1
|
Xu T, Li Y, Wu HL, Chen H, Wu H, Guo M, Zhao M, Wang C, Lin T, Lin Z, Chen D, Xiang W, Zhu B. The inhibition of enterovirus 71 induced apoptosis by Durvillaea antarctica through P53 and STAT1 signaling pathway. J Med Virol 2021; 93:3532-3538. [PMID: 33230830 DOI: 10.1002/jmv.26693] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 12/14/2022]
Abstract
The infection of enterovirus 71 (EV71) resulted in hand, foot, and mouth disease and may lead to severe nervous system damage and even fatalities. There are no effective drugs to treat the EV71 virus and it is crucial to find novel drugs against it. Polysaccharide isolated from Durvillaea antarctica green algae has an antiviral effect. In this study, D. antarctica polysaccharide (DAPP) inhibited the infection of EV71 was demonstrated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), reverse transcription polymerase chain reaction, flow cytometry, and western blot. MTT assay showed that DAPP had no toxicity on Vero cells at the concentration 250 μg/ml. Furthermore, DAPP significantly reduced the RNA level of EV71 in a dose-dependent manner. Moreover, DAPP inhibited the Vero cells apoptosis induced by EV71 via the P53 signaling pathway. Meanwhile, the expression of signal transducer and activator of transcription 1 and mammalian target of rapamycin were increased and the proinflammatory cytokines were significantly inhibited by DAPP. Taken together, these results suggested that DAPP could be a potential pharmaceutical against the infection of EV71 virus.
Collapse
Affiliation(s)
- Tiantian Xu
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yinghua Li
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Hua-Lian Wu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institution of South China Sea Ecology and Environmental Engineering, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Haiyang Chen
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Houbo Wu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institution of South China Sea Ecology and Environmental Engineering, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Min Guo
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Mingqi Zhao
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Changbing Wang
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Tao Lin
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Zhengfang Lin
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Danyang Chen
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Wenzhou Xiang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institution of South China Sea Ecology and Environmental Engineering, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Bing Zhu
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
2
|
Li Q, Wang Y, Xue W, Bian Z, Gao Y, Zeng Y, Tang L, Tang T, Tian Y, Guo W. Immunomodulatory effects of platelets on the severity of hand, foot, and mouth disease infected with enterovirus 71. Pediatr Res 2021; 89:814-822. [PMID: 32516798 PMCID: PMC8049866 DOI: 10.1038/s41390-020-0970-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 04/26/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND Enterovirus 71 (EV71) infection contributes to hand, foot, and mouth disease (HFMD) with severe neurogenic complications, leading to higher morbidity. In addition to their typical roles in coagulation, platelets could serve as essential immune regulatory cells to play a key role in the pathogenesis of this viral infection. METHODS Platelet parameters were measured using an automatic hematology analyzer. T-helper type 1 (Th1) and Th2 cells were analyzed by flow cytometry. The levels of cytokines and key transcription factors were determined. RESULTS The levels of platelet count and plateletcrit were positively associated with the severity of HFMD. Th1 and Th2 cells as well as their corresponding cytokines were increased in the severe group compared to the healthy volunteers. Moreover, the levels of platelets were negatively correlated with the level of interferon-γ (IFN-γ), but positively correlated with the frequency of Th1 cells. Coculture of platelets and naive CD4+ T cells showed that platelets from mild patients promote Th1 cell differentiation and IFN-γ secretion. CONCLUSIONS Our study has shown for the first time that the distinct roles of platelets are responsible for the regulation of pathogenic CD4+ T cell differentiation and function in the pathogenesis of HFMD caused by EV71. IMPACT Our study has shown for the first time that the distinct roles of platelets are responsible for the regulation of pathogenic CD4+ T cell differentiation and function in the pathogenesis of HFMD caused by EV71. For the first time, we have discovered the role of platelets in children's HFMD caused by EV71 infection, which may provide a better treatment for HFMD in the future. This article describes new discoveries in platelet immunity.
Collapse
Affiliation(s)
- Qianwen Li
- grid.254147.10000 0000 9776 7793Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yimeng Wang
- grid.254147.10000 0000 9776 7793Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Wenyao Xue
- grid.254147.10000 0000 9776 7793Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Zhengying Bian
- grid.254147.10000 0000 9776 7793Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yue Gao
- grid.254147.10000 0000 9776 7793Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yu Zeng
- grid.254147.10000 0000 9776 7793Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Lei Tang
- grid.254147.10000 0000 9776 7793Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Tiejun Tang
- grid.254147.10000 0000 9776 7793Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Ye Tian
- Children's Hospital of Nanjing Medical University, Nanjing, China.
| | - Wei Guo
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
3
|
Lin Z, Li Y, Xu T, Guo M, Wang C, Zhao M, Chen H, Kuang J, Li W, Zhang Y, Lin T, Chen Y, Chen H, Zhu B. Inhibition of Enterovirus 71 by Selenium Nanoparticles Loaded with siRNA through Bax Signaling Pathways. ACS OMEGA 2020; 5:12495-12500. [PMID: 32548434 PMCID: PMC7271353 DOI: 10.1021/acsomega.0c01382] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/04/2020] [Indexed: 05/09/2023]
Abstract
Enterovirus 71 (EV71) is the principal pathogen leading to severe cases of hand, foot, and mouth disease (HFMD). Specific drugs for EV71 are not discovered currently. Small interfering RNA (siRNA) provides a promising antiviral treatment pathway, but it is difficult to cross cell membranes and is easy to degrade. Nanoparticles are promising for their carrying capacity currently. In this study, the siRNA targeting EV71 VP1 gene was loaded with selenium nanoparticles (SeNPs) and surface decorated with polyethylenimine (PEI) (Se@PEI@siRNA). Se@PEI@siRNA showed a remarkable interference efficiency in the nerve cell line SK-N-SH and prevented the cells to be infected. The mechanism study revealed that Se@PEI@siRNA could lighten the extent of SK-N-SH cells for staying in the sub-G1 phase. Activation of Bax apoptosis signaling was restrained either. Taken together, this study demonstrated that Se@PEI@siRNA is a promising drug against EV71 virus.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Bing Zhu
- . Tel: +86 20-81330740. Fax: +86 20 81885978
| |
Collapse
|
4
|
Lin Z, Li Y, Gong G, Xia Y, Wang C, Chen Y, Hua L, Zhong J, Tang Y, Liu X, Zhu B. Restriction of H1N1 influenza virus infection by selenium nanoparticles loaded with ribavirin via resisting caspase-3 apoptotic pathway. Int J Nanomedicine 2018; 13:5787-5797. [PMID: 30310281 PMCID: PMC6165773 DOI: 10.2147/ijn.s177658] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
INTRODUCTION Ribavirin (RBV) is a broad-spectrum antiviral drug. Selenium nanoparticles (SeNPs) attract much attention in the biomedical field and are used as carriers of drugs in current research studies. In this study, SeNPs were decorated by RBV, and the novel nanoparticle system was well characterized. Madin-Darby Canine Kidney cells were infected with H1N1 influenza virus before treatment with RBV, SeNPs, and SeNPs loaded with RBV (Se@RBV). METHODS AND RESULTS MTT assay showed that Se@RBV nanoparticles protect cells during H1N1 infection in vitro. Se@RBV depressed virus titer in the culture supernatant. Intracellular localization detection revealed that Se@RBV accumulated in lysosome and escaped to cytoplasm as time elapsed. Furthermore, activation of caspase-3 was resisted by Se@RBV. Expressions of proteins related to caspase-3, including cleaved poly-ADP-ribose polymerase, caspase-8, and Bax, were downregulated evidently after treatment with Se@RBV compared with the untreated infection group. In addition, phosphorylations of phosphorylated 38 (p38), JNK, and phosphorylated 53 (p53) were inhibited as well. In vivo experiments indicated that Se@RBV was found to prevent lung injury in H1N1-infected mice through hematoxylin and eosin staining. Tunel test of lung tissues present that DNA damage reached a high level but reduced substantially when treated with Se@RBV. Immunohistochemical test revealed an identical result with the in vitro experiment that activations of caspase-3 and proteins on the apoptosis pathway were restrained by Se@RBV treatment. CONCLUSION Taken together, this study elaborates that Se@RBV is a novel promising agent against H1N1 influenza virus infection.
Collapse
Affiliation(s)
- Zhengfang Lin
- Department of Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China, ;
| | - Yinghua Li
- Department of Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China, ;
| | - Guifang Gong
- Department of Obstetrics Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Yu Xia
- Department of Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China, ;
| | - Changbing Wang
- Department of Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China, ;
| | - Yi Chen
- Department of Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China, ;
| | - Liang Hua
- Department of Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China, ;
| | - Jiayu Zhong
- Department of Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China, ;
| | - Ying Tang
- Department of Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China, ;
| | - Xiaomin Liu
- Department of Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China, ;
| | - Bing Zhu
- Department of Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China, ;
| |
Collapse
|
5
|
Dong Q, Men R, Dan X, Chen Y, Li H, Chen G, Zee B, Wang MHT, He ML. Hsc70 regulates the IRES activity and serves as an antiviral target of enterovirus A71 infection. Antiviral Res 2017; 150:39-46. [PMID: 29180285 DOI: 10.1016/j.antiviral.2017.11.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 10/23/2017] [Accepted: 11/23/2017] [Indexed: 12/11/2022]
Abstract
Enterovirus A71 (EV-A71) is a small positive-stranded RNA virus that causes human hand, foot and mouth disease (HFMD) and fatal neurological disorders in some cases without effective treatment. Here we show that heat shock cognate protein 70 (Hsc70), a molecular chaperone, displays pivotal role in viral infections. Knockdown of Hsc70 significantly suppresses viral replication evidenced by reducing not only the level of both viral replication intermediates (negative stranded RNA) and viral genomic RNA (positive stranded RNA), but also the level of viral protein expression; whereas ectopic expression of Hsc70 markedly promotes viral replication. Interestingly, depletion of Hsc70 decreases the IRES activity of EV-A71, and the ectopic expression of Hsc70 enhances the IRES activity accordingly. Further study shows that Hsc70 binds viral genomic RNA but does not directly interact with IRES. Moreover, we reveal that Hsc70 interacts with 2A protease and promotes eIF4G cleavage. More importantly, Hsc70 inhibitor Ver-155008 significantly protects cytopathic effects from EV-A71 infection and inhibits both IRES activity and viral reproduction in a dose-dependent manner. The cell viability assay shows that the IC50 and CC50 are 2.01 μM and 47.67 μM, respectively. These results demonstrate not only an important mechanism of Hsc70 in facilitating EV-A71 replication, but also a target for antiviral drug development.
Collapse
Affiliation(s)
- Qi Dong
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Ruoting Men
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China; Jockey Club of School of Public Health, Chinese University of Hong Kong, Hong Kong, China
| | - Xuelian Dan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Ying Chen
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Huangcan Li
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Gong Chen
- Departments of Surgery, Faculty of Medicine, Chinese University of Hong Kong, China
| | - Benny Zee
- Jockey Club of School of Public Health, Chinese University of Hong Kong, Hong Kong, China
| | - Maggie H T Wang
- Jockey Club of School of Public Health, Chinese University of Hong Kong, Hong Kong, China.
| | - Ming-Liang He
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China; Biotechnology and Health Center, CityU Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
6
|
Lin Z, Li Y, Guo M, Xiao M, Wang C, Zhao M, Xu T, Xia Y, Zhu B. Inhibition of H1N1 influenza virus by selenium nanoparticles loaded with zanamivir through p38 and JNK signaling pathways. RSC Adv 2017. [DOI: 10.1039/c7ra06477b] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Zanamivir is an effective drug for influenza virus infection, but strong molecular polarity and aqueous solubility limit its clinical application.
Collapse
Affiliation(s)
- Zhengfang Lin
- Center Laboratory
- Guangzhou Women and Children's Medical Centre
- Guangzhou Medical University
- Guangzhou
- P. R. China
| | - Yinghua Li
- Center Laboratory
- Guangzhou Women and Children's Medical Centre
- Guangzhou Medical University
- Guangzhou
- P. R. China
| | - Min Guo
- Center Laboratory
- Guangzhou Women and Children's Medical Centre
- Guangzhou Medical University
- Guangzhou
- P. R. China
| | - Misi Xiao
- Center Laboratory
- Guangzhou Women and Children's Medical Centre
- Guangzhou Medical University
- Guangzhou
- P. R. China
| | - Changbing Wang
- Center Laboratory
- Guangzhou Women and Children's Medical Centre
- Guangzhou Medical University
- Guangzhou
- P. R. China
| | - Mingqi Zhao
- Center Laboratory
- Guangzhou Women and Children's Medical Centre
- Guangzhou Medical University
- Guangzhou
- P. R. China
| | - Tiantian Xu
- Center Laboratory
- Guangzhou Women and Children's Medical Centre
- Guangzhou Medical University
- Guangzhou
- P. R. China
| | - Yu Xia
- Center Laboratory
- Guangzhou Women and Children's Medical Centre
- Guangzhou Medical University
- Guangzhou
- P. R. China
| | - Bing Zhu
- Center Laboratory
- Guangzhou Women and Children's Medical Centre
- Guangzhou Medical University
- Guangzhou
- P. R. China
| |
Collapse
|