1
|
Pchelin IM, Smolensky AV, Azarov DV, Goncharov AE. Lytic Spectra of Tailed Bacteriophages: A Systematic Review and Meta-Analysis. Viruses 2024; 16:1879. [PMID: 39772189 PMCID: PMC11680127 DOI: 10.3390/v16121879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
As natural predators of bacteria, tailed bacteriophages can be used in biocontrol applications, including antimicrobial therapy. Also, phage lysis is a detrimental factor in technological processes based on bacterial growth and metabolism. The spectrum of bacteria bacteriophages interact with is known as the host range. Phage science produced a vast amount of host range data. However, there has been no attempt to analyse these data from the viewpoint of modern phage and bacterial taxonomy. Here, we performed a meta-analysis of spotting and plaquing host range data obtained on strains of production host species. The main metric of our study was the host range value calculated as a ratio of lysed strains to the number of tested bacterial strains. We found no boundary between narrow and broad host ranges in tailed phages taken as a whole. Family-level groups of strictly lytic bacteriophages had significantly different median plaquing host range values in the range from 0.18 (Drexlerviridae) to 0.70 (Herelleviridae). In Escherichia coli phages, broad host ranges were associated with decreased efficiency of plating. Bacteriophage morphology, genome size, and the number of tRNA-coding genes in phage genomes did not correlate with host range values. From the perspective of bacterial species, median plaquing host ranges varied from 0.04 in bacteriophages infecting Acinetobacter baumannii to 0.73 in Staphylococcus aureus phages. Taken together, our results imply that taxonomy of bacteriophages and their bacterial hosts can be predictive of intraspecies host ranges.
Collapse
Affiliation(s)
- Ivan M. Pchelin
- Department of Molecular Microbiology, Institute of Experimental Medicine, Saint Petersburg 197022, Russia; (D.V.A.); (A.E.G.)
| | - Andrei V. Smolensky
- Department of Computer Science, Neapolis University Pafos, Paphos 8042, Cyprus;
| | - Daniil V. Azarov
- Department of Molecular Microbiology, Institute of Experimental Medicine, Saint Petersburg 197022, Russia; (D.V.A.); (A.E.G.)
| | - Artemiy E. Goncharov
- Department of Molecular Microbiology, Institute of Experimental Medicine, Saint Petersburg 197022, Russia; (D.V.A.); (A.E.G.)
| |
Collapse
|
2
|
Nakayinga R, Ntulume I, Wagemans J, Vallino M, Kanaabi R, Kajubi A, Kwetegyeka J. Isolation, characterization and genome analysis of the orphan phage Kintu infecting Xanthomonas vasicola pv. musacearum. BMC Microbiol 2024; 24:482. [PMID: 39558194 PMCID: PMC11572249 DOI: 10.1186/s12866-024-03629-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 11/04/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND Xanthomonas vasicola pv. musacearum is responsible for the widespread Banana Xanthomonas Wilt in banana cultivation regions across the globe. Biocontrol measures for disease management remain limited amidst increasing antimicrobial resistance and unsustainable conventional agricultural practices. The purpose of this study is to explore a viable alternative or adjunct strategy through the use of bacteriophages for disease management. RESULTS Kintu was isolated from sewage and displayed clear and circular plaques measuring 3 mm. Based on transmission electron microscopy, Kintu displays siphovirus characteristics, including an icosahedral head and a non-contractile tail. Kintu infects 78% (22 out of 28) Ugandan Xvm strains, has an optimal multiplicity of infection of 1, a 10 min adsorption and latent period, a 35 min burst period, and a burst size of 15 particles per bacterium. Phage titers remain stable for two and half months (75 days) in SM buffer at -20 oC and - 40 oC but decrease significantly (p ≤ 0.0001) at 4 oC. Kintu is active at pH 3 and 11, maintains viability at temperatures between 25 oC and 120 oC and tolerates UV irradiation for up to 2 min and 20 s. Kintu inhibits Xvm growth at MOI ratios of 0.1, 1 and 10. The genome is a double stranded DNA molecule that consists of 48,985 base pairs and a G + C content of 51.71%. Antibiotic resistance genes or genes associated with a lysogenic life cycle are absent. There is limited sequence similarity of Kintu with other phages, making it a novel phage belonging to an unclassified genus of the class Caudoviricetes. CONCLUSION Kintu is a novel bacteriophage that infects and lyses Xanthomonas vasicola pv. musacearum, the causative agent for Banana Xanthomonas Wilt. Its stability across diverse temperatures and pH conditions highlights its potential as a biocontrol agent for managing the disease.
Collapse
Affiliation(s)
- Ritah Nakayinga
- Department of Biological Sciences, Faculty of Science, Kyambogo University, P.O. Box 1, Kyambogo, Kampala, IN, Uganda.
| | - Ibrahim Ntulume
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | | | - Marta Vallino
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| | - Reagan Kanaabi
- International Institute of Tropical Agriculture, Kampala, Uganda
| | - Ali Kajubi
- National Agricultural Research Laboratories, Kawanda, Uganda
| | - Justus Kwetegyeka
- Department of Chemistry, Faculty of Science, Kyambogo University, Kampala, Uganda
| |
Collapse
|
3
|
Evseev PV, Tarakanov RI, Vo HTN, Suzina NE, Vasilyeva AA, Ignatov AN, Miroshnikov KA, Dzhalilov FSU. Characterisation of New Foxunavirus Phage Murka with the Potential of Xanthomonas campestris pv. campestris Control. Viruses 2024; 16:198. [PMID: 38399973 PMCID: PMC10892653 DOI: 10.3390/v16020198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Phages of phytopathogenic bacteria are considered to be promising agents for the biological control of bacterial diseases in plants. This paper reports on the isolation and characterisation of a new Xanthomonas campestris pv. campestris phage, Murka. Phage morphology and basic kinetic characteristics of the infection were determined, and a phylogenomic analysis was performed. The phage was able to lyse a reasonably broad range (64%, 9 of the 14 of the Xanthomonas campestris pv. campestris strains used in the study) of circulating strains of the cabbage black rot pathogen. This lytic myovirus has a DNA genome of 44,044 bp and contains 83 predicted genes. Taxonomically, it belongs to the genus Foxunavirus. This bacteriophage is promising for use as a possible means of biological control of cabbage black rot.
Collapse
Affiliation(s)
- Peter V. Evseev
- Department of Plant Protection, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Str. 49, 127434 Moscow, Russia; (P.V.E.); (A.A.V.); (A.N.I.); (K.A.M.); (F.S.-U.D.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 117997 Moscow, Russia
- Laboratory of Molecular Microbiology, Pirogov Russian National Research Medical University, Ostrovityanova 1, 117997 Moscow, Russia
| | - Rashit I. Tarakanov
- Department of Plant Protection, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Str. 49, 127434 Moscow, Russia; (P.V.E.); (A.A.V.); (A.N.I.); (K.A.M.); (F.S.-U.D.)
| | - Ha T. N. Vo
- Faculty of Agronomy, Nong Lam University, Quarter 6, Thu Duc District, Ho Chi Minh City 721400, Vietnam;
| | - Natalia E. Suzina
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Center for Biological Research of the Russian Academy of Sciences”, Prosp. Nauki, 5, 142290 Pushchino, Russia;
| | - Anna A. Vasilyeva
- Department of Plant Protection, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Str. 49, 127434 Moscow, Russia; (P.V.E.); (A.A.V.); (A.N.I.); (K.A.M.); (F.S.-U.D.)
| | - Alexander N. Ignatov
- Department of Plant Protection, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Str. 49, 127434 Moscow, Russia; (P.V.E.); (A.A.V.); (A.N.I.); (K.A.M.); (F.S.-U.D.)
- Agrobiotechnology Department, Agrarian and Technological Institute, RUDN University, Miklukho-Maklaya Str., 6, 117198 Moscow, Russia
| | - Konstantin A. Miroshnikov
- Department of Plant Protection, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Str. 49, 127434 Moscow, Russia; (P.V.E.); (A.A.V.); (A.N.I.); (K.A.M.); (F.S.-U.D.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 117997 Moscow, Russia
| | - Fevzi S.-U. Dzhalilov
- Department of Plant Protection, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Str. 49, 127434 Moscow, Russia; (P.V.E.); (A.A.V.); (A.N.I.); (K.A.M.); (F.S.-U.D.)
| |
Collapse
|
4
|
Sharma A, Gupta AK, Devi B. Current trends in management of bacterial pathogens infecting plants. Antonie Van Leeuwenhoek 2023; 116:303-326. [PMID: 36683073 DOI: 10.1007/s10482-023-01809-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/08/2023] [Indexed: 01/24/2023]
Abstract
Plants are continuously challenged by different pathogenic microbes that reduce the quality and quantity of produce and therefore pose a serious threat to food security. Among them bacterial pathogens are known to cause disease outbreaks with devastating economic losses in temperate, tropical and subtropical regions throughout the world. Bacteria are structurally simple prokaryotic microorganisms and are diverse from a metabolic standpoint. Bacterial infection process mainly involves successful attachment or penetration by using extracellular enzymes, type secretion systems, toxins, growth regulators and by exploiting different molecules that modulate plant defence resulting in successful colonization. Theses bacterial pathogens are extremely difficult to control as they develop resistance to antibiotics. Therefore, attempts are made to search for innovative methods of disease management by the targeting bacterial virulence and manipulating the genes in host plants by exploiting genome editing methods. Here, we review the recent developments in bacterial disease management including the bioactive antimicrobial compounds, bacteriophage therapy, quorum-quenching mediated control, nanoparticles and CRISPR/Cas based genome editing techniques for bacterial disease management. Future research should focus on implementation of smart delivery systems and consumer acceptance of these innovative methods for sustainable disease management.
Collapse
Affiliation(s)
- Aditi Sharma
- College of Horticulture and Forestry, Thunag- Mandi, Dr. Y. S. Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, 173 230, India.
| | - A K Gupta
- Department of Plant Pathology, Dr. Y.S. Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, 173 230, India
| | - Banita Devi
- Department of Plant Pathology, Dr. Y.S. Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, 173 230, India
| |
Collapse
|
5
|
Holtappels D, Fortuna KJ, Vallino M, Lavigne R, Wagemans J. Isolation, characterization and genome analysis of an orphan phage FoX4 of the new Foxquatrovirus genus. BMC Microbiol 2022; 22:304. [PMID: 36513996 PMCID: PMC9746216 DOI: 10.1186/s12866-022-02719-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022] Open
Abstract
The growing interest in the therapeutic application of bacteriophages leads to a drastic increase in the number of sequenced genomes. Luckily, recent insights in phage taxonomy facilitate the classification of phages in a comprehensive and data-driven manner as recently proposed by the International Committee on Taxonomy of Viruses. In this research, we present the taxonomical classification of a novel, narrow host range Xanthomonas phage FoX4, isolated from a Brussels sprouts field in Belgium infested with Xanthomonas campestris pv. campestris. The phage has a limited ability to lyse a bacterial culture, yet adsorbs efficiently to its host. Based on its genome sequence and low similarity to previously described phages, the phage comprises the novel phage genus Foxquatrovirus.
Collapse
Affiliation(s)
- D. Holtappels
- grid.5596.f0000 0001 0668 7884Department of Biosystems, KU Leuven, Leuven, Belgium
| | - K. J. Fortuna
- grid.5596.f0000 0001 0668 7884Department of Biosystems, KU Leuven, Leuven, Belgium
| | - M. Vallino
- grid.5326.20000 0001 1940 4177Institute of Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| | - R. Lavigne
- grid.5596.f0000 0001 0668 7884Department of Biosystems, KU Leuven, Leuven, Belgium
| | - J. Wagemans
- grid.5596.f0000 0001 0668 7884Department of Biosystems, KU Leuven, Leuven, Belgium
| |
Collapse
|
6
|
Holtappels D, Fortuna KJ, Moons L, Broeckaert N, Bäcker LE, Venneman S, Rombouts S, Lippens L, Baeyen S, Pollet S, Noben JP, Oechslin F, Vallino M, Aertsen A, Maes M, Van Vaerenbergh J, Lavigne R, Wagemans J. The potential of bacteriophages to control Xanthomonas campestris pv. campestris at different stages of disease development. Microb Biotechnol 2022; 15:1762-1782. [PMID: 35084112 PMCID: PMC9151335 DOI: 10.1111/1751-7915.14004] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/23/2022] Open
Abstract
Xanthomonas campestris pv. campestris (Xcc) is a vascular pathogen that invades the xylem of Brassica crops. Current chemical and antibiotics‐based control measures for this bacterium are unsustainable and inefficient. After establishing a representative collection of Xcc strains, we isolated and characterized bacteriophages from two clades of phages to assess their potential in phage‐based biocontrol. The most promising phages, FoX2 and FoX6, specifically recognize (lipo) polysaccharides, associated with the wxc gene cluster, on the surface of the bacterial cell wall. Next, we determined and optimized the applicability of FoX2 and FoX6 in an array of complementary bioassays, ranging from seed decontamination to irrigation‐ and spray‐based applications. Here, an irrigation‐based application showed promising results. In a final proof‐of‐concept, a CaCl2‐formulated phage cocktail was shown to control the outbreak of Xcc in the open field. This comprehensive approach illustrates the potential of phage biocontrol of black rot disease in Brassica and serves as a reference for the broader implementation of phage biocontrol in integrated pest management strategies.
Collapse
Affiliation(s)
| | | | - Lauren Moons
- Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
| | | | - Léon E Bäcker
- Laboratory of Food Microbiology, KU Leuven, Leuven, Belgium
| | - Sofie Venneman
- Proefstation voor de groenteteelt, Sint-Katelijne-Waver, Belgium
| | - Sofie Rombouts
- Laboratory of Gene Technology, KU Leuven, Leuven, Belgium.,Flanders Research Institute for Agriculture, Fisheries and Food, Ghent, Belgium
| | - Louis Lippens
- Provinciaal Proefcentrum voor de Groenteteelt Oost-Vlaanderen, Kruishoutem, Belgium
| | - Steve Baeyen
- Flanders Research Institute for Agriculture, Fisheries and Food, Ghent, Belgium
| | | | - Jean-Paul Noben
- Biomedical Research Institute and Transnational University Limburg, Hasselt University, Hasselt, Belgium
| | - Frank Oechslin
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Marta Vallino
- Institute for Sustainable Plant Protection, National Research Counsil of Italy, Turin, Italy
| | - Abram Aertsen
- Laboratory of Food Microbiology, KU Leuven, Leuven, Belgium
| | | | | | - Rob Lavigne
- Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
| | | |
Collapse
|
7
|
Nakayinga R, Makumi A, Tumuhaise V, Tinzaara W. Xanthomonas bacteriophages: a review of their biology and biocontrol applications in agriculture. BMC Microbiol 2021; 21:291. [PMID: 34696726 PMCID: PMC8543423 DOI: 10.1186/s12866-021-02351-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 10/12/2021] [Indexed: 11/10/2022] Open
Abstract
Phytopathogenic bacteria are economically important because they affect crop yields and threaten the livelihoods of farmers worldwide. The genus Xanthomonas is particularly significant because it is associated with some plant diseases that cause tremendous loss in yields of globally essential crops. Current management practices are ineffective, unsustainable and harmful to natural ecosystems. Bacteriophage (phage) biocontrol for plant disease management has been of particular interest from the early nineteenth century to date. Xanthomonas phage research for plant disease management continues to demonstrate promising results under laboratory and field conditions. AgriPhage has developed phage products for the control of Xanthomonas campestris pv. vesicatoria and Xanthomonas citri subsp. citri. These are causative agents for tomato, pepper spot and speck disease as well as citrus canker disease. Phage-mediated biocontrol is becoming a viable option because phages occur naturally and are safe for disease control and management. Thorough knowledge of biological characteristics of Xanthomonas phages is vital for developing effective biocontrol products. This review covers Xanthomonas phage research highlighting aspects of their ecology, biology and biocontrol applications.
Collapse
Affiliation(s)
- Ritah Nakayinga
- Department of Biological Sciences, Faculty of Science, Kyambogo University, P.O. Box 1, Kyambogo, Uganda.
| | - Angela Makumi
- Department of Animal and Human Health, General Biosciences, International Livestock Research Institute, P.O. Box 3070, Nairobi, 00100, Kenya
| | - Venansio Tumuhaise
- Department of Agriculture, Faculty of Vocational Studies, Kyambogo University, P.O. Box 1, Kyambogo, Uganda
| | - William Tinzaara
- Department of Agriculture, Faculty of Vocational Studies, Kyambogo University, P.O. Box 1, Kyambogo, Uganda
| |
Collapse
|
8
|
Bacteriophage-Mediated Control of Phytopathogenic Xanthomonads: A Promising Green Solution for the Future. Microorganisms 2021; 9:microorganisms9051056. [PMID: 34068401 PMCID: PMC8153558 DOI: 10.3390/microorganisms9051056] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/05/2021] [Accepted: 05/11/2021] [Indexed: 12/21/2022] Open
Abstract
Xanthomonads, members of the family Xanthomonadaceae, are economically important plant pathogenic bacteria responsible for infections of over 400 plant species. Bacteriophage-based biopesticides can provide an environmentally friendly, effective solution to control these bacteria. Bacteriophage-based biocontrol has important advantages over chemical pesticides, and treatment with these biopesticides is a minor intervention into the microflora. However, bacteriophages’ agricultural application has limitations rooted in these viruses’ biological properties as active substances. These disadvantageous features, together with the complicated registration process of bacteriophage-based biopesticides, means that there are few products available on the market. This review summarizes our knowledge of the Xanthomonas-host plant and bacteriophage-host bacterium interaction’s possible influence on bacteriophage-based biocontrol strategies and provides examples of greenhouse and field trials and products readily available in the EU and the USA. It also details the most important advantages and limitations of the agricultural application of bacteriophages. This paper also investigates the legal background and industrial property right issues of bacteriophage-based biopesticides. When appropriately applied, bacteriophages can provide a promising tool against xanthomonads, a possibility that is untapped. Information presented in this review aims to explore the potential of bacteriophage-based biopesticides in the control of xanthomonads in the future.
Collapse
|