1
|
Pandiscia A, Lorusso P, Manfredi A, Sánchez G, Terio V, Randazzo W. Leveraging Plasma-Activated Seawater for the Control of Human Norovirus and Bacterial Pathogens in Shellfish Depuration. Foods 2024; 13:850. [PMID: 38540842 PMCID: PMC10969863 DOI: 10.3390/foods13060850] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/04/2024] [Accepted: 03/08/2024] [Indexed: 01/31/2025] Open
Abstract
Cold plasma is a promising alternative for water treatment owing to pathogen control and a plethora of issues in the agriculture and food sectors. Shellfish pose a serious risk to public health and are linked to large viral and bacterial outbreaks. Hence, current European regulations mandate a depuration step for shellfish on the basis of their geographical growth area. This study investigated the inactivation of relevant viral and bacterial pathogens of three plasma-activated seawaters (PASWs), and their reactive oxygen and nitrogen species (RONS) composition, as being primarily responsible for microbial inactivation. Specifically, F-specific (MS2) and somatic (φ174) bacteriophage, cultivable surrogate (murine norovirus, MNV, and Tulane virus, TV), and human norovirus (HuNoV GII.4) inactivation was determined using plaque counts and infectivity assays, including the novel human intestinal enteroid (HIE) model for HuNoV. Moreover, the kinetic decay of Escherichia coli, Salmonella spp., and Vibrio parahaemolyticus was characterized. The results showed the complete inactivation of phages (6-8 log), surrogates (5-6 log), HuNoV (6 log), and bacterial (6-7 log) pathogens within 24 h while preventing cytotoxicity effects and preserving mussel viability. Nitrites (NO2-) were found to be mostly correlated with microbial decay. This research shows that PASWs are a suitable option to depurate bivalve mollusks and control the biohazard risk linked to their microbiological contamination, either viral or bacterial.
Collapse
Affiliation(s)
- Annamaria Pandiscia
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology (IATA-CSIC), Av. Agustín Escardino 7, Paterna, 46980 Valencia, Spain
- Department of Veterinary Medicine, University of Bari, Provincial Road to Casamassima Km 3, 70010 Valenzano, Italy
| | - Patrizio Lorusso
- Department of Veterinary Medicine, University of Bari, Provincial Road to Casamassima Km 3, 70010 Valenzano, Italy
| | - Alessio Manfredi
- Department of Veterinary Medicine, University of Bari, Provincial Road to Casamassima Km 3, 70010 Valenzano, Italy
| | - Gloria Sánchez
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology (IATA-CSIC), Av. Agustín Escardino 7, Paterna, 46980 Valencia, Spain
| | - Valentina Terio
- Department of Veterinary Medicine, University of Bari, Provincial Road to Casamassima Km 3, 70010 Valenzano, Italy
| | - Walter Randazzo
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology (IATA-CSIC), Av. Agustín Escardino 7, Paterna, 46980 Valencia, Spain
| |
Collapse
|
2
|
Xu Y, Bai Y, Dai C, Lv H, Zhou X, Xu Q. Effects of non-thermal atmospheric plasma on protein. J Clin Biochem Nutr 2022; 71:173-184. [PMID: 36447493 PMCID: PMC9701599 DOI: 10.3164/jcbn.22-17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/15/2022] [Indexed: 01/02/2024] Open
Abstract
Currently, the advancement in non-thermal atmospheric plasma technology enables plasma treatments on some heat-sensitive targets, including biological substances, without unspecific damage caused by thermal effect. The significant effects of non-thermal atmospheric plasma modulating biological events have been demonstrated by considerable studies. Protein, one of the most important biomolecules, participates in the majority of the life-sustaining activities in all organisms, whose functions are derived from the diverse biochemical properties of amino acid compositions and four-tiered protein structure hierarchy. Therefore, the knowledge of how non-thermal atmospheric plasma affects protein greatly benefits the understanding and application of the non-thermal atmospheric plasma's effect in biological area. In this review, we summarize recent research progress on the effects of non-thermal atmospheric plasma, particularly its reactive species, on biochemical and biophysical characteristics of proteins at different structural levels that leads to their functional changes. Moreover, the physiological effects of non-thermal atmospheric plasma at cellular or organism level driven by the manipulations on protein and their relative application prospects are reviewed. Despite the exceptional application potential, the exploration of the non-thermal atmospheric plasma's effect on protein still confronts with difficulties due to the limited knowledge of the underlying mechanisms and the complexity of non-thermal atmospheric plasma operation systems, which requires further studies and standardization of non-thermal atmospheric plasma treatments.
Collapse
Affiliation(s)
- Yong Xu
- Institute of Microbiology, Anhui Academy of Medical Sciences, Gongwan Road 15, Hefei City, Anhui Province 230061, China
| | - Yu Bai
- Institute of Microbiology, Anhui Academy of Medical Sciences, Gongwan Road 15, Hefei City, Anhui Province 230061, China
| | - Chenwei Dai
- Institute of Microbiology, Anhui Academy of Medical Sciences, Gongwan Road 15, Hefei City, Anhui Province 230061, China
| | - Han Lv
- Institute of Microbiology, Anhui Academy of Medical Sciences, Gongwan Road 15, Hefei City, Anhui Province 230061, China
| | - Xiuhong Zhou
- Institute of Microbiology, Anhui Academy of Medical Sciences, Gongwan Road 15, Hefei City, Anhui Province 230061, China
| | - Qinghua Xu
- Institute of Microbiology, Anhui Academy of Medical Sciences, Gongwan Road 15, Hefei City, Anhui Province 230061, China
| |
Collapse
|
3
|
Jenns K, Sassi HP, Zhou R, Cullen PJ, Carter D, Mai-Prochnow A. Inactivation of foodborne viruses: Opportunities for cold atmospheric plasma. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Thirumdas R. Inactivation of viruses related to foodborne infections using cold plasma technology. J Food Saf 2022. [DOI: 10.1111/jfs.12988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rohit Thirumdas
- Department of Food Process Technology College of Food Science & Technology, PJTSAU Hyderabad Telangana India
| |
Collapse
|
5
|
Aman Mohammadi M, Ahangari H, Zabihzadeh Khajavi M, Yousefi M, Scholtz V, Hosseini SM. Inactivation of viruses using nonthermal plasma in viral suspensions and foodstuff: A short review of recent studies. J Food Saf 2021. [DOI: 10.1111/jfs.12919] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Masoud Aman Mohammadi
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences, Food Science and Technology Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Hossein Ahangari
- Department of Food Science and Technology, Faculty of Nutrition and Food Science Tabriz University of Medical Sciences Tabriz Iran
| | - Maryam Zabihzadeh Khajavi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences, Food Science and Technology Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Mohammad Yousefi
- Department of Food Science and Technology, Faculty of Nutrition and Food Science Tabriz University of Medical Sciences Tabriz Iran
| | - Vladimír Scholtz
- Department of Physics and Measurements University of Chemistry and Technology Prague Prague Czech Republic
| | - Seyede Marzieh Hosseini
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences, Food Science and Technology Shahid Beheshti University of Medical Sciences Tehran Iran
| |
Collapse
|
6
|
Misra N, Bhatt S, Arefi‐Khonsari F, Kumar V. State of the art in nonthermal plasma processing for biomedical applications: Can it help fight viral pandemics like COVID-19? PLASMA PROCESSES AND POLYMERS (PRINT) 2021; 18:2000215. [PMID: 34220401 PMCID: PMC8237024 DOI: 10.1002/ppap.202000215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/07/2021] [Accepted: 05/03/2021] [Indexed: 06/13/2023]
Abstract
Plasma processing finds widespread biomedical applications, such as the design of biosensors, antibiofouling surfaces, controlled drug delivery systems, and in plasma sterilizers. In the present coronavirus disease (COVID-19) situation, the prospect of applying plasma processes like surface activation, plasma grafting, plasma-enhanced chemical vapor deposition/plasma polymerization, surface etching, plasma immersion ion implantation, crosslinking, and plasma decontamination to provide timely solutions in the form of better antiviral alternatives, practical diagnostic tools, and reusable personal protective equipment is worth exploring. Herein, the role of nonthermal plasmas and their contributions toward healthcare are timely reviewed to engage different communities in assisting healthcare associates and clinicians, not only to combat the current COVID-19 pandemic but also to prevent similar kinds of future outbreaks.
Collapse
Affiliation(s)
- Nilanjal Misra
- Radiation Technology Development DivisionBhabha Atomic Research CentreTrombayMumbaiMaharashtraIndia
| | - Sudhir Bhatt
- Department of Engineering and Physical SciencesInstitute of Advanced ResearchGandhinagarGujaratIndia
| | | | - Virendra Kumar
- Radiation Technology Development DivisionBhabha Atomic Research CentreTrombayMumbaiMaharashtraIndia
- Department of Chemical SciencesHomi Bhabha National InstituteAnushaktinagarMumbaiMaharashtraIndia
| |
Collapse
|
7
|
Abstract
Nonthermal atmospheric pressure biocompatible plasma (NBP), alternatively called bio-cold plasma, is a partially ionized gas that consists of charged particles, neutral atoms and molecules, photons, an electric field, and heat. Recently, nonthermal plasma-based technology has been applied to bioscience, medicine, agriculture, food processing, and safety. Various plasma device configurations and electrode layouts has fast-tracked plasma applications in the treatment of biological and material surfaces. The NBP action mechanism may be related to the synergy of plasma constituents, such as ultraviolet radiation or a reactive species. Recently, plasma has been used in the inactivation of viruses and resistant microbes, such as fungal cells, bacteria, spores, and biofilms made by microbes. It has also been used to heal wounds, coagulate blood, degrade pollutants, functionalize material surfaces, kill cancers, and for dental applications. This review provides an outline of NBP devices and their applications in bioscience and medicine. We also discuss the role of plasma-activated liquids in biological applications, such as cancer treatments and agriculture. The individual adaptation of plasma to meet specific medical requirements necessitates real-time monitoring of both the plasma performance and the target that is treated and will provide a new paradigm of plasma-based therapeutic clinical systems.
Collapse
Affiliation(s)
- Eun H. Choi
- Plasma Bioscience Research Center/Applied Plasma Medicine Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897 Republic of Korea
| | - Han S. Uhm
- Canode # 702, 136-11 Tojeong-ro, Mapo-gu, Seoul, 04081 Republic of Korea
| | - Nagendra K. Kaushik
- Plasma Bioscience Research Center/Applied Plasma Medicine Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897 Republic of Korea
| |
Collapse
|
8
|
Filipić A, Dobnik D, Tušek Žnidarič M, Žegura B, Štern A, Primc G, Mozetič M, Ravnikar M, Žel J, Gutierrez Aguirre I. Inactivation of Pepper Mild Mottle Virus in Water by Cold Atmospheric Plasma. Front Microbiol 2021; 12:618209. [PMID: 33584622 PMCID: PMC7877120 DOI: 10.3389/fmicb.2021.618209] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/04/2021] [Indexed: 11/18/2022] Open
Abstract
Water scarcity is one of the greatest threats for human survival and quality of life, and this is increasingly contributing to the risk of human, animal and plant infections due to waterborne viruses. Viruses are transmitted through polluted water, where they can survive and cause infections even at low concentrations. Plant viruses from the genus Tobamovirus are highly mechanically transmissible, and cause considerable damage to important crops, such as tomato. The release of infective tobamoviruses into environmental waters has been reported, with the consequent risk for arid regions, where these waters are used for irrigation. Virus inactivation in water is thus very important and cold atmospheric plasma (CAP) is emerging in this field as an efficient, safe, and sustainable alternative to classic waterborne virus inactivation methods. In the present study we evaluated CAP-mediated inactivation of pepper mild mottle virus (PMMoV) in water samples. PMMoV is a very resilient water-transmissible tobamovirus that can survive transit through the human digestive tract. The efficiency of PMMoV inactivation was characterized for infectivity and virion integrity, and at the genome level, using test plant infectivity assays, transmission electron microscopy, and molecular methods, respectively. Additionally, the safety of CAP treatment was determined by testing the cytotoxic and genotoxic properties of CAP-treated water on the HepG2 cell line. 5-min treatment with CAP was sufficient to inactivate PMMoV without introducing any cytotoxic or genotoxic effects in the in-vitro cell model system. These data on inactivation of such stable waterborne virus, PMMoV, will encourage further examination of CAP as an alternative for treatment of potable and irrigation waters, and even for other water sources, with emphasis on inactivation of various viruses including enteric viruses.
Collapse
Affiliation(s)
- Arijana Filipić
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia.,Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - David Dobnik
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Magda Tušek Žnidarič
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Bojana Žegura
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Alja Štern
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Gregor Primc
- Department of Surface Engineering, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Miran Mozetič
- Department of Surface Engineering, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Maja Ravnikar
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia.,University of Nova Gorica, Nova Gorica, Slovenia
| | - Jana Žel
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Ion Gutierrez Aguirre
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| |
Collapse
|
9
|
Filipić A, Gutierrez-Aguirre I, Primc G, Mozetič M, Dobnik D. Cold Plasma, a New Hope in the Field of Virus Inactivation. Trends Biotechnol 2020; 38:1278-1291. [PMID: 32418663 PMCID: PMC7164895 DOI: 10.1016/j.tibtech.2020.04.003] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 12/13/2022]
Abstract
Viruses can infect all cell-based organisms, from bacteria to humans, animals, and plants. They are responsible for numerous cases of hospitalization, many deaths, and widespread crop destruction, all of which result in an enormous medical, economical, and biological burden. Each of the currently used decontamination methods has important drawbacks. Cold plasma (CP) has entered this field as a novel, efficient, and clean solution for virus inactivation. We present recent developments in this promising field of CP-mediated virus inactivation, and describe the applications and mechanisms of the inactivation. This is particularly relevant because viral pandemics, such as COVID-19, highlight the need for alternative virus inactivation methods to replace, complement, or upgrade existing procedures. Pathogenic viruses are becoming an increasing burden for health, agriculture, and the global economy. Classic disinfection methods have several drawbacks, and innovative solutions for virus inactivation are urgently needed. CP can be used as an environmentally friendly tool for virus inactivation. It can inactivate different human, animal, and plant viruses in various matrices. When using CP for virus inactivation it is important to set the correct parameters and to choose treatment durations that allow particles to interact with the contaminated material. Reactive oxygen and/or nitrogen species have been shown to be responsible for virus inactivation through effects on capsid proteins and/or nucleic acids. The development of more accurate methods will provide information on which plasma particles are crucial in each experiment, and how exactly they affect viruses.
Collapse
Affiliation(s)
- Arijana Filipić
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna Pot 111, 1000 Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova Cesta 39, 1000 Ljubljana, Slovenia.
| | - Ion Gutierrez-Aguirre
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna Pot 111, 1000 Ljubljana, Slovenia
| | - Gregor Primc
- Department of Surface Engineering and Optoelectronics, Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia
| | - Miran Mozetič
- Department of Surface Engineering and Optoelectronics, Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia
| | - David Dobnik
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna Pot 111, 1000 Ljubljana, Slovenia
| |
Collapse
|
10
|
Adhikari B, Pangomm K, Veerana M, Mitra S, Park G. Plant Disease Control by Non-Thermal Atmospheric-Pressure Plasma. FRONTIERS IN PLANT SCIENCE 2020; 11:77. [PMID: 32117403 PMCID: PMC7034391 DOI: 10.3389/fpls.2020.00077] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/20/2020] [Indexed: 05/28/2023]
Abstract
Disease stresses caused by pathogenic microorganisms are increasing, probably because of global warming. Conventional technologies for plant disease control have often revealed their limitations in efficiency, environmental safety, and economic costs. There is high demand for improvements in efficiency and safety. Non-thermal atmospheric-pressure plasma has demonstrated its potential as an alternative tool for efficient and environmentally safe control of plant pathogenic microorganisms in many studies, which are overviewed in this review. Efficient inactivation of phytopathogenic bacterial and fungal cells by various plasma sources under laboratory conditions has been frequently reported. In addition, plasma-treated water shows antimicrobial activity. Plasma and plasma-treated water exhibit a broad spectrum of efficiency in the decontamination and disinfection of plants, fruits, and seeds, indicating that the outcomes of plasma treatment can be significantly influenced by the microenvironments between plasma and plant tissues, such as the surface structures and properties, antioxidant systems, and surface chemistry of plants. More intense studies are required on the efficiency of decontamination and disinfection and underlying mechanisms. Recently, the induction of plant tolerance or resistance to pathogens by plasma (so-called "plasma vaccination") is emerging as a new area of study, with active research ongoing in this field.
Collapse
Affiliation(s)
- Bhawana Adhikari
- Plasma Bioscience Research Center, Kwangwoon University, Seoul, South Korea
| | - Kamonporn Pangomm
- Department of Basic Science, Maejo University Phrae Campus, Phrae, Thailand
| | - Mayura Veerana
- Plasma Bioscience Research Center, Kwangwoon University, Seoul, South Korea
| | - Sarmistha Mitra
- Plasma Bioscience Research Center, Kwangwoon University, Seoul, South Korea
| | - Gyungsoon Park
- Plasma Bioscience Research Center, Kwangwoon University, Seoul, South Korea
| |
Collapse
|
11
|
Filipić A, Primc G, Zaplotnik R, Mehle N, Gutierrez-Aguirre I, Ravnikar M, Mozetič M, Žel J, Dobnik D. Cold Atmospheric Plasma as a Novel Method for Inactivation of Potato Virus Y in Water Samples. FOOD AND ENVIRONMENTAL VIROLOGY 2019; 11:220-228. [PMID: 31037614 PMCID: PMC6689025 DOI: 10.1007/s12560-019-09388-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/16/2019] [Indexed: 05/22/2023]
Abstract
While one of the biggest problems we are facing today is water scarcity, enormous quantities of water are still being used in irrigation. If contaminated, this water can act as an effective pathway for the spread of disease-causing agents, like viruses. Here, we present a novel, environmentally friendly method known as cold atmospheric plasma for inactivation of viruses in water used in closed irrigation systems. We measured the plasma-mediated viral RNA degradation as well as the plasma-induced loss of viral infectivity using potato virus Y as a model virus due to its confirmed water transmissibility and economic as well as biological importance. We showed that only 1 min of plasma treatment is sufficient for successful inactivation of viruses in water samples with either high or low organic background. The plasma-mediated inactivation was efficient even at markedly higher virus concentrations than those expected in irrigation waters. Obtained results point to reactive oxygen species as the main mode of viral inactivation. Our laboratory-scale experiments confirm for the first time that plasma has an excellent potential as the eukaryotic virus inactivation tool for water sources and could thus provide a cost-effective solution for irrigation mediated plant virus transmission. The outstanding inactivation efficiency demonstrated by plasma treatments in water samples offers further expansions of its application to other water sources such as reused wastewater or contaminated drinking waters, as well as other plant, animal, and human waterborne viruses, ultimately leading to the prevention of water scarcity and numerous human, animal, and plant infections worldwide.
Collapse
Affiliation(s)
- Arijana Filipić
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia.
- Jožef Stefan International Postgraduate School, Jamova cesta 39, 1000, Ljubljana, Slovenia.
| | - Gregor Primc
- Department of Surface Engineering and Optoelectronics, Jožef Stefan Institute, Jamova cesta 39, 1000, Ljubljana, Slovenia
| | - Rok Zaplotnik
- Department of Surface Engineering and Optoelectronics, Jožef Stefan Institute, Jamova cesta 39, 1000, Ljubljana, Slovenia
| | - Nataša Mehle
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia
| | - Ion Gutierrez-Aguirre
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia
| | - Maja Ravnikar
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia
- University of Nova Gorica, Vipavska 13, 5000, Nova Gorica, Slovenia
| | - Miran Mozetič
- Department of Surface Engineering and Optoelectronics, Jožef Stefan Institute, Jamova cesta 39, 1000, Ljubljana, Slovenia
| | - Jana Žel
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia
| | - David Dobnik
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia
| |
Collapse
|