1
|
Lee GE, Lee HJ, Jeong RD. Comprehensive Metatranscriptomic Analysis of Plant Viruses in Imported Frozen Cherries and Blueberries. THE PLANT PATHOLOGY JOURNAL 2024; 40:377-389. [PMID: 39117336 PMCID: PMC11309839 DOI: 10.5423/ppj.oa.06.2024.0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024]
Abstract
The possibility of new viruses emerging in various regions worldwide has increased due to a combination of factors, including climate change and the expansion of international trading. Plant viruses spread through various transmission routes, encompassing well-known avenues such as pollen, seeds, and insects. However, research on potential transmission routes beyond these known mechanisms has remained limited. To address this gap, this study employed metatranscriptomic analysis to ascertain the presence of plant viruses in imported frozen fruits, specifically cherries and blueberries. This analysis aimed to identify pathways through which plant viruses may be introduced into countries. Virome analysis revealed the presence of six species of plant viruses in frozen cherries and blueberries: cherry virus A (CVA), prunus necrotic ringspot virus (PNRSV), prune dwarf virus (PDV), prunus virus F (PrVF), blueberry shock virus (BlShV), and blueberry latent virus (BlLV). Identifying these potential transmission routes is crucial for effectively managing and preventing the spread of plant viruses and crop protection. This study highlights the importance of robust quality control measures and monitoring systems for frozen fruits, emphasizing the need for proactive measures to mitigate the risk associated with the potential spread of plant viruses.
Collapse
Affiliation(s)
- Ga-Eun Lee
- Department of Applied Biology, Chonnam National University, Gwangju 61185, Korea
| | - Hyo-Jeong Lee
- Department of Applied Biology, Chonnam National University, Gwangju 61185, Korea
| | - Rae-Dong Jeong
- Department of Applied Biology, Chonnam National University, Gwangju 61185, Korea
| |
Collapse
|
2
|
Lotos L, Katsiani A, Katis NI, Maliogka VI. Evaluation of the RNA Silencing Suppression Activity of Three Cherry Virus F-Encoded Proteins. PLANTS (BASEL, SWITZERLAND) 2024; 13:264. [PMID: 38256817 PMCID: PMC10819124 DOI: 10.3390/plants13020264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/10/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024]
Abstract
Cherry virus F (CVF) is a newly emerged sweet cherry virus. CVF has been identified in a small number of countries and it has not been associated with discrete symptomatology. RNA silencing is a natural defense mechanism of plants against invaders that degrades viral RNA in a sequence-specific manner. As a counter-defense, plant viruses encode one or more RNA silencing suppressors (RSSs) interfering with the silencing pathway via several mechanisms. To identify putative RSSs, the three proteins (MP, CPL, CPS) encoded by the RNA2 of CVF were selected and separately cloned into the binary vector pART27. The clones were used for transient expression experiments in Nicotiana benthamiana leaves, using co-agroinfiltration with a GFP-expressing vector. In both CPL and CPS, a rapid decrease in fluorescence was recorded, comparable to the negative control, whereas the MP of CVF retained the GFP's fluorescence for a few days longer even though this was observed in a small number of infiltrated leaves. Further experiments have shown that the protein was not able to inhibit the cell-to-cell spread of the silencing signal; however, a putative interference with systemic silencing was recorded especially when the induction was carried out with double-stranded GFP RNA. Overall, our results indicate that the MP of CVF is putatively implicated in the suppression of RNA silencing, though further experimentation is needed to unveil the exact mode of action.
Collapse
Affiliation(s)
| | | | | | - Varvara I. Maliogka
- Plant Pathology Laboratory, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (L.L.); (A.K.); (N.I.K.)
| |
Collapse
|
3
|
Belkina D, Karpova D, Porotikova E, Lifanov I, Vinogradova S. Grapevine Virome of the Don Ampelographic Collection in Russia Has Concealed Five Novel Viruses. Viruses 2023; 15:2429. [PMID: 38140672 PMCID: PMC10747563 DOI: 10.3390/v15122429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
In this study, an analysis of the virome of 51 grapevines from the Don ampelographic collection named after Ya. I. Potapenko (Russia) was performed using high-throughput sequencing of total RNA. A total of 20 previously described grapevine viruses and 4 viroids were identified. The most detected were grapevine rupestris stem pitting-associated virus (98%), hop stunt viroid (98%), grapevine Pinot gris virus (96%), grapevine yellow speckle viroid 1 (94%), and grapevine fleck virus (GFkV, 80%). Among the economically significant viruses, the most present were grapevine leafroll-associated virus 3 (37%), grapevine virus A (24%), and grapevine leafroll-associated virus 1 (16%). For the first time in Russia, a grapevine-associated tymo-like virus (78%) was detected. After a bioinformatics analysis, 123 complete or nearly complete viral genomes and 64 complete viroid genomes were assembled. An analysis of the phylogenetic relationships with reported global isolates was performed. We discovered and characterized the genomes of five novel grapevine viruses: bipartite dsRNA grapevine alphapartitivirus (genus Alphapartitivirus, family Partitiviridae), bipartite (+) ssRNA grapevine secovirus (genus Fabavirus, family Secoviridae) and three (+) ssRNA grapevine umbra-like viruses 2, -3, -4 (which phylogenetically occupy an intermediate position between representatives of the genus Umbravirus and umbravirus-like associated RNAs).
Collapse
Affiliation(s)
- Daria Belkina
- Skryabin Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect, 33, Build. 2, 119071 Moscow, Russia; (D.B.)
- North Caucasian Federal Scientific Center of Horticulture, Viticulture, Wine-Making, 40 Years of Victory Street, Build. 39, 350901 Krasnodar, Russia
| | - Daria Karpova
- Skryabin Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect, 33, Build. 2, 119071 Moscow, Russia; (D.B.)
- North Caucasian Federal Scientific Center of Horticulture, Viticulture, Wine-Making, 40 Years of Victory Street, Build. 39, 350901 Krasnodar, Russia
| | - Elena Porotikova
- Skryabin Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect, 33, Build. 2, 119071 Moscow, Russia; (D.B.)
| | - Ilya Lifanov
- Skryabin Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect, 33, Build. 2, 119071 Moscow, Russia; (D.B.)
| | - Svetlana Vinogradova
- Skryabin Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect, 33, Build. 2, 119071 Moscow, Russia; (D.B.)
- North Caucasian Federal Scientific Center of Horticulture, Viticulture, Wine-Making, 40 Years of Victory Street, Build. 39, 350901 Krasnodar, Russia
| |
Collapse
|
4
|
Dong J, Chen Y, Xie Y, Cao M, Fu S, Wu J. The Identification of Viral Pathogens in a Physostegia virginiana Plant Using High-Throughput RNA Sequencing. Viruses 2023; 15:1972. [PMID: 37766378 PMCID: PMC10534606 DOI: 10.3390/v15091972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
Physostegia virginiana is an important ornamental and cut-flower plant in China. Its commonly used method of clonal propagation leads to virus accumulation in this plant. However, which viruses can infect the Physostegia virginiana plant remains to be illuminated. In this work, five viral pathogens in a Physostegia virginiana plant with virus-like symptoms of yellow, shriveled, and curled leaves were identified using RNA-seq, bioinformatics, and molecular biological techniques. These techniques allowed us to identify five viruses comprising one known alfalfa mosaic virus (AMV) and four novel viruses. The novel viruses include a virus belonging to the genus Fabavirus, temporarily named Physostegia virginiana crinkle-associated virus 1 (PVCaV1); two viruses belonging to the genus Caulimovirus, temporarily named Physostegia virginiana caulimovirus 1 and 2 (PVCV1 and PVCV2); and a virus belonging to the genus Fijivirus, temporarily named Physostegia virginiana fijivirus (PVFV). The genome sequences of PVCaV1, PVCV1, and PVCV2, and the partial genome sequence of PVFV were identified. Genome organizations and genetic evolutionary relationships of all four novel viruses were analyzed. PVCaV1 has a relatively close evolutionary relationship with five analyzed fabiviruses. PVCV1 and PVCV2 have separately a closest evolutionary relationship with lamium leaf distortion-associated virus (LLDAV) and figwort mosaic virus (FMV), and PVFV has a close evolutionary relationship with the five analyzed fijiviruses. Additionally, PVCaV1 can infect Nicotiana benthamiana plants via friction inoculation. The findings enrich our understanding of Physostegia virginiana viruses and contribute to the prevention and control of Physostegia virginiana viral diseases.
Collapse
Affiliation(s)
- Jinxi Dong
- Hainan Institute, Zhejiang University, Sanya 572025, China; (J.D.); (Y.C.)
- State Key Laboratory of Rice Biology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Yuanling Chen
- Hainan Institute, Zhejiang University, Sanya 572025, China; (J.D.); (Y.C.)
- State Key Laboratory of Rice Biology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Yi Xie
- State Key Laboratory of Rice Biology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Mengji Cao
- National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Shuai Fu
- Research Center for Biological Computation, Zhejiang Lab, Hangzhou 311100, China
| | - Jianxiang Wu
- Hainan Institute, Zhejiang University, Sanya 572025, China; (J.D.); (Y.C.)
- State Key Laboratory of Rice Biology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China;
| |
Collapse
|
5
|
Reinhold LA, Pscheidt JW. Diagnostic and Historical Surveys of Sweet Cherry ( Prunus avium) Virus and Virus-Like Diseases in Oregon. PLANT DISEASE 2023; 107:633-643. [PMID: 36018551 DOI: 10.1094/pdis-02-21-0327-sr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
There are over 35 known virus and virus-like diseases of sweet cherry (Prunus avium), some with potential to cause severe economic impact by reducing vegetative growth, vigor, or fruit quality. Oregon is the second-ranked state for sweet cherry production in the United States. Statewide surveys were conducted in Oregon sweet cherry orchards for virus and virus-like diversity and distribution. Orchards in key production regions with suspected virus disease symptoms were sampled. Virus-specific enzyme-linked immunosorbent assay, isothermal amplification, or quantitative real-time PCR were used to test for the presence of common or economically important sweet cherry pathogens, including cherry leaf roll virus (CLRV), little cherry virus 2 (LChV2), prune dwarf virus (PDV), prunus necrotic ringspot virus (PNRSV), tomato ringspot virus (ToRSV), and 'Candidatus Phytoplasma pruni'. CLRV, a new virus of sweet cherry in Oregon, was found associated with enation and dieback symptoms in The Dalles. Some viruses were found in new regions, which included Hood River (PDV, PNRSV, and ToRSV) and the Umpqua Valley (PDV and PNRSV). A subsequent survey was conducted in the Mid-Columbia production region for the presence of little cherry symptoms associated with little cherry and X-Diseases. All symptomatic samples from The Dalles and Mosier, OR, or Dallesport, WA, tested positive for 'Ca. P. pruni' but not LChV2. These findings provide a foundation for the current understanding and management of virus and virus-like diseases of sweet cherry in Oregon and context for further studies into these pathogens and their vectors.
Collapse
Affiliation(s)
- Lauri A Reinhold
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331
| | - Jay W Pscheidt
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331
| |
Collapse
|
6
|
Genome sequence and characterization of a novel fabavirus infecting Cirsium setidens (gondre) in South Korea. Arch Virol 2023; 168:77. [PMID: 36725755 DOI: 10.1007/s00705-023-05699-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 12/15/2022] [Indexed: 02/03/2023]
Abstract
The complete nucleotide sequence of a novel gondre (Cirsium setidens)-infecting virus, provisionally named "cirsium virus A" (CiVA), was determined by high-throughput and Sanger sequencing, revealing a genome organization typical of fabaviruses. RNA1 and RNA2 are 5,828 and 3,478 nucleotides long, excluding the 3'-terminal poly(A) tails, each containing a single open reading frame. The highest sequence identity values for the CiVA coat protein and proteinase-polymerase, compared with known fabavirus sequences, were 59.09% and 69.68%, respectively, falling below the current thresholds for Fabavirus species demarcation. Our findings support classifying CiVA as a novel putative member of the genus Fabavirus, subfamily Comovirinae, family Secoviridae.
Collapse
|
7
|
Ma Y, Xing F, Che H, Gao S, Lin Y, Li S. The Virome of Piper nigrum: Identification, Genomic Characterization, Prevalence, and Transmission of Three New Viruses of Black Pepper in China. PLANT DISEASE 2022; 106:2082-2089. [PMID: 35253482 DOI: 10.1094/pdis-12-21-2692-re] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Viral diseases are one of the main categories of diseases that cause substantial yield losses in black pepper. Disease symptoms in black pepper are generally complex and are often caused by both known and undescribed viruses. To identify and clarify the etiology of viral diseases in black pepper in Hainan, China, we conducted high-throughput sequencing (HTS) by targeting purified double-stranded RNA (dsRNA) and ribosomal RNA depleted total RNA (rRNA-depleted totRNA). Analysis of the data revealed the presence of one known virus, piper yellow mottle virus (PYMoV), and three newly identified viruses: black pepper virus F (BPVF) in the genus Fabavirus, black pepper virus E (BPVE) in the genus Enamovirus, and black pepper virus B (BPVB) in the genus Badnavirus. The dominant viruses in P. nigrum sampled in Hainan are PYMoV, with an incidence of 100%, followed by BPVF (84%, 133 of 158) and BPVB (66%, 105 of 158). Mechanical inoculation of sap extracts from source plants containing PYMoV, BPVF, and BPVB gave negative results on both herbaceous and woody host plants 60 days postinoculation (dpi). BPVF and PYMoV were successfully transmitted to virus-free seedlings of black pepper through bark grafting, while BPVB was experimentally undetectable up to 150 dpi. Seed transmission experiments showed that no target viruses were present in all 59 germinated seedlings. This study provides information on diagnosis, prevalence, and transmission of black-pepper-associated viruses.
Collapse
Affiliation(s)
- Yuxin Ma
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering/Key Laboratory of Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Fei Xing
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Haiyan Che
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Shengfeng Gao
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China
| | - Yating Lin
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Shifang Li
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
8
|
Carpino C, Ferriol Safont I, Elvira‐González L, Medina V, Rubio L, Peri E, Davino S, Galipienso Torregrosa L. RNA2-encoded VP37 protein of Broad bean wilt virus 1 is a determinant of pathogenicity, host susceptibility, and a suppressor of post-transcriptional gene silencing. MOLECULAR PLANT PATHOLOGY 2020; 21:1421-1435. [PMID: 32936537 PMCID: PMC7549002 DOI: 10.1111/mpp.12979] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/02/2020] [Accepted: 07/02/2020] [Indexed: 06/01/2023]
Abstract
Broad bean wilt virus 1 (BBWV-1, genus Fabavirus, family Secoviridae) is a bipartite, single-stranded positive-sense RNA virus infecting many horticultural and ornamental crops worldwide. RNA1 encodes proteins involved in viral replication whereas RNA2 encodes two coat proteins (the large and small coat proteins) and two putative movement proteins (MPs) of different sizes with overlapping C-terminal regions. In this work, we determined the role played by the small putative BBWV-1 MP (VP37) on virus pathogenicity, host specificity, and suppression of post-transcriptional gene silencing (PTGS). We engineered a BBWV-1 35S-driven full-length cDNA infectious clone corresponding to BBWV-1 RNA1 and RNA2 (pBBWV1-Wt) and generated a mutant knocking out VP37 (pBBWV1-G492C). Agroinfiltration assays showed that pBBWV1-Wt, as the original BBWV-1 isolate, infected broad bean, tomato, pepper, and Nicotiana benthamiana, whereas pBBWV1-G492C did not infect pepper and tomato systemically. Also, pBBWV1-G492C induced milder symptoms in broad bean and N. benthamiana than pBBWV1-Wt. Differential retrotranscription and amplification of the (+) and (-) strands showed that pBBWV1-G492C replicated in the agroinfiltrated leaves of pepper but not in tomato. All this suggests that VP37 is a determinant of pathogenicity and host specificity. Transient expression of VP37 through a potato virus X (PVX) vector enhanced PVX symptoms and induced systemic necrosis associated with programmed cell death in N. benthamiana plants. Finally, VP37 was identified as a viral suppressor of RNA silencing by transient expression in N. benthamiana 16c plants and movement complementation of a viral construct based on turnip crinkle virus (pTCV-GFP).
Collapse
Affiliation(s)
- Caterina Carpino
- Instituto Valenciano de Investigaciones AgrariasValenciaSpain
- Department of Agricultural, Food and Forestry ScienceUniversity of PalermoPalermoItaly
| | | | - Laura Elvira‐González
- Instituto Valenciano de Investigaciones AgrariasValenciaSpain
- Departamento de BiotecnologíaEscuela Técnica Superior de Ingeniería NaturalUniversitat Politècnica de ValènciaValenciaSpain
| | - Vicente Medina
- Departamento de Producción Vegetal y Ciencia ForestalUniversitat de LleidaLleidaSpain
| | - Luis Rubio
- Instituto Valenciano de Investigaciones AgrariasValenciaSpain
| | - Ezio Peri
- Department of Agricultural, Food and Forestry ScienceUniversity of PalermoPalermoItaly
| | - Salvatore Davino
- Department of Agricultural, Food and Forestry ScienceUniversity of PalermoPalermoItaly
| | | |
Collapse
|
9
|
Gaafar YZA, Ziebell H. Comparative study on three viral enrichment approaches based on RNA extraction for plant virus/viroid detection using high-throughput sequencing. PLoS One 2020; 15:e0237951. [PMID: 32841302 PMCID: PMC7447037 DOI: 10.1371/journal.pone.0237951] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/05/2020] [Indexed: 12/12/2022] Open
Abstract
High-throughput sequencing (HTS) has become increasingly popular as virus diagnostic tool. It has been used to detect and identify plant viruses and viroids in different types of matrices and tissues. A viral sequence enrichment method prior to HTS is required to increase the viral reads in the generated data to ease the bioinformatic analysis of generated sequences. In this study, we compared the sensitivity of three viral enrichment approaches, i.e. double stranded RNA (dsRNA), ribosomal RNA depleted total RNA (ribo-depleted totRNA) and small RNA (sRNA) for plant virus/viroid detection, followed by sequencing on MiSeq and NextSeq Illumina platforms. The three viral enrichment approaches used here enabled the detection of all viruses/viroid used in this study. When the data was normalised, the recovered viral/viroid nucleotides and depths were depending on the viral genome and the enrichment method used. Both dsRNA and ribo-depleted totRNA approaches detected a divergent strain of Wuhan aphid virus 2 that was not expected in this sample. Additionally, Vicia cryptic virus was detected in the data of dsRNA and sRNA approaches only. The results suggest that dsRNA enrichment has the highest potential to detect and identify plant viruses and viroids. The dsRNA approach used here detected all viruses/viroid, consumed less time, was lower in cost, and required less starting material. Therefore, this approach appears to be suitable for diagnostics laboratories.
Collapse
Affiliation(s)
- Yahya Zakaria Abdou Gaafar
- Julius Kühn Institute (JKI)–Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Heiko Ziebell
- Julius Kühn Institute (JKI)–Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
- * E-mail:
| |
Collapse
|
10
|
Identification and characterization of a novel rhabdovirus infecting peach in China. Virus Res 2020; 280:197905. [PMID: 32105763 DOI: 10.1016/j.virusres.2020.197905] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 02/23/2020] [Indexed: 02/08/2023]
Abstract
A novel negative-sense, single-stranded (ss) RNA virus was identified in peach trees by high-throughput sequencing, and named peach virus 1 (PeV1). The genome of PeV1 consists of 13,949 nucleotides (nt), and its organization is typical of rhabdoviruses with six open reading frames (ORFs) encoding deduced proteins N-P-P3-M-G-L on the antisense strand. These ORFs are separated by highly conserved intergenic sequences and flanked by complementary 3'-leader and 5'-trailer sequences. PeV1 shared highest complete genome (41.9%), N amino acid (43.6%), G amino acid (41.0%), and L amino acid (42.7%) identities with viruses which belong to the genus Alphanucleorhabdovirus, suggesting it may belong to a new species. This was further supported by phylogenetic analyses using amino acid sequences of N, G, and L proteins, in which this virus is always clustered with alphanucleorhabdoviruses. Collectively, results suggest that PeV1 is a member of a new alphanucleorhabdovirus species. Moreover, bioassays revealed that it could be transmitted through grafting. The findings expand our knowledge of peach-infecting viruses and alphanucleorhabdoviruses.
Collapse
|
11
|
Bragard C, Dehnen-Schmutz K, Gonthier P, Jacques MA, Jaques Miret JA, Justesen AF, MacLeod A, Magnusson CS, Milonas P, Navas-Cortes JA, Parnell S, Potting R, Reignault PL, Thulke HH, Van der Werf W, Vicent Civera A, Yuen J, Zappalà L, Candresse T, Chatzivassiliou E, Finelli F, Winter S, Bosco D, Chiumenti M, Di Serio F, Kaluski T, Minafra A, Rubino L. Pest categorisation of non-EU viruses and viroids of Prunus L. EFSA J 2019; 17:e05735. [PMID: 32626421 PMCID: PMC7009144 DOI: 10.2903/j.efsa.2019.5735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Following a request from the EU Commission, the Panel on Plant Health addressed the pest categorisation of the viruses and viroids of Prunus L. determined as being either non-EU or of undetermined standing in a previous EFSA opinion. These infectious agents belong to different genera and are heterogeneous in their biology. With the exclusion of Ilarvirus S1 and Ilarvirus S2, for which very limited information exists, the pest categorisation was completed for 26 viruses and 1 viroid having acknowledged identities and available detection methods. All these viruses are efficiently transmitted by vegetative plant propagation techniques, with plants for planting representing the major pathway for long-distance dispersal and thus considered as the major pathway for entry. Depending on the virus, additional pathway(s) can also be Prunus seeds, pollen and/or vector(s). Most of the viruses categorised here are known to infect only one or few plant genera, but some of them have a wide host range, thus extending the possible entry pathways. Apple scar skin viroid, American plum line pattern virus, cherry mottle leaf virus, cherry rasp leaf virus, cherry rosette virus, cherry rusty mottle-associated virus, cherry twisted leaf-associated virus, peach enation virus, peach mosaic virus, peach rosette mosaic virus, tobacco ringspot virus and tomato ringspot virus meet all the criteria evaluated by EFSA to qualify as potential Union quarantine pests (QPs). With the exception of impact in the EU territory, on which the Panel was unable to conclude, apricot vein clearing virus, Asian prunus virus 1, Asian prunus virus 2, Asian prunus virus 3, Caucasus prunus virus, cherry virus B, Mume virus A, nectarine stem pitting-associated virus, nectarine virus M, peach chlorotic mottle virus, peach leaf pitting-associated virus, peach virus D, prunus virus F and prunus virus T satisfy all the other criteria to be considered as potential Union QPs. Prunus geminivirus A does not meet the criterion of having negative impact in the EU. For several viruses, especially those recently discovered, the categorisation is associated with high uncertainties mainly because of the absence of data on their biology, distribution and impact. Since this opinion addresses specifically the non-EU viruses, in general these viruses do not meet the criteria assessed by EFSA to qualify as potential Union regulated non-quarantine pests.
Collapse
|
12
|
Bragard C, Dehnen-Schmutz K, Gonthier P, Jacques MA, Jaques Miret JA, Justesen AF, MacLeod A, Magnusson CS, Milonas P, Navas-Cortes JA, Parnell S, Potting R, Reignault PL, Thulke HH, der Werf WV, Vicent Civera A, Yuen J, Zappalà L, Candresse T, Chatzivassiliou E, Winter S, Chiumenti M, Di Serio F, Kaluski T, Minafra A, Rubino L. List of non-EU viruses and viroids of Cydonia Mill., Fragaria L., Malus Mill., Prunus L., Pyrus L., Ribes L., Rubus L. and Vitis L. EFSA J 2019; 17:e05501. [PMID: 32626418 PMCID: PMC7009187 DOI: 10.2903/j.efsa.2019.5501] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The Panel on Plant Health performed a listing of non-EU viruses and viroids (reported hereinafter as viruses) of Cydonia Mill., Fragaria L., Malus Mill., Prunus L., Pyrus L., Ribes L., Rubus L. and Vitis L. A systematic literature review identified 197 viruses infecting one or more of the host genera under consideration. Viruses were allocated into three categories (i) 86 non-EU viruses, known to occur only outside the EU or having only limited presence in the EU (i.e. reported in only one or few Member States (MSs), known to have restricted distribution, outbreaks), (ii) 97 viruses excluded at this stage from further categorisation efforts because they have significant presence in the EU (i.e. only reported so far from the EU or known to occur or be widespread in some MSs or frequently reported in the EU), (iii) 14 viruses with undetermined standing for which available information did not readily allow to allocate to one or the other of the two above groups. Comments provided by MSs during consultation phases were integrated in the opinion. The main knowledge gaps and uncertainties of this listing concern (i) the geographic distribution and prevalence of the viruses analysed, in particular when they were recently described; (ii) the taxonomy and biological status of a number of poorly characterised viruses; (iii) the host status of particular plant genera in relation to some viruses. The viruses considered as non-EU and those with undetermined standing will be categorised in the next steps to answer a specific mandate from the Commission to develop pest categorisations for non-EU viruses. This list does not imply a prejudice on future needs for a pest categorisation for other viruses which are excluded from the current categorisation efforts.
Collapse
|
13
|
Tahzima R, Foucart Y, Peusens G, Beliën T, Massart S, De Jonghe K. High-Throughput Sequencing Assists Studies in Genomic Variability and Epidemiology of Little Cherry Virus 1 and 2 infecting Prunus spp. in Belgium. Viruses 2019; 11:E592. [PMID: 31261922 PMCID: PMC6669712 DOI: 10.3390/v11070592] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/20/2019] [Accepted: 06/28/2019] [Indexed: 11/17/2022] Open
Abstract
Little cherry disease, caused by little cherry virus 1 (LChV-1) and little cherry virus 2 (LChV-2), which are both members of the family Closteroviridae, severely affects sweet (Prunus avium L.) and sour cherry (P. cerasus L.) orchards lifelong production worldwide. An intensive survey was conducted across different geographic regions of Belgium to study the disease presence on these perennial woody plants and related species. Symptomatic as well as non-symptomatic Prunus spp. trees tested positive via RT-PCR for LChV-1 and -2 in single or mixed infections, with a slightly higher incidence for LChV-1. Both viruses were widespread and highly prevalent in nearly all Prunus production areas as well as in private gardens and urban lane trees. The genetic diversity of Belgian LChV-1 and -2 isolates was assessed by Sanger sequencing of partial genomic regions. A total RNA High-Throughput Sequencing (HTS) approach confirmed the presence of both viruses, and revealed the occurrence of other Prunus-associated viruses, namely cherry virus A (CVA), prune dwarf virus (PDV) and prunus virus F (PrVF). The phylogenetic inference from full-length genomes revealed well-defined evolutionary phylogroups with high genetic variability and diversity for LChV-1 and LChV-2 Belgian isolates, yet with little or no correlation with planting area or cultivated varieties. The global diversity and the prevalence in horticultural areas of LChV-1 and -2 variants, in association with other recently described fruit tree viruses, are of particular concern. Future epidemiological implications as well as new investigation avenues are exhaustively discussed.
Collapse
Affiliation(s)
- Rachid Tahzima
- Plant Sciences, Fisheries and Food (ILVO), Flanders Research Institute for Agriculture, 9820 Merelbeke, Belgium
- Department of Integrated and Urban Phytopathology, University of Liège (ULg) - Gembloux Agro-Bio tech, 5030 Gembloux, Belgium
| | - Yoika Foucart
- Plant Sciences, Fisheries and Food (ILVO), Flanders Research Institute for Agriculture, 9820 Merelbeke, Belgium
| | - Gertie Peusens
- Department of Zoology, Proefcentrum Fruitteelt (pcfruit), 3800 Sint-Truiden, Belgium
| | - Tim Beliën
- Department of Zoology, Proefcentrum Fruitteelt (pcfruit), 3800 Sint-Truiden, Belgium
| | - Sébastien Massart
- Department of Integrated and Urban Phytopathology, University of Liège (ULg) - Gembloux Agro-Bio tech, 5030 Gembloux, Belgium
| | - Kris De Jonghe
- Plant Sciences, Fisheries and Food (ILVO), Flanders Research Institute for Agriculture, 9820 Merelbeke, Belgium.
| |
Collapse
|
14
|
Villamor DEV, Ho T, Al Rwahnih M, Martin RR, Tzanetakis IE. High Throughput Sequencing For Plant Virus Detection and Discovery. PHYTOPATHOLOGY 2019; 109:716-725. [PMID: 30801236 DOI: 10.1094/phyto-07-18-0257-rvw] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Over the last decade, virologists have discovered an unprecedented number of viruses using high throughput sequencing (HTS), which led to the advancement of our knowledge on the diversity of viruses in nature, particularly unraveling the virome of many agricultural crops. However, these new virus discoveries have often widened the gaps in our understanding of virus biology; the forefront of which is the actual role of a new virus in disease, if any. Yet, when used critically in etiological studies, HTS is a powerful tool to establish disease causality between the virus and its host. Conversely, with globalization, movement of plant material is increasingly more common and often a point of dispute between countries. HTS could potentially resolve these issues given its capacity to detect and discover. Although many pipelines are available for plant virus discovery, all share a common backbone. A description of the process of plant virus detection and discovery from HTS data are presented, providing a summary of the different pipelines available for scientists' utility in their research.
Collapse
Affiliation(s)
- D E V Villamor
- 1 Department of Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR 72701
| | - T Ho
- 1 Department of Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR 72701
| | - M Al Rwahnih
- 2 Department of Plant Pathology, University of California, Davis 95616; and
| | - R R Martin
- 3 Horticulture Crops Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Corvallis, OR 97330
| | - I E Tzanetakis
- 1 Department of Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR 72701
| |
Collapse
|
15
|
Çağlayan K, Roumi V, Gazel M, Elçi E, Acioğlu M, Mavric Plesko I, Reynard JS, Maclot F, Massart S. Identification and Characterization of a Novel Robigovirus Species from Sweet Cherry in Turkey. Pathogens 2019; 8:pathogens8020057. [PMID: 31035571 PMCID: PMC6631170 DOI: 10.3390/pathogens8020057] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 04/09/2019] [Accepted: 04/16/2019] [Indexed: 11/16/2022] Open
Abstract
High throughput sequencing of total RNA isolated from symptomatic leaves of a sweet cherry tree (Prunus avium cv. 0900 Ziraat) from Turkey identified a new member of the genus Robigovirus designated cherry virus Turkey (CVTR). The presence of the virus was confirmed by electron microscopy and overlapping RT-PCR for sequencing its whole-genome. The virus has a ssRNA genome of 8464 nucleotides which encodes five open reading frames (ORFs) and comprises two non-coding regions, 5' UTR and 3' UTR of 97 and 296 nt, respectively. Compared to the five most closely related robigoviruses, RdRp, TGB1, TGB2, TGB3 and CP share amino acid identities ranging from 43-53%, 44-60%, 39-43%, 38-44% and 45-50%, respectively. Unlike the four cherry robigoviruses, CVTR lacks ORFs 2a and 5a. Its genome organization is therefore more similar to African oil palm ringspot virus (AOPRV). Using specific primers, the presence of CVTR was confirmed in 15 sweet cherries and two sour cherries out of 156 tested samples collected from three regions in Turkey. Among them, five samples were showing slight chlorotic symptoms on the leaves. It seems that CVTR infects cherry trees with or without eliciting obvious symptoms, but these data should be confirmed by bioassays in woody and possible herbaceous hosts in future studies.
Collapse
Affiliation(s)
- Kadriye Çağlayan
- Plant Protection Department, Agriculture Faculty, Mustafa Kemal University, 31034 Hatay, Turkey.
| | - Vahid Roumi
- Plant Protection Department, Faculty of Agriculture, University of Maragheh, 55181 Maragheh, Iran.
| | - Mona Gazel
- Plant Protection Department, Agriculture Faculty, Mustafa Kemal University, 31034 Hatay, Turkey.
| | - Eminur Elçi
- Plant Production and Technologies Department, Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, 51240 Nigde, Turkey.
| | - Mehtap Acioğlu
- Plant Protection Department, Agriculture Faculty, Mustafa Kemal University, 31034 Hatay, Turkey.
| | - Irena Mavric Plesko
- Agricultural Institute of Slovenia, Hacquetova 17, SI- 1000 Ljubljana, Slovenia.
| | | | - Francois Maclot
- Plant Pathology Laboratory, TERRA-Gembloux Agro-Bio Tech, University of Liege, Passage des Deportes, 2, 5030 Gembloux, Belgium.
| | - Sebastien Massart
- Plant Pathology Laboratory, TERRA-Gembloux Agro-Bio Tech, University of Liege, Passage des Deportes, 2, 5030 Gembloux, Belgium.
| |
Collapse
|
16
|
Maliogka VI, Minafra A, Saldarelli P, Ruiz-García AB, Glasa M, Katis N, Olmos A. Recent Advances on Detection and Characterization of Fruit Tree Viruses Using High-Throughput Sequencing Technologies. Viruses 2018; 10:E436. [PMID: 30126105 PMCID: PMC6116224 DOI: 10.3390/v10080436] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/09/2018] [Accepted: 08/13/2018] [Indexed: 12/21/2022] Open
Abstract
Perennial crops, such as fruit trees, are infected by many viruses, which are transmitted through vegetative propagation and grafting of infected plant material. Some of these pathogens cause severe crop losses and often reduce the productive life of the orchards. Detection and characterization of these agents in fruit trees is challenging, however, during the last years, the wide application of high-throughput sequencing (HTS) technologies has significantly facilitated this task. In this review, we present recent advances in the discovery, detection, and characterization of fruit tree viruses and virus-like agents accomplished by HTS approaches. A high number of new viruses have been described in the last 5 years, some of them exhibiting novel genomic features that have led to the proposal of the creation of new genera, and the revision of the current virus taxonomy status. Interestingly, several of the newly identified viruses belong to virus genera previously unknown to infect fruit tree species (e.g., Fabavirus, Luteovirus) a fact that challenges our perspective of plant viruses in general. Finally, applied methodologies, including the use of different molecules as templates, as well as advantages and disadvantages and future directions of HTS in fruit tree virology are discussed.
Collapse
Affiliation(s)
- Varvara I Maliogka
- Laboratory of Plant Pathology, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Angelantonio Minafra
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Via G. Amendola 122/D, 70126 Bari, Italy.
| | - Pasquale Saldarelli
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Via G. Amendola 122/D, 70126 Bari, Italy.
| | - Ana B Ruiz-García
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Ctra. Moncada-Náquera km 4.5, 46113 Moncada, Valencia, Spain.
| | - Miroslav Glasa
- Institute of Virology, Biomedical Research Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 84505 Bratislava, Slovak Republic.
| | - Nikolaos Katis
- Laboratory of Plant Pathology, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Antonio Olmos
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Ctra. Moncada-Náquera km 4.5, 46113 Moncada, Valencia, Spain.
| |
Collapse
|
17
|
Baráth D, Jaksa-Czotter N, Molnár J, Varga T, Balássy J, Szabó LK, Kirilla Z, Tusnády GE, Preininger É, Várallyay É. Small RNA NGS Revealed the Presence of Cherry Virus A and Little Cherry Virus 1 on Apricots in Hungary. Viruses 2018; 10:E318. [PMID: 29891760 PMCID: PMC6024520 DOI: 10.3390/v10060318] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/08/2018] [Accepted: 06/09/2018] [Indexed: 12/14/2022] Open
Abstract
Fruit trees, such as apricot trees, are constantly exposed to the attack of viruses. As they are propagated in a vegetative way, this risk is present not only in the field, where they remain for decades, but also during their propagation. Metagenomic diagnostic methods, based on next generation sequencing (NGS), offer unique possibilities to reveal all the present pathogens in the investigated sample. Using NGS of small RNAs, a special field of these techniques, we tested leaf samples of different varieties of apricot originating from an isolator house or open field stock nursery. As a result, we identified Cherry virus A (CVA) and little cherry virus 1 (LChV-1) for the first time in Hungary. The NGS results were validated by RT-PCR and also by Northern blot in the case of CVA. Cloned and Sanger sequenced viral-specific PCR products enabled us to investigate their phylogenetic relationships. However, since these pathogens have not been described in our country before, their role in symptom development and modification during co-infection with other viruses requires further investigation.
Collapse
Affiliation(s)
- Dániel Baráth
- Agricultural Biotechnology Institute, NARIC, 2100 Gödöllő, Hungary.
| | | | - János Molnár
- Department of Biotechnology, Nanophagetherapy Center, Enviroinvest Corporation, 7632 Pécs, Hungary.
| | - Tünde Varga
- Agricultural Biotechnology Institute, NARIC, 2100 Gödöllő, Hungary.
| | - Júlia Balássy
- Agricultural Biotechnology Institute, NARIC, 2100 Gödöllő, Hungary.
| | | | - Zoltán Kirilla
- Fruitculture Research Institute, NARIC, 1223 Budapest, Hungary.
| | - Gábor E Tusnády
- Institute of Enzymology, Research Center of Natural Sciences, HAS, 1117 Budapest, Hungary.
| | - Éva Preininger
- Fruitculture Research Institute, NARIC, 1223 Budapest, Hungary.
| | - Éva Várallyay
- Agricultural Biotechnology Institute, NARIC, 2100 Gödöllő, Hungary.
| |
Collapse
|
18
|
Variability Studies of Two Prunus-Infecting Fabaviruses with the Aid of High-Throughput Sequencing. Viruses 2018; 10:v10040204. [PMID: 29670059 PMCID: PMC5923498 DOI: 10.3390/v10040204] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/12/2018] [Accepted: 04/14/2018] [Indexed: 02/05/2023] Open
Abstract
During their lifetime, perennial woody plants are expected to face multiple infection events. Furthermore, multiple genotypes of individual virus species may co-infect the same host. This may eventually lead to a situation where plants harbor complex communities of viral species/strains. Using high-throughput sequencing, we describe co-infection of sweet and sour cherry trees with diverse genomic variants of two closely related viruses, namely prunus virus F (PrVF) and cherry virus F (CVF). Both viruses are most homologous to members of the Fabavirus genus (Secoviridae family). The comparison of CVF and PrVF RNA2 genomic sequences suggests that the two viruses may significantly differ in their expression strategy. Indeed, similar to comoviruses, the smaller genomic segment of PrVF, RNA2, may be translated in two collinear proteins while CVF likely expresses only the shorter of these two proteins. Linked with the observation that identity levels between the coat proteins of these two viruses are significantly below the family species demarcation cut-off, these findings support the idea that CVF and PrVF represent two separate Fabavirus species.
Collapse
|
19
|
He Y, Cai L, Zhou L, Yang Z, Hong N, Wang G, Li S, Xu W. Deep sequencing reveals the first fabavirus infecting peach. Sci Rep 2017; 7:11329. [PMID: 28900201 PMCID: PMC5595849 DOI: 10.1038/s41598-017-11743-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 08/30/2017] [Indexed: 12/21/2022] Open
Abstract
A disease causing smaller and cracked fruit affects peach [Prunus persica (L.) Batsch], resulting in significant decreases in yield and quality. In this study, peach tree leaves showing typical symptoms were subjected to deep sequencing of small RNAs for a complete survey of presumed causal viral pathogens. The results revealed two known viroids (Hop stunt viroid and Peach latent mosaic viroid), two known viruses (Apple chlorotic leaf spot trichovirus and Plum bark necrosis stem pitting-associated virus) and a novel virus provisionally named Peach leaf pitting-associated virus (PLPaV). Phylogenetic analysis based on RNA-dependent RNA polymerase placed PLPaV into a separate cluster under the genus Fabavirus in the family Secoviridae. The genome consists of two positive-sense single-stranded RNAs, i.e., RNA1 [6,357 nt, with a 48-nt poly(A) tail] and RNA2 [3,862 nt, with a 25-nt poly(A) containing two cytosines]. Biological tests of GF305 peach indicator seedlings indicated a leaf-pitting symptom rather than the smaller and cracked fruit symptoms related to virus and viroid infection. To our knowledge, this is the first report of a fabavirus infecting peach. PLPaV presents several new molecular and biological features that are absent in other fabaviruses, contributing to an overall better understanding of fabaviruses.
Collapse
Affiliation(s)
- Yan He
- State Key Laboratory of Agricultural Microbiology, Wuhan, Hubei, 430070, P.R. China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, P.R. China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, Hubei, 430070, P.R. China
| | - Li Cai
- State Key Laboratory of Agricultural Microbiology, Wuhan, Hubei, 430070, P.R. China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, P.R. China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, Hubei, 430070, P.R. China
| | - Lingling Zhou
- State Key Laboratory of Agricultural Microbiology, Wuhan, Hubei, 430070, P.R. China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, P.R. China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, Hubei, 430070, P.R. China
| | - Zuokun Yang
- State Key Laboratory of Agricultural Microbiology, Wuhan, Hubei, 430070, P.R. China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, P.R. China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, Hubei, 430070, P.R. China
| | - Ni Hong
- State Key Laboratory of Agricultural Microbiology, Wuhan, Hubei, 430070, P.R. China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, P.R. China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, Hubei, 430070, P.R. China
| | - Guoping Wang
- State Key Laboratory of Agricultural Microbiology, Wuhan, Hubei, 430070, P.R. China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, P.R. China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, Hubei, 430070, P.R. China
| | - Shifang Li
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100094, P.R. China.
| | - Wenxing Xu
- State Key Laboratory of Agricultural Microbiology, Wuhan, Hubei, 430070, P.R. China.
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, P.R. China.
- Key Lab of Plant Pathology of Hubei Province, Wuhan, Hubei, 430070, P.R. China.
| |
Collapse
|
20
|
Rott M, Xiang Y, Boyes I, Belton M, Saeed H, Kesanakurti P, Hayes S, Lawrence T, Birch C, Bhagwat B, Rast H. Application of Next Generation Sequencing for Diagnostic Testing of Tree Fruit Viruses and Viroids. PLANT DISEASE 2017; 101:1489-1499. [PMID: 30678581 DOI: 10.1094/pdis-03-17-0306-re] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Conventional detection of viruses and virus-like diseases of plants is accomplished using a combination of molecular, serological, and biological indexing. These are the primary tools used by plant virologists to monitor and ensure trees are free of known viral pathogens. The biological indexing assay, or bioassay, is considered to be the "gold standard" as it is the only method of the three that can detect new, uncharacterized, or poorly characterized viral disease agents. Unfortunately, this method is also the most labor intensive and can take up to three years to complete. Next generation sequencing (NGS) is a technology with rapidly expanding possibilities including potential applications for the detection of plant viruses. In this study, comparisons are made between tree fruit testing by conventional and NGS methods, to demonstrate the efficacy of NGS. A comparison of 178 infected trees, many infected with several viral pathogens, demonstrated that conventional and NGS were equally capable of detecting known viruses and viroids. Comparable results were obtained for 170 of 178 of the specimens. Of the remaining eight specimens, some discrepancies were observed between viruses detected by the two methods, representing less than 5% of the specimens. NGS was further demonstrated to be equal or superior for the detection of new or poorly characterized viruses when compared with a conventional bioassay. These results validated both the effectiveness of conventional virus testing methods and the use of NGS as an additional or alternative method for plant virus detection.
Collapse
Affiliation(s)
- M Rott
- Centre for Plant Health, Sidney Laboratory, Canadian Food Inspection Agency, North Saanich, BC, V8L 1H3, Canada
| | - Y Xiang
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC, V0H1Z0, Canada
| | - I Boyes
- Centre for Plant Health, Sidney Laboratory, Canadian Food Inspection Agency, North Saanich, BC, V8L 1H3, Canada
| | - M Belton
- Centre for Plant Health, Sidney Laboratory, Canadian Food Inspection Agency, North Saanich, BC, V8L 1H3, Canada
| | - H Saeed
- Centre for Plant Health, Sidney Laboratory, Canadian Food Inspection Agency, North Saanich, BC, V8L 1H3, Canada
| | - P Kesanakurti
- Centre for Plant Health, Sidney Laboratory, Canadian Food Inspection Agency, North Saanich, BC, V8L 1H3, Canada
| | - S Hayes
- Centre for Plant Health, Sidney Laboratory, Canadian Food Inspection Agency, North Saanich, BC, V8L 1H3, Canada
| | - T Lawrence
- Centre for Plant Health, Sidney Laboratory, Canadian Food Inspection Agency, North Saanich, BC, V8L 1H3, Canada
| | - C Birch
- Centre for Plant Health, Sidney Laboratory, Canadian Food Inspection Agency, North Saanich, BC, V8L 1H3, Canada
| | - B Bhagwat
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC, V0H1Z0, Canada
| | - H Rast
- Centre for Plant Health, Sidney Laboratory, Canadian Food Inspection Agency, North Saanich, BC, V8L 1H3, Canada
| |
Collapse
|