1
|
Hough B, Wingfield B, Read D. Identification and characterization of mycoviruses in transcriptomes from the fungal family ceratocystidaceae. Virus Genes 2024; 60:696-710. [PMID: 39378002 PMCID: PMC11568016 DOI: 10.1007/s11262-024-02112-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 09/26/2024] [Indexed: 11/16/2024]
Abstract
Mycoviruses pervade the fungal kingdom, yet their diversity within various fungal families and genera remains largely unexplored. In this study, 10 publicly available fungal transcriptomes from Ceratocystidaceae were analyzed for the presence of mycoviruses. Despite mycovirus associations being known in only four members of this family, our investigation unveiled the discovery of six novel mycoviruses. The majority of these mycoviruses are composed of positive sense single stranded RNA and are putatively assigned to the viral family Mitoviridae (with tentative classification into the genera Unuamitovirus and Duamitovirus). The double stranded RNA viruses, however, were associated with the family Totiviridae (with tentative classification into the genus Victorivirus). This study also revealed the discovery of an identical unuamitovirus in the fungal species Thielaviopsis ethacetica and Thielaviopsis paradoxa. This discovery was notable as these fungal isolates originated from distinct geographical locations, highlighting potential implications for the transmission of this mitovirus. Moreover, this investigation significantly expands the known host range for mycoviruses in this family, marking the initial identification of mycoviruses within Ceratocystis platani, Thielaviopsis paradoxa, Thielaviopsis ethacetica, and Huntiella omanensis. Future research should focus on determining the effects that these mycoviruses might have on their fungal hosts.
Collapse
Affiliation(s)
- Bianca Hough
- Forestry & Agricultural Biotechnology Institute (FABI), Department of Biochemistry, Genetics & Microbiology, University of Pretoria, Pretoria, South Africa.
| | - Brenda Wingfield
- Forestry & Agricultural Biotechnology Institute (FABI), Department of Biochemistry, Genetics & Microbiology, University of Pretoria, Pretoria, South Africa
| | - David Read
- Forestry & Agricultural Biotechnology Institute (FABI), Department of Biochemistry, Genetics & Microbiology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
2
|
Duan J, Zhang A, Fu Y, Lin Y, Xie J, Cheng J, Chen T, Li B, Yu X, Lyu X, Jiang D. A Mycovirus Representing a Novel Lineage and a Mitovirus of Botrytis cinerea Co-Infect a Basidiomycetous Fungus, Schizophyllum commune. Viruses 2024; 16:1767. [PMID: 39599881 PMCID: PMC11598958 DOI: 10.3390/v16111767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/02/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
Strain IBc-114 was isolated from a gray mold lesion and was identified as the fungus Schizophyllum commune. In this strain, two mycoviruses, Schizophyllum commune RNA virus 1 (ScRV1, C_AA053475.1) and Botrytis cinerea mitovirus 9 strain IBc-114 (BcMV9/IBc-114, C_AA053476.1), were isolated and characterized. ScRV1 has flexuous filamentous particles about 20 ± 2.1 nm in diameter and 1000 ± 94.2 nm in length. The genome of ScRV1 is 7370 nt in length and contains two open reading frames (ORFs) which encode a polyprotein and a coat protein, respectively. The polyprotein has 1967 aa, including a helicase domain and an RdRp domain which has the highest identity of 28.21% with that of Entomophthora benyvirus E (EbVE). The coat protein has 241 aa which is mostly phylogenetically close to the coat proteins of Alphatetraviridae. Based on the phylogenetic analysis of ScRV1 and viruses selected, ScRV1 might represent a new family (temporarily named Mycobenyviridae) of the order Hepelivirales. The genome of BcMV9/IBc-114 that infects S. commune is 2729 nt in length and has only one ORF encoding an RdRp protein with 719 aa. BcMV9/IBc-114 has the highest identity of 98.61% with Botrytis cinerea mitovirus 9 (BcMV9) (MT089704). ScRV1, but not BcMV9/IBc-114, has certain effects on the host growth of S. commune. Furthermore, BcMV9/IBc-114 has been demonstrated to replicate in the ascomycetous fungi Botrytis cinerea and Sclerotinia sclerotiorum, and it negatively affects the growth and pathogenicity of B. cinerea, but it does not affect S. sclerotiorum. This is the first report of mycoviruses in S. commune and cross-phyla transmission of mitovirus in nature.
Collapse
Affiliation(s)
- Jie Duan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (A.Z.); (J.X.); (J.C.); (T.C.); (B.L.); (X.Y.); (X.L.)
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| | - Anmeng Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (A.Z.); (J.X.); (J.C.); (T.C.); (B.L.); (X.Y.); (X.L.)
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| | - Yanping Fu
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| | - Yang Lin
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (A.Z.); (J.X.); (J.C.); (T.C.); (B.L.); (X.Y.); (X.L.)
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (A.Z.); (J.X.); (J.C.); (T.C.); (B.L.); (X.Y.); (X.L.)
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| | - Tao Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (A.Z.); (J.X.); (J.C.); (T.C.); (B.L.); (X.Y.); (X.L.)
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| | - Bo Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (A.Z.); (J.X.); (J.C.); (T.C.); (B.L.); (X.Y.); (X.L.)
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| | - Xiao Yu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (A.Z.); (J.X.); (J.C.); (T.C.); (B.L.); (X.Y.); (X.L.)
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| | - Xueliang Lyu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (A.Z.); (J.X.); (J.C.); (T.C.); (B.L.); (X.Y.); (X.L.)
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (A.Z.); (J.X.); (J.C.); (T.C.); (B.L.); (X.Y.); (X.L.)
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| |
Collapse
|
3
|
Mu T, Wang Z, Liu Z, Wu X. Complete genome sequence of a novel mitovirus identified in the phytopathogenic fungus Alternaria tenuissima. Arch Virol 2024; 169:218. [PMID: 39379747 DOI: 10.1007/s00705-024-06145-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/13/2024] [Indexed: 10/10/2024]
Abstract
In this study, a novel positive-sense single-stranded RNA (+ ssRNA) mycovirus, Alternaria tenuissima mitovirus 1 (AtMV1), was identified in Alternaria tenuissima strain YQ-2-1, a phytopathogenic fungus causing leaf blight on muskmelon. The genome of AtMV1 is a single RNA molecule that is 3013 nt in length with an A + U content of 66.58% and contains a single open reading frame (ORF) using the fungal mitochondrial genetic code. The ORF was predicted to encode a 313-amino-acid RNA-dependent RNA polymerase (RdRp) with a molecular mass of 35.48 kDa, which contains six conserved motifs with the highly conserved GDD tripeptide in motif IV. The 5' and 3' untranslated regions were predicted to fold into stem-loop and panhandle secondary structures. The results of a BLASTp search revealed that the amino acid (aa) sequence of RdRp of AtMV1 shared the highest sequence similarity (51.04% identity) with that of Sichuan mito-like virus 30, a member of the genus Duamitovirus within the family Mitoviridae. Phylogenetic analysis based on the aa sequence of the RdRp suggested that AtMV1 is a novel member of the genus Duamitovirus. To our knowledge, this is the first report of the complete genome sequence of a new mitovirus infecting A. tenuissima.
Collapse
Affiliation(s)
- Tongyu Mu
- College of Plant Protection, China Agricultural University, Haidian District, 100193, Beijing, People's Republic of China
| | - Zhonglei Wang
- College of Plant Protection, China Agricultural University, Haidian District, 100193, Beijing, People's Republic of China
| | - Zhijun Liu
- College of Plant Protection, China Agricultural University, Haidian District, 100193, Beijing, People's Republic of China
| | - Xuehong Wu
- College of Plant Protection, China Agricultural University, Haidian District, 100193, Beijing, People's Republic of China.
| |
Collapse
|
4
|
Yu D, Wang Q, Song W, Kang Y, Lei Y, Wang Z, Chen Y, Huai D, Wang X, Liao B, Yan L. Characterization of Two Novel Single-Stranded RNA Viruses from Agroathelia rolfsii, the Causal Agent of Peanut Stem Rot. Viruses 2024; 16:854. [PMID: 38932147 PMCID: PMC11209298 DOI: 10.3390/v16060854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/16/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Peanut stem rot is a soil-borne disease caused by Agroathelia rolfsii. It occurs widely and seriously affects the peanut yield in most peanut-producing areas. The mycoviruses that induce the hypovirulence of some plant pathogenic fungi are potential resources for the biological control of fungal diseases in plants. Thus far, few mycoviruses have been found in A. rolfsii. In this study, two mitoviruses, namely, Agroathelia rolfsii mitovirus 1 (ArMV1) and Agroathelia rolfsii mitovirus 2 (ArMV2), were identified from the weakly virulent A. rolfsii strain GP3-1, and they were also found in other A. rolfsii isolates. High amounts of ArMV1 and ArMV2in the mycelium could reduce the virulence of A. rolfsii strains. This is the first report on the existence of mitoviruses in A. rolfsii. The results of this study may provide insights into the classification and evolution of mitoviruses in A. rolfsii and enable the exploration of the use of mycoviruses as biocontrol agents for the control of peanut stem rot.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Boshou Liao
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agricultural and Rural Affairs, Wuhan 430062, China; (D.Y.); (Q.W.); (W.S.); (Y.K.); (Y.L.); (Z.W.); (Y.C.); (D.H.); (X.W.)
| | - Liying Yan
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agricultural and Rural Affairs, Wuhan 430062, China; (D.Y.); (Q.W.); (W.S.); (Y.K.); (Y.L.); (Z.W.); (Y.C.); (D.H.); (X.W.)
| |
Collapse
|
5
|
Lopez-Jimenez J, Herrera J, Alzate JF. Expanding the knowledge frontier of mitoviruses in Cannabis sativa. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 116:105523. [PMID: 37940011 DOI: 10.1016/j.meegid.2023.105523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/25/2023] [Accepted: 11/04/2023] [Indexed: 11/10/2023]
Abstract
Mitoviruses were initially known for their presence in the mitochondria of fungi and were considered exclusive to these organisms. However, recent studies have shown that they are also present in a large number of plant species. Despite the potential impact that mitoviruses might have on the mitochondria of plant cells, there is a lack of information about these ancient RNA viruses, especially within the Cannabaceae family. Cannabis sativa has been in the spotlight in recent years due to the growing industrial applications of plant derivatives, such as fiber and secondary metabolites. Given the importance of Cannabis in today's agriculture, our study aimed to expand the knowledge frontier of Mitoviruses in C. sativa by increasing the number of reference genomes of CasaMV1 available in public databases and representing a larger number of crops in countries where its industrial-scale growth is legalized. To achieve this goal, we used transcriptomics to sequence the first mitoviral genomes of Colombian crops and analyzed RNA-seq datasets available in the SRA databank. Additionally, the evolutionary analysis performed using the mitovirus genomes revealed two main lineages of CasaMV1, termed CasaMV1_L1 and CasaMV1_L2. These mitoviral lineages showed strong clustering based on the geographic location of the crops and differential expression intensities.
Collapse
Affiliation(s)
- Juliana Lopez-Jimenez
- Centro Nacional de Secuenciación Genómica CNSG, Sede de Investigación Universitaria-SIU, Universidad de Antioquia, Medellín, Colombia
| | - Jorge Herrera
- Fábrica de Plantas y Semillas de Antioquia S.A.S. - FASPLAN, El Carmen de Viboral, Antioquia, Colombia
| | - Juan F Alzate
- Centro Nacional de Secuenciación Genómica CNSG, Sede de Investigación Universitaria-SIU, Universidad de Antioquia, Medellín, Colombia; Fábrica de Plantas y Semillas de Antioquia S.A.S. - FASPLAN, El Carmen de Viboral, Antioquia, Colombia; Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia.
| |
Collapse
|
6
|
Hough B, Steenkamp E, Wingfield B, Read D. Fungal Viruses Unveiled: A Comprehensive Review of Mycoviruses. Viruses 2023; 15:1202. [PMID: 37243288 PMCID: PMC10224137 DOI: 10.3390/v15051202] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/07/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Mycoviruses (viruses of fungi) are ubiquitous throughout the fungal kingdom and are currently classified into 23 viral families and the genus botybirnavirus by the International Committee on the Taxonomy of Viruses (ICTV). The primary focus of mycoviral research has been on mycoviruses that infect plant pathogenic fungi, due to the ability of some to reduce the virulence of their host and thus act as potential biocontrol against these fungi. However, mycoviruses lack extracellular transmission mechanisms and rely on intercellular transmission through the hyphal anastomosis, which impedes successful transmission between different fungal strains. This review provides a comprehensive overview of mycoviruses, including their origins, host range, taxonomic classification into families, effects on their fungal counterparts, and the techniques employed in their discovery. The application of mycoviruses as biocontrol agents of plant pathogenic fungi is also discussed.
Collapse
Affiliation(s)
| | | | - Brenda Wingfield
- Forestry & Agricultural Biotechnology Institute (FABI), Department of Biochemistry, Genetics & Microbiology, University of Pretoria, Pretoria 0002, South Africa; (B.H.); (E.S.); (D.R.)
| | | |
Collapse
|
7
|
Sun A, Sun Y, Luo L, Zhao L, Li C, Yang G, Dong W. Molecular characterization of a novel mitovirus from Rhizoctonia solani AG-4 HGIII strain XMC-IF. Arch Virol 2022; 167:2821-2825. [PMID: 36261748 DOI: 10.1007/s00705-022-05599-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/30/2022] [Indexed: 12/14/2022]
Abstract
The nucleotide sequence of a viral double-stranded RNA (dsRNA) from Rhizoctonia solani AG-4 HGIII strain XMC-IF (designated as "Rhizoctonia solani mitovirus 106", RsMV-106) was determined. The complete sequence was 2794 bp in length with a 57.50% A + U content and contained a large open reading frame (ORF) when the fungal mitochondrial genetic code was used. The ORF potentially encodes a 95.76-kDa protein containing a conserved domain of an RNA-dependent RNA polymerase (RdRp). BLASTp analysis revealed that the RdRp domain of RsMV-106 shared 47.52-73.24% sequence identity with those of viruses of the genus Duamitovirus and was most similar (73.24% identity) to that of Alternaria alternata mitovirus 1 (AaMV1). Phylogenetic analysis showed that RsMV-106 is a novel member of the genus Duamitovirus, family Mitoviridae. This is the first report of the full genome sequence of a mitovirus associated with R. solani AG-4 HGIII.
Collapse
Affiliation(s)
- Aili Sun
- State Key Laboratory for Protection and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, 650201, Kunming, Yunnan, China
| | - Yang Sun
- State Key Laboratory for Protection and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, 650201, Kunming, Yunnan, China
| | - Li Luo
- State Key Laboratory for Protection and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, 650201, Kunming, Yunnan, China
| | - Lianjing Zhao
- State Key Laboratory for Protection and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, 650201, Kunming, Yunnan, China
| | - Chengyun Li
- State Key Laboratory for Protection and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, 650201, Kunming, Yunnan, China
| | - Genhua Yang
- State Key Laboratory for Protection and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, 650201, Kunming, Yunnan, China.
| | - Wenhan Dong
- Technology Department, Yunnan Agricultural University, 650201, Kunming, Yunnan, China.
| |
Collapse
|
8
|
Novel Mycoviruses Discovered from a Metatranscriptomics Survey of the Phytopathogenic Alternaria Fungus. Viruses 2022; 14:v14112552. [PMID: 36423161 PMCID: PMC9693364 DOI: 10.3390/v14112552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/13/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
Alternaria fungus can cause notable diseases in cereals, ornamental plants, vegetables, and fruits around the world. To date, an increasing number of mycoviruses have been accurately and successfully identified in this fungus. In this study, we discovered mycoviruses from 78 strains in 6 species of the genus Alternaria, which were collected from 10 pear production areas using high-throughput sequencing technology. Using the total RNA-seq, we detected the RNA-dependent RNA polymerase of 19 potential viruses and the coat protein of two potential viruses. We successfully confirmed these viruses using reverse transcription polymerase chain reaction with RNA as the template. We identified 12 mycoviruses that were positive-sense single-stranded RNA (+ssRNA) viruses, 5 double-strand RNA (dsRNA) viruses, and 4 negative single-stranded RNA (-ssRNA) viruses. In these viruses, five +ssRNA and four -ssRNA viruses were novel mycoviruses classified into diverse the families Botourmiaviridae, Deltaflexivirus, Mymonaviridea, and Discoviridae. We identified a novel -ssRNA mycovirus isolated from an A. tenuissima strain HB-15 as Alternaria tenuissima negative-stranded RNA virus 2 (AtNSRV2). Additionally, we characterized a novel +ssRNA mycovirus isolated from an A. tenuissima strain SC-8 as Alternaria tenuissima deltaflexivirus 1 (AtDFV1). According to phylogenetic and sequence analyses, we determined that AtNSRV2 was related to the viruses of the genus Sclerotimonavirus in the family Mymonaviridae. We also found that AtDFV1 was related to the virus family Deltaflexivirus. This study is the first to use total RNA sequencing to characterize viruses in Alternaria spp. These results expand the number of Alternaria viruses and demonstrate the diversity of these mycoviruses.
Collapse
|
9
|
Chen Z, Chen L, Anane RF, Wang Z, Gao L, Li S, Wen G, Yu D, Zhao M. Complete genome sequence of a novel mitovirus detected in Paris polyphylla var. yunnanensis. Arch Virol 2022; 167:645-650. [PMID: 35037104 DOI: 10.1007/s00705-021-05339-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/08/2021] [Indexed: 11/29/2022]
Abstract
Paris mitovirus 1 (ParMV1) is a positive-sense RNA virus that was detected in diseased Paris polyphylla var. yunnanensis plants in Wenshan, Yunnan. The complete genome sequence of ParMV1 is 2,751 nucleotides in length, and the genome structure is typical of mitoviruses. The ParMV1 genome has a single open reading frame (ORF; nt 358-2,637) that encodes an RNA-dependent RNA polymerase (RdRp) with a predicted molecular mass of 86.42 kDa. ParMV1 contains six conserved motifs (Ι-VΙ) that are unique to mitoviruses. The 5' and 3' termini of the genome are predicted to have a stable secondary structure, with the reverse complementary sequence forming a panhandle structure. Comparative genome analysis revealed that the RdRp of ParMV1 shares 23.1-40.6% amino acid (aa) and 32.3-45.7% nucleotide (nt) sequence identity with those of other mitoviruses. Phylogenetic analysis based on RdRp aa sequences showed that ParMV1 clusters with mitoviruses and hence should be considered a new member of the genus Mitovirus in the family Mitoviridae. This is the first report of a novel mitovirus infecting Paris polyphylla var. yunnanensis.
Collapse
Affiliation(s)
- Zeli Chen
- Key Laboratory for Agricultural Biodiversity for Pest Management of China, Ministry of Education, Yunnan Agricultural University, No. 95, Jinhei Road, Panlong District, Kunming, 650201, Yunnan, China.,College of Agronomy and Biotechnology, Yunnan Agricultural University, No. 95, Jinhei Road, Panlong District, Kunming, 650201, Yunnan, China.,Research & Development Center for Health Product, College of Agronomy and Biotechnology, Yunnan Agricultural University, 32 Jiaochang Donglu, Kunming, 650201, Yunnan, China
| | - Lu Chen
- Key Laboratory for Agricultural Biodiversity for Pest Management of China, Ministry of Education, Yunnan Agricultural University, No. 95, Jinhei Road, Panlong District, Kunming, 650201, Yunnan, China.,Research & Development Center for Health Product, College of Agronomy and Biotechnology, Yunnan Agricultural University, 32 Jiaochang Donglu, Kunming, 650201, Yunnan, China
| | - Rex Frimpong Anane
- Center for Excellence in Animal Evolution and Genetics, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 Jiaochang Donglu, Kunming, 650223, Yunnan, China.,State Key Laboratory for Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 Jiaochang Donglu, Kunming, 650223, Yunnan, China
| | - Zhe Wang
- Key Laboratory for Agricultural Biodiversity for Pest Management of China, Ministry of Education, Yunnan Agricultural University, No. 95, Jinhei Road, Panlong District, Kunming, 650201, Yunnan, China.,Research & Development Center for Health Product, College of Agronomy and Biotechnology, Yunnan Agricultural University, 32 Jiaochang Donglu, Kunming, 650201, Yunnan, China
| | - Like Gao
- Key Laboratory for Agricultural Biodiversity for Pest Management of China, Ministry of Education, Yunnan Agricultural University, No. 95, Jinhei Road, Panlong District, Kunming, 650201, Yunnan, China.,Research & Development Center for Health Product, College of Agronomy and Biotechnology, Yunnan Agricultural University, 32 Jiaochang Donglu, Kunming, 650201, Yunnan, China
| | - Shangyun Li
- Key Laboratory for Agricultural Biodiversity for Pest Management of China, Ministry of Education, Yunnan Agricultural University, No. 95, Jinhei Road, Panlong District, Kunming, 650201, Yunnan, China.,College of Agronomy and Biotechnology, Yunnan Agricultural University, No. 95, Jinhei Road, Panlong District, Kunming, 650201, Yunnan, China.,Research & Development Center for Health Product, College of Agronomy and Biotechnology, Yunnan Agricultural University, 32 Jiaochang Donglu, Kunming, 650201, Yunnan, China
| | - Guosong Wen
- College of Agronomy and Biotechnology, Yunnan Agricultural University, No. 95, Jinhei Road, Panlong District, Kunming, 650201, Yunnan, China.,Research & Development Center for Health Product, College of Agronomy and Biotechnology, Yunnan Agricultural University, 32 Jiaochang Donglu, Kunming, 650201, Yunnan, China
| | - Daihong Yu
- Plant Protection and Quarantine Station of Yuanjiang County, Yuxi, 653300, Yunnan, China
| | - Mingfu Zhao
- Key Laboratory for Agricultural Biodiversity for Pest Management of China, Ministry of Education, Yunnan Agricultural University, No. 95, Jinhei Road, Panlong District, Kunming, 650201, Yunnan, China. .,Research & Development Center for Health Product, College of Agronomy and Biotechnology, Yunnan Agricultural University, 32 Jiaochang Donglu, Kunming, 650201, Yunnan, China.
| |
Collapse
|
10
|
Shafik K, Umer M, You H, Aboushedida H, Wang Z, Ni D, Xu W. Characterization of a Novel Mitovirus Infecting Melanconiella theae Isolated From Tea Plants. Front Microbiol 2021; 12:757556. [PMID: 34867881 PMCID: PMC8635788 DOI: 10.3389/fmicb.2021.757556] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/12/2021] [Indexed: 11/13/2022] Open
Abstract
A dsRNA segment was identified in the fungus Melanconiella theae isolated from tea plants. The complete dsRNA sequence, determined by random cloning together with RACE protocol, is 2,461 bp in length with an AU-rich content (62.37%) and comprises a single ORF of 2,265-nucleotides encoding an RNA-dependent RNA-polymerase (RdRp, 754 amino acids in size). The terminus sequences can fold into predicted stable stem-loop structures. A BLASTX and phylogenetic analysis revealed the dsRNA genome shows similarities with the RdRp sequences of mitoviruses, with the highest identity of 48% with those of grapevine-associated mitovirus 20 and Colletotrichum fructicola mitovirus 1. Our results reveal a novel member, tentatively named Melanconiella theae mitovirus 1 (MtMV1), belongs to the family Mitoviridae. MtMV1 is capsidless as examined by transmission electron microscope, efficiently transmitted through conidia as 100 conidium-generated colonies were analyzed, and easily eliminated by hyphal tipping method combined with green-leaf tea powder. MtMV1 has a genomic sequence obviously divergent from those of most members in the family Mitoviridae and some unique characteristics unreported in known members. This is the first report of a mycovirus infecting Melanconiella fungi to date.
Collapse
Affiliation(s)
- Karim Shafik
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Department of Plant Pathology, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Umer
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Huafeng You
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hamdy Aboushedida
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Department of Plant Pathology, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhenhua Wang
- Technology Center of Wuhan Customs District, Wuhan, China
| | - Dejiang Ni
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Wenxing Xu
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
11
|
Liu H, Liu M, Zhu H, Zhong J, Liao X, Zhou Q. Molecular characterization of a novel mitovirus from the plant‑pathogenic fungus Botryosphaeria dothidea. Arch Virol 2021; 166:633-637. [PMID: 33222011 DOI: 10.1007/s00705-020-04886-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/02/2020] [Indexed: 02/03/2023]
Abstract
Here, a novel mycovirus, Botryosphaeria dothidea mitovirus 1 (BdMV1), was isolated from a phytopathogenic fungus, Botryosphaeria dothidea, and its molecular characteristics were determined. BdMV1 has a genome of 2,667 nt that contains a single large open reading frame (ORF) using the fungal mitochondrial genetic code. The ORF encodes an RNA-dependent RNA polymerase (RdRp) of 727 amino acids with a molecular mass of 81.64 kDa. BLASTp analysis revealed that the RdRp domain of BdMV1 has 39.59% and 39.18% sequence identity to Plasmopara viticola associated mitovirus 43 and Setosphaeria turcica mitovirus 1, respectively. Phylogenetic analysis further suggested that BdMV1 is a new member of the genus Mitovirus within the family Mitoviridae. To the best of our knowledge, this is the first report of a mitovirus in B. dothidea.
Collapse
Affiliation(s)
- Hong Liu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha, 410128, Hunan, People's Republic of China
| | - Miao Liu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha, 410128, Hunan, People's Republic of China
| | - Hongjian Zhu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha, 410128, Hunan, People's Republic of China
| | - Jie Zhong
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha, 410128, Hunan, People's Republic of China
| | - Xiaolan Liao
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha, 410128, Hunan, People's Republic of China.
| | - Qian Zhou
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha, 410128, Hunan, People's Republic of China.
| |
Collapse
|
12
|
Li S, Li Y, Hu C, Han C, Zhou T, Zhao C, Wu X. Full genome sequence of a new mitovirus from the phytopathogenic fungus Rhizoctonia solani. Arch Virol 2020; 165:1719-1723. [PMID: 32424446 DOI: 10.1007/s00705-020-04664-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 04/05/2020] [Indexed: 12/14/2022]
Abstract
A double-stranded RNA (dsRNA) segment was identified in Rhizoctonia solani anastomosis group (AG)-2-2IIIB, the primary causal agent of Rhizoctonia crown and root rot of sugar beet. The dsRNA segment represented the genome replication intermediate of a new mitovirus that was tentatively designated as "Rhizoctonia solani mitovirus 39" (RsMV-39). The complete sequence of the dsRNA was 2805 bp in length with 61.9% A+U content. Using either the fungal mitochondrial or universal genetic code, a protein of 840 amino acids containing an RNA-dependent RNA polymerase (RdRp) domain was predicted with a molecular mass of 94.46 kDa. BLASTp analysis revealed that the RdRp domain of RsMV-39 had 43.55% to 72.96% sequence identity to viruses in the genus Mitovirus, and was the most similar (72.96% identical) to that of Ceratobasidium mitovirus A (CbMV-A). Phylogenetic analysis based on RdRp domains clearly showed that RsMV-39 is a member of a distinct species in the genus Mitovirus of the family Mitoviridae. This is the first full genome sequence of a mycovirus associated with R. solani AG-2-2IIIB.
Collapse
Affiliation(s)
- Siwei Li
- College of Plant Protection, China Agricultural University, Haidian District, Beijing, 100193, People's Republic of China
| | - Yuting Li
- College of Plant Protection, China Agricultural University, Haidian District, Beijing, 100193, People's Republic of China
| | - Chenghui Hu
- College of Plant Protection, China Agricultural University, Haidian District, Beijing, 100193, People's Republic of China
| | - Chenggui Han
- College of Plant Protection, China Agricultural University, Haidian District, Beijing, 100193, People's Republic of China
| | - Tao Zhou
- College of Plant Protection, China Agricultural University, Haidian District, Beijing, 100193, People's Republic of China
| | - Can Zhao
- College of Plant Protection, China Agricultural University, Haidian District, Beijing, 100193, People's Republic of China.
- College of Horticulture, China Agricultural University, Haidian District, Beijing, 100193, People's Republic of China.
| | - Xuehong Wu
- College of Plant Protection, China Agricultural University, Haidian District, Beijing, 100193, People's Republic of China.
| |
Collapse
|
13
|
Ma G, Zhang X, Hua H, Zhou T, Wu X. Molecular and biological characterization of a novel strain of Alternaria alternata chrysovirus 1 identified from the pathogen Alternaria tenuissima causing watermelon leaf blight. Virus Res 2020; 280:197904. [PMID: 32105762 DOI: 10.1016/j.virusres.2020.197904] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/19/2020] [Accepted: 02/23/2020] [Indexed: 12/17/2022]
Abstract
The leaf blight caused by the genus Alternaria is one of the most epidemic diseases on watermelon, and A. tenuissima is the dominant pathogenic species in China. Mycoviruses are found ubiquitously in filamentous fungi, and an increasing number of novel mycoviruses infecting the genus Alternaria have been reported. In this study, a mycovirus from A. tenuissima strain SD-BZF-12 was identified and characterized, whose genome size was very similar with Alternaria alternata chrysovirus 1-N18 (AaCV1-N18). The dsRNA1- and dsRNA2-encoded proteins of the virus had 99 % identities with counterparts of AaCV1-N18; and the dsRNA3- and dsRNA4-encoded proteins of the virus showed the 80 % and 94 % sequence identities with proteins deduced from dsRNA4 and dsRNA3 of AaCV1-N18, respectively. Intriguingly, dsRNA5 of the virus encoded a truncated protein with 68 amino acids (aa) by comparing with 115 aa of AaCV1-N18 dsRNA5. Phylogenetic analysis of RNA-dependent RNA polymerase domain suggested that the virus clustered together with AaCV1-N18. Based on these characteristics, the mycovirus was identified to be a novel strain of AaCV1 and designated as AaCV1-AT1. In addition, no obvious differences were observed on colony morphology between AaCV1-AT1-infected and virus-cured strains of A. tenuissima; however, AaCV1-AT1 infection reduced colony growth rate and spore production ability on host fungus, and increased the median effective concentration of difenoconazole or tebuconazole on its host. This is the first report of AaCV1-AT1 associated with A. tenuissima.
Collapse
Affiliation(s)
- Guoping Ma
- Department of Plant Pathology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, PR China
| | - Xiaofang Zhang
- Department of Plant Pathology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, PR China
| | - Huihui Hua
- Department of Plant Pathology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, PR China
| | - Tao Zhou
- Department of Plant Pathology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, PR China
| | - Xuehong Wu
- Department of Plant Pathology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, PR China.
| |
Collapse
|
14
|
Wang Y, Wang M, Zhou M, Zhang X, Feng J. Baseline Sensitivity and Action Mechanism of Propamidine Against Alternaria brassicicola, the Causal Agent of Dark Leaf Spot on Cabbage. PLANT DISEASE 2020; 104:204-210. [PMID: 31697222 DOI: 10.1094/pdis-04-19-0883-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In the current study, a total of 53 isolates of Alternaria brassicicola collected from Shaanxi Province of China were characterized for their sensitivity to propamidine. The EC50 (50% effective concentration) values for propamidine inhibiting mycelial growth and spore germination ranged from 0.515 to 3.247 µg/ml and 0.393 to 2.982 µg/ml, with average EC50 values of 1.327 ± 0.198 µg/ml and 1.106 ± 0.113 µg/ml, respectively. In greenhouse experiments, propamidine at 100 µg/ml provided >90% efficacy against dark leaf spot on cabbage, which was higher than the efficacy obtained by azoxystrobin at the same concentration. After treatment with propamidine, fungal growth distortions were observed in the form of excess mycelial branching, thickened cell walls, decreased cell membrane permeability, and increased chitin content. Interestingly, colony color faded after treatment with propamidine compared with that of the untreated parental isolates. Importantly, the expressions of melanin biosynthesis-associated genes Amr1, Scd1, Brn1, and Brn2 were downregulated at different levels. The obtained baseline sensitivity and control efficacy data suggested that propamidine inhibited not only growth of A. brassicicola but also melanin biosynthesis, which could reduce the biocompatibility of A. brassicicola in the field. These biological characteristics encourage further investigation of the mechanism of action of propamidine against A. brassicicola.
Collapse
Affiliation(s)
- Yong Wang
- Research and Development Center of Biorational Pesticides, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Miaomiao Wang
- Research and Development Center of Biorational Pesticides, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Mingxia Zhou
- Research and Development Center of Biorational Pesticides, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Xing Zhang
- Research and Development Center of Biorational Pesticides, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Juntao Feng
- Research and Development Center of Biorational Pesticides, Northwest A & F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
15
|
A novel ourmia-like mycovirus isolated from the plant pathogenic fungus Colletotrichum gloeosporioides. Arch Virol 2019; 164:2631-2635. [PMID: 31367950 DOI: 10.1007/s00705-019-04346-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 06/17/2019] [Indexed: 10/26/2022]
Abstract
In this study, a novel mycovirus designed Colletotrichum gloeosporioides ourmia-like virus 1 (CgOLV1) was isolated from a filamentous phytopathogenic fungus, Colletotrichum gloeosporioides. The virus has a genome of 2,516 nucleotides and contains a large open reading frame (ORF) encoding an RNA-dependent RNA polymerase (RdRp). Phylogenetic analysis indicated that CgOLV1 is located in the ourmia-like mycovirus clade, whose members are related to plant ourmiaviruses. To the best of our knowledge, this is the first report of an ourmia-like mycovirus in C. gloeosporioides.
Collapse
|
16
|
Jamal A, Sato Y, Shahi S, Shamsi W, Kondo H, Suzuki N. Novel Victorivirus from a Pakistani Isolate of Alternaria alternata Lacking a Typical Translational Stop/Restart Sequence Signature. Viruses 2019; 11:E577. [PMID: 31242660 PMCID: PMC6631646 DOI: 10.3390/v11060577] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 01/27/2023] Open
Abstract
The family Totiviridae currently contains five genera Totivirus, Victorivirus, Leishmavirus, Trichomonasvirus, and Giardiavirus. Members in this family generally have a set of two-open reading frame (ORF) elements in their genome with the 5'-proximal ORF (ORF1) encoding a capsid protein (CP) and the 3'-proximal one (ORF2) for RNA-dependent RNA polymerase (RdRp). How the downstream open reading frames (ORFs) are expressed is genus-specific. All victoriviruses characterized thus far appear to use the stop/restart translation mechanism, allowing for the expression of two separate protein products from bicitronic genome-sized viral mRNA, while the totiviruses use a -1 ribosomal frame-shifting that leads to a fusion product of CP and RdRp. We report the biological and molecular characterization of a novel victorivirus termed Alternaria alternata victorivirus 1 (AalVV1) isolated from Alternaria alternata in Pakistan. The phylogenetic and molecular analyses showed AalVV1 to be distinct from previously reported victoriviruses. AalVV1 appears to have a sequence signature required for the -1 frame-shifting at the ORF1/2 junction region, rather than a stop/restart key mediator. By contrast, SDS-polyacrylamide gel electrophoresis and peptide mass fingerprinting analyses of purified virion preparations suggested the expression of two protein products, not a CP-RdRp fusion product. How these proteins are expressed is discussed in this study. Possible effects of infection by this virus were tested in two fungal species: A. alternata and RNA silencing proficient and deficient strains of Cryphonectria parasitica, a model filamentous fungus. AalVV1 showed symptomless infection in all of these fungal strains, even in the RNA silencing deficient C. parasitica strain.
Collapse
Affiliation(s)
- Atif Jamal
- Institute of Plant Science and Resources, Okayama University, Chuou 2-20-1, Kurashiki, Okayama 710-0046, Japan.
- Crop Diseases Research Institute, National Agricultural Research Centre, Park Road, Islamabad 45500, Pakistan.
| | - Yukiyo Sato
- Institute of Plant Science and Resources, Okayama University, Chuou 2-20-1, Kurashiki, Okayama 710-0046, Japan.
| | - Sabitree Shahi
- Institute of Plant Science and Resources, Okayama University, Chuou 2-20-1, Kurashiki, Okayama 710-0046, Japan.
| | - Wajeeha Shamsi
- Institute of Plant Science and Resources, Okayama University, Chuou 2-20-1, Kurashiki, Okayama 710-0046, Japan.
| | - Hideki Kondo
- Institute of Plant Science and Resources, Okayama University, Chuou 2-20-1, Kurashiki, Okayama 710-0046, Japan.
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources, Okayama University, Chuou 2-20-1, Kurashiki, Okayama 710-0046, Japan.
| |
Collapse
|
17
|
Li H, Bian R, Liu Q, Yang L, Pang T, Salaipeth L, Andika IB, Kondo H, Sun L. Identification of a Novel Hypovirulence-Inducing Hypovirus From Alternaria alternata. Front Microbiol 2019; 10:1076. [PMID: 31156589 PMCID: PMC6530530 DOI: 10.3389/fmicb.2019.01076] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/29/2019] [Indexed: 11/13/2022] Open
Abstract
Mycoviruses are wide spread throughout almost all groups of fungi but only a small number of mycoviruses can attenuate the growth and virulence of their fungal hosts. Alternaria alternata is an ascomycete fungus that causes leaf spot diseases on various crop plants. In this study, we identified a novel ssRNA mycovirus infecting an A. alternata f. sp. mali strain isolated from an apple orchard in China. Sequence analyses revealed that this virus is related to hypoviruses, in particular to Wuhan insect virus 14, an unclassified hypovirus identified from insect meta-transcriptomics, as well as other hypoviruses belonging to the genus Hypovirus, and therefore this virus is designed as Alternaria alternata hypovirus 1 (AaHV1). The genome of AaHV1 contains a single large open-reading frame encoding a putative polyprotein (∼479 kDa) with a cysteine proteinase-like and replication-associated domains. Curing AaHV1 from the fungal host strain indicated that the virus is responsible for the slow growth and reduced virulence of the host. AaHV1 defective RNA (D-RNA) with internal deletions emerging during fungal subcultures but the presence of D-RNA does not affect AaHV1 accumulation and pathogenicities. Moreover, AaHV1 could replicate and confer hypovirulence in Botryosphaeria dothidea, a fungal pathogen of apple white rot disease. This finding could facilitate better understanding of A. alternata pathogenicity and is relevant for development of biocontrol methods of fungal diseases.
Collapse
Affiliation(s)
- Huan Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Ruiling Bian
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Qian Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Liu Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Tianxing Pang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Lakha Salaipeth
- School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Ida Bagus Andika
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Hideki Kondo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Liying Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
18
|
Shamsi W, Sato Y, Jamal A, Shahi S, Kondo H, Suzuki N, Bhatti MF. Molecular and biological characterization of a novel botybirnavirus identified from a Pakistani isolate of Alternaria alternata. Virus Res 2019; 263:119-128. [DOI: 10.1016/j.virusres.2019.01.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 11/15/2022]
|
19
|
Complete genome sequence of a novel mitovirus from the wheat stripe rust fungus Puccinia striiformis. Arch Virol 2019; 164:897-901. [PMID: 30600350 DOI: 10.1007/s00705-018-04134-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 11/29/2018] [Indexed: 10/27/2022]
Abstract
The complete genome of a novel mycovirus, Puccinia striiformis mitovirus 1 (PsMV1), derived from the wheat stripe rust fungus Puccinia striiformis strain SCSN-10, was sequenced and analyzed. The full-length cDNA sequence is 2496 bp in length with a predicted AU content of 57.65% in the genomic RNA. Sequence analysis indicated that a single large open reading frame (ORF) is present on the positive strand when the fungal mitochondrial genetic code is used. The single ORF encodes a putative RNA-dependent RNA polymerase of 743 amino acids with a molecular mass of 84.9 kDa that shares the closest similarity with the corresponding proteins of Cronartium ribicola mitovirus 5 and Helicobasidium mompa mitovirus 1-18 (34% and 35% aa sequence identity, respectively). Phylogenetic analysis further indicated that PsMV1 is a new member of the genus Mitovirus within the family Narnaviridae. This is the first report of the full-length nucleotide sequence of a novel mitovirus, PsMV1, from the causal agent of wheat stripe rust.
Collapse
|
20
|
Botella L, Hantula J. Description, Distribution, and Relevance of Viruses of the Forest Pathogen Gremmeniella abietina. Viruses 2018; 10:v10110654. [PMID: 30463286 PMCID: PMC6267220 DOI: 10.3390/v10110654] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/13/2018] [Accepted: 11/16/2018] [Indexed: 01/29/2023] Open
Abstract
The European race of the ascomycetous species Gremmeniella abietina (Lagerberg) Morelet includes causal agents of shoot blight and stem canker of several conifers in Europe and North America, which are known to host a diverse virome. GaRV6 is the latest and sixth mycovirus species reported within G. abietina. Before its description, one victorivirus and one gammapartitivirus species were described in biotype A, two mitoviruses in both biotypes A and B and a betaendornavirus in biotype B. Possible phenotypic changes produced by mycoviruses on G. abietina mycelial growth have been reported in Spanish mitovirus-free and GaRV6-hosting G. abietina isolates, which had higher growth rates at the optimal temperature of 15 °C, but no other major differences have been observed between partitivirus-like dsRNA and dsRNA-free isolates. In this review, we reappraise the diversity of viruses found in G. abietina so far, and their relevance in clarifying the taxonomy of G. abietina. We also provide evidence for the presence of two new viruses belonging to the families Fusariviridae and Endornaviridae in Spanish isolates.
Collapse
Affiliation(s)
- Leticia Botella
- Phytophthora Research Centre, Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic.
| | - Jarkko Hantula
- Forest Health and Biodiversity, Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790 Helsinki, Finland.
| |
Collapse
|