strain with G8P[8] on a fully DS-1-like human RVA gene backbone. The G8 VP7 and P[8] VP4 genes underwent some point mutations but the phylogenetic lineages to which they belonged remained unchanged. We, therefore, propose a hypothesis regarding the tendency for the animal RVA-derived genes to be expelled from the backbone genes of the progeny strains after crossing the host species barrier. This study underlines the importance of long-term surveillance of circulating wild-type strains in order to better understand the adaptation process and the fate of newly emerging, animal-derived RVA among the human population. Further studies are warranted to disclose the molecular mechanisms by which spillover animal RVAs become readily transmissible among humans, and the roles played by the expulsion of animal-derived genes and herd immunity formed in the local population.
Collapse
Affiliation(s)
- Thi Nguyen Hoa-Tran
- Department of Virology, National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam
| | - Toyoko Nakagomi
- Department of Hygiene and Molecular Epidemiology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
| | - Hung Manh Vu
- Department of Virology, National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam
| | - Trang Thu Thi Nguyen
- Department of Virology, National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam
| | - Anh Thi Hai Dao
- Department of Virology, National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam
| | - Anh The Nguyen
- Department of Virology, National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam
| | - Julie E Bines
- Enteric Diseases Group, Murdoch Childrens Research Institute, Royal Children’s Hospital, Parkville, Victoria 3052, Australia
| | - Sarah Thomas
- Enteric Diseases Group, Murdoch Childrens Research Institute, Royal Children’s Hospital, Parkville, Victoria 3052, Australia
| | - Varja Grabovac
- Vaccine-Preventable Diseases and Immunization Unit, Division of Programmes for Disease Control, World Health Organization Regional Office for the Western Pacific, Manila 1000, Philippines
| | - Chikako Kataoka-Nakamura
- Center Surveillance Division, The Research Foundation for Microbial Diseases of Osaka University, Osaka 768-0065, Japan
| | - Takemura Taichiro
- Vietnam Research Station, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
- Vietnam Research Station, National Institute of Hygiene and Epidemiology-Nagasaki University, Hanoi 100000, Vietnam
| | - Futoshi Hasebe
- Vietnam Research Station, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
- Vietnam Research Station, National Institute of Hygiene and Epidemiology-Nagasaki University, Hanoi 100000, Vietnam
| | - Toshio Kodama
- Department of Bacteriology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
| | - Miho Kaneko
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
| | - Huyen Thi Thanh Dang
- National office for Expanded Program on Immunization, National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam
| | - Hong Thi Duong
- National office for Expanded Program on Immunization, National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam
| | - Dang Duc Anh
- Department of Bacteriology, National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam
| | - Osamu Nakagomi
- Department of Hygiene and Molecular Epidemiology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
| |
Collapse
|
2
|
de Alwis R, My Phuc T, Yu Hang Bai B, Le Thi Quynh N, Thi Thanh Tam P, Thi Ngoc Dung T, Thi Thanh Nhan N, Vinh C, Van Hien H, Thanh Hoang Nhat L, Thi Thu Hong N, Thi Mong Tuyen N, Thi Thuy Trang H, Phuong Thao L, Thi Ngoc Diep V, Thi Hai Chau P, Quan Thinh L, Thi Ngoc Thu H, Nguyet Hang N, Cong Danh M, Doan Hao T, Anh Dao T, Dai L, Thi Huyen Diu V, Thi En N, Thi Tuyet Hanh N, Thi Hanh L, Pham Thu Hien H, Thi Thuy Linh N, Darton TC, Thwaites GE, Kestelyn E, Lan Vi L, Thi Thuy Tien B, Thi Diem Tuyet H, Anderson C, Baker S. The influence of human genetic variation on early transcriptional responses and protective immunity following immunization with Rotarix vaccine in infants in Ho Chi Minh City in Vietnam: A study protocol for an open single-arm interventional trial. Wellcome Open Res 2020. [DOI: 10.12688/wellcomeopenres.16090.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background: Rotavirus (RoV) remains the leading cause of acute gastroenteritis in infants and children aged under five years in both high- and low-middle-income countries (LMICs). In LMICs, RoV infections are associated with substantial mortality. Two RoV vaccines (Rotarix and Rotateq) are widely available for use in infants, both of which have been shown to be highly efficacious in Europe and North America. However, for unknown reasons, these RoV vaccines have markedly lower efficacy in LMICs. We hypothesize that poor RoV vaccine efficacy across in certain regions may be associated with genetic heritability or gene expression in the human host. Methods/design: We designed an open-label single-arm interventional trial with the Rotarix RoV vaccine to identify genetic and transcriptomic markers associated with generating a protective immune response against RoV. Overall, 1,000 infants will be recruited prior to Expanded Program on Immunization (EPI) vaccinations at two months of age and vaccinated with oral Rotarix vaccine at two and three months, after which the infants will be followed-up for diarrheal disease until 18 months of age. Blood sampling for genetics, transcriptomics, and immunological analysis will be conducted before each Rotarix vaccination, 2-3 days post-vaccination, and at each follow-up visit (i.e. 6, 12 and 18 months of age). Stool samples will be collected during each diarrheal episode to identify RoV infection. The primary outcome will be Rotarix vaccine failure events (i.e. symptomatic RoV infection despite vaccination), secondary outcomes will be antibody responses and genotypic characterization of the infection virus in Rotarix failure events. Discussion: This study will be the largest and best powered study of its kind to be conducted to date in infants, and will be critical for our understanding of RoV immunity, human genetics in the Vietnam population, and mechanisms determining RoV vaccine-mediated protection. Registration: ClinicalTrials.gov, ID: NCT03587389. Registered on 16 July 2018.
Collapse
|
3
|
Hoa-Tran TN, Nakagomi T, Vu HM, Nguyen TTT, Takemura T, Hasebe F, Dao ATH, Anh PHQ, Nguyen AT, Dang AD, Nakagomi O. Detection of three independently-generated DS-1-like G9P[8] reassortant rotavirus A strains during the G9P[8] dominance in Vietnam, 2016–2018. INFECTION GENETICS AND EVOLUTION 2020; 80:104194. [DOI: 10.1016/j.meegid.2020.104194] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 12/26/2019] [Accepted: 01/09/2020] [Indexed: 10/25/2022]
|
4
|
Damanka SA, Agbemabiese CA, Dennis FE, Lartey BL, Adiku TK, Enweronu-Laryea CC, Armah GE. Genetic analysis of Ghanaian G1P[8] and G9P[8] rotavirus A strains reveals the impact of P[8] VP4 gene polymorphism on P-genotyping. PLoS One 2019; 14:e0218790. [PMID: 31242245 PMCID: PMC6594640 DOI: 10.1371/journal.pone.0218790] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 06/10/2019] [Indexed: 11/19/2022] Open
Abstract
The World Health Organisation rotavirus surveillance networks have documented and shown eclectic geographic and temporal diversity in circulating G- and P- genotypes identified in children <5 years of age. To effectively monitor vaccine performance and effectiveness, robust molecular and phylogenetic techniques are essential to detect novel strain variants that might emerge due to vaccine pressure. This study inferred the phylogenetic history of the VP7 and VP4 genes of previously non-typeable strains and provided insight into the diversity of P[8] VP4 sequences which impacted the outcome of our routine VP4 genotyping method. Near-full-length VP7 gene and the VP8* fragment of the VP4 gene were obtained by Sanger sequencing and genotypes were determined using RotaC v2.0 web-based genotyping tool. The genotypes of the 57 rotavirus-positive samples with sufficient stool was determined. Forty-eight of the 57 (84.2%) had the P[8] specificity, of which 43 (89.6%) were characterized as P[8]a subtype and 5 (10.4%) as the rare OP354-like subtype. The VP7 gene of 27 samples were successfully sequenced and their G-genotypes confirmed as G1 (18/27) and G9 (9/27). Phylogenetic analysis of the P[8]a sequences placed them in subcluster IIIc within lineage III together with contemporary G1P[8], G3P[8], G8P[8], and G9P[8] strains detected globally from 2006-2016. The G1 VP7 sequences of the study strains formed a monophyletic cluster with African G1P[8] strains, previously detected in Ghana and Mali during the RotaTeq vaccine trial as well as Togo. The G9 VP7 sequences of the study strains formed a monophyletic cluster with contemporary African G9 sequences from neighbouring Burkina Faso within the major sub-cluster of lineage III. Mutations identified in the primer binding region of the VP8* sequence of the Ghanaian P[8]a strains may have resulted in the genotyping failure since the newly designed primer successfully genotyped the previously non-typeable P[8] strains. In summary, the G1, G9, and P[8]a sequences were highly similar to contemporary African strains at the lineage level. The study also resolved the methodological challenges of the standard genotyping techniques and highlighted the need for regular evaluation of the multiplex PCR-typing method especially in the post-vaccination era. The study further highlights the need for regions to start using sequencing data from local rotavirus strains to design and update genotyping primers.
Collapse
Affiliation(s)
- Susan Afua Damanka
- Department of Electron Microscopy and Histopathology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
- * E-mail:
| | - Chantal Ama Agbemabiese
- Department of Electron Microscopy and Histopathology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Francis Ekow Dennis
- Department of Electron Microscopy and Histopathology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Belinda Larteley Lartey
- Department of Electron Microscopy and Histopathology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Theophilus Korku Adiku
- School of Basic and Biomedical Sciences, University of Health and Allied Sciences, Ho, Ghana
| | | | - George Enyimah Armah
- Department of Electron Microscopy and Histopathology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| |
Collapse
|
5
|
Luchs A, da Costa AC, Cilli A, Komninakis SCV, Carmona RDCC, Boen L, Morillo SG, Sabino EC, Timenetsky MDCST. Spread of the emerging equine-like G3P[8] DS-1-like genetic backbone rotavirus strain in Brazil and identification of potential genetic variants. J Gen Virol 2018; 100:7-25. [PMID: 30457517 DOI: 10.1099/jgv.0.001171] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In 2013, the equine-like G3P[8] DS-1-like rotavirus (RVA) strain emerged worldwide. In 2016, this strain was reported in northern Brazil. The aims of the study were to conduct a retrospective genetic investigation to identify the possible entry of these atypical strains in Brazil and to describe their distribution across a representative area of the country. From 2013 to 2017, a total of 4226 faecal samples were screened for RVA by ELISA, PAGE, RT-PCR and sequencing. G3P[8] represented 20.9 % (167/800) of all RVA-positive samples, further subdivided as equine-like G3P[8], DS-1-like (11.0 %; 88/800) and Wa-like G3P[8] (9.9 %; 79/800). Six equine-like G3P[8] DS-1-like samples were selected for whole-genome investigation, confirming the backbone I2-R2-C2-M2-A2-N2-T2-E2-H2. During 2013-2014, Wa-like G3P[8] was predominant and no equine-like G3P[8] DS-1-like was detected. Equine-like G3P[8] DS-1-like was first identified in Paraná in March/2015, suggesting that the strain entered Brazil through the Southern region. Equine-like G3P[8] rapidly spread across the area under surveillance and displayed a marked potential to replace Wa-like G3P[8] strains. Brazilian equine-like G3P[8] DS-1-like strains clustered with contemporary equine-like G3P[8] DS-1-like detected worldwide, but exhibited a distinct NSP2 genotype (N2) compared to the previously reported Amazon equine-like G3P[8] DS-1-like strain (N1). Two distinct NSP4 E2 genotype lineages were also identified. Taken together, these data suggest that different variants of equine-like G3P[8] DS-1-like strains might have been introduced into the country at distinct time points, and co-circulated in the period 2015-2017. The global emergence of equine-like G3P[8] DS-1-like strains, predominantly in countries using the Rotarix vaccine, raises the question of whether vaccines may be inducing selective pressures on zoonotic strains.
Collapse
Affiliation(s)
- Adriana Luchs
- 1Enteric Disease Laboratory, Virology Center, Adolfo Lutz Institute, São Paulo, Brazil
| | - Antonio Charlys da Costa
- 2LIM/46 - Laboratory of Medical Parasitology, Department of Infectious and Parasitic Diseases, College of Medicine, University of São Paulo, São Paulo, Brazil.,3Institute of Tropical Medicine, University of São Paulo, São Paulo, Brazil
| | - Audrey Cilli
- 1Enteric Disease Laboratory, Virology Center, Adolfo Lutz Institute, São Paulo, Brazil
| | - Shirley Cavalcante Vasconcelos Komninakis
- 4Postgraduate Program in Health Science, Faculty of Medicine of ABC, Santo André, Brazil.,5Retrovirology Laboratory, Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | | | - Lais Boen
- 1Enteric Disease Laboratory, Virology Center, Adolfo Lutz Institute, São Paulo, Brazil
| | | | - Ester Cerdeira Sabino
- 2LIM/46 - Laboratory of Medical Parasitology, Department of Infectious and Parasitic Diseases, College of Medicine, University of São Paulo, São Paulo, Brazil.,3Institute of Tropical Medicine, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
6
|
Do LP, Kaneko M, Nakagomi T, Gauchan P, Agbemabiese CA, Dang AD, Nakagomi O. Molecular epidemiology of Rotavirus A, causing acute gastroenteritis hospitalizations among children in Nha Trang, Vietnam, 2007-2008: Identification of rare G9P[19] and G10P[14] strains. J Med Virol 2016; 89:621-631. [PMID: 27611738 DOI: 10.1002/jmv.24685] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2016] [Indexed: 12/17/2022]
Abstract
Rotavirus A (RVA) causes acute diarrhea in children as well as animals. As part of a cross-sectional study of children less than 5 years of age hospitalized for acute diarrhea in Vietnam during a 15-month period (2007-2008), 322 (43.5%) of 741 fecal specimens contained RVA with 92% either G1P[8] or G3P[8]. This study was undertaken to further characterize strains that remained untypeable to complete the G and P genotypes of the 322 rotavirus-positive specimens. While 307 (95.3%) strains possessed the common human RVA genotypes: G1P[8] (45.0%), G2P[4] (2.8%), G3P[8] (46.9%), and G9P[8] (0.6%), sequencing of initially untypeable specimens revealed the presence of two unusual strains designated NT0073 and NT0082 possessing G9P[19] and G10P[14], respectively. The genotype constellation of NT0073 (G9-P[19]-I5-R1-C1-M1-A8-N1-T7-E1-H1) and the phylogenetic trees suggested its origin as a porcine RVA strain causing diarrhea in a 24-month-old girl whereas the genotype constellation of NT0082 (G10-P[14]-I2-R2-C2-M2-A3-N2-T6-E2-H3) and the phylogenetic trees suggested its origin as an RVA strain of artiodactyl origin (such as cattle, sheep and goats) causing diarrhea in a 13-month-old boy. This study showed that RVA strains of animal host origin were not necessarily attenuated in humans. A hypothesis may be postulated that P[19] and P[14] VP4 spike proteins helped the virus to replicate in the human intestine but that efficient onward human-to-human spread after crossing the host species barrier may require the virus to obtain some additional features as there was no evidence of widespread transmission with the limited sampling performed over the study period. J. Med. Virol. 89:621-631, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Loan Phuong Do
- Department of Hygiene and Molecular Epidemiology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.,National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Miho Kaneko
- Department of Hygiene and Molecular Epidemiology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Toyoko Nakagomi
- Department of Hygiene and Molecular Epidemiology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.,Centre for Bioinformatics and Molecular Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Punita Gauchan
- Department of Hygiene and Molecular Epidemiology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Chantal Ama Agbemabiese
- Department of Hygiene and Molecular Epidemiology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Anh Duc Dang
- National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Osamu Nakagomi
- Department of Hygiene and Molecular Epidemiology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.,Centre for Bioinformatics and Molecular Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|