1
|
Muhire BM, Roumagnac P, Varsani A, Martin DP. Sequence Demarcation Tool (SDT), a Free User-Friendly Computer Program Using Pairwise Genetic Identity Calculations to Classify Nucleotide or Amino Acid Sequences. Methods Mol Biol 2025; 2912:71-79. [PMID: 40064775 DOI: 10.1007/978-1-0716-4454-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2025]
Abstract
Sequence Demarcation Tool (SDT) is a free user-friendly computer program that has been adopted by many geminivirologists as a means of robustly and reproducibly using pairwise genetic identity calculations to classify geminivirus whole genome sequences. As input SDT takes unaligned sequences and it outputs publication quality pairwise identity plots and color-coded distance matrices. Whereas the distance plots are useful for guiding the establishment of strain, species or genus demarcation thresholds that will yield minimal classification conflicts, the distance matrices aid the classification of sequences according to the taxonomic demarcation criteria of the International Committee on Taxonomy of Viruses. Accordingly, over the past 10 years, SDT has been extensively used for the establishment of new genera in the family Geminiviridae and for the classification of hundreds of new species within individual geminivirus genera.
Collapse
Affiliation(s)
- Brejnev Muhizi Muhire
- Division of Computational Biology, Department of Integrative Biomedical Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Philippe Roumagnac
- UMR PHIM, CIRAD, Montpellier, France.
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France.
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Tempe, AZ, USA
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Observatory, Cape Town, South Africa
| | - Darren Patrick Martin
- Division of Computational Biology, Department of Integrative Biomedical Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
2
|
Noskov I, Blum H, Komnik H, Hallmann J. Host Status and Response Differences of Flat-Leaf and Curly-Leaf Parsley to Meloidogyne hapla, M. chitwoodi, M. fallax, and M. incognita Infestation. PLANTS (BASEL, SWITZERLAND) 2024; 13:1730. [PMID: 38999570 PMCID: PMC11243110 DOI: 10.3390/plants13131730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024]
Abstract
Leaf parsley growth and productivity are often affected by pathogen infection. Root-knot nematodes of the genus Meloiogyne are common pathogens reported on leaf parsley. The response of leaf parsley to Meloidogyne species in tropical and subtropical regions is quite known, while in temperate regions, comparable information is still scarce. In this study, we evaluated the host status and response of three flat-leaf (Laica, Laura, Gigante d'Italia) and three curly-leaf (Grüne Perle, Orfeo, Sombre) parsley cultivars to Meloidogyne species from temperate regions, i.e., M. hapla, M. chitwoodi, and M. fallax, as well as to the southern root-knot nematode M. incognita. Evaluation was based on measuring plant biomass and nematode reproduction nine weeks after nematode inoculation. Our results showed that all four Meloidogyne species did not cause the reduction in leaf parsley growth under the given experimental conditions. Regarding the host status of leaf parsley cultivars for Meloidogyne, results were variable. All six parsley cultivars were found to be good hosts for M. hapla. Regarding M. chitwoodi, the host status could not be clarified properly; however, each cultivar allowed nematode reproduction at least in one experiment. For M. fallax, flat-leaf parsley turned out to be less susceptible than curly-leaf parsley; and for M. incognita, Orfeo, Laura, and Laica were classified as good hosts, Grüne Perle and Sombre as poor hosts, and Gigante d'Italia as a non-host. Amongst all tested cultivars, Gigante d'Italia was found to be the least susceptible cultivar due to its poor host status for M. chitwoodi and non-host status for M. fallax and M. incognita. Infection with M. hapla, M. chitwoodi, and M. incognita, but not with M. fallax, resulted in distinct gall formation on the roots of all six leaf parsley cultivars.
Collapse
Affiliation(s)
- Ilya Noskov
- Julius Kühn Institute (JKI)—Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11/12, 38104 Braunschweig, Germany;
| | - Hanna Blum
- Institute of Crop Science and Resource Conservation—Renewable Resources, University of Bonn, Klein-Altendorf 2, 53359 Rheinbach, Germany; (H.B.); (H.K.)
| | - Hansjörg Komnik
- Institute of Crop Science and Resource Conservation—Renewable Resources, University of Bonn, Klein-Altendorf 2, 53359 Rheinbach, Germany; (H.B.); (H.K.)
| | - Johannes Hallmann
- Julius Kühn Institute (JKI)—Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11/12, 38104 Braunschweig, Germany;
| |
Collapse
|
3
|
Torralba B, Blanc S, Michalakis Y. Reassortments in single-stranded DNA multipartite viruses: Confronting expectations based on molecular constraints with field observations. Virus Evol 2024; 10:veae010. [PMID: 38384786 PMCID: PMC10880892 DOI: 10.1093/ve/veae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/23/2023] [Accepted: 01/30/2024] [Indexed: 02/23/2024] Open
Abstract
Single-stranded DNA multipartite viruses, which mostly consist of members of the genus Begomovirus, family Geminiviridae, and all members of the family Nanoviridae, partly resolve the cost of genomic integrity maintenance through two remarkable capacities. They are able to systemically infect a host even when their genomic segments are not together in the same host cell, and these segments can be separately transmitted by insect vectors from host to host. These capacities potentially allow such viruses to reassort at a much larger spatial scale, since reassortants could arise from parental genotypes that do not co-infect the same cell or even the same host. To assess the limitations affecting reassortment and their implications in genome integrity maintenance, the objective of this review is to identify putative molecular constraints influencing reassorted segments throughout the infection cycle and to confront expectations based on these constraints with empirical observations. Trans-replication of the reassorted segments emerges as the major constraint, while encapsidation, viral movement, and transmission compatibilities appear more permissive. Confronting the available molecular data and the resulting predictions on reassortments to field population surveys reveals notable discrepancies, particularly a surprising rarity of interspecific natural reassortments within the Nanoviridae family. These apparent discrepancies unveil important knowledge gaps in the biology of ssDNA multipartite viruses and call for further investigation on the role of reassortment in their biology.
Collapse
Affiliation(s)
- Babil Torralba
- PHIM, Université Montpellier, IRD, CIRAD, INRAE, Institut Agro, Avenue du Campus d’Agropolis - ZAC de Baillarguet, Montpellier 34980, France
| | - Stéphane Blanc
- PHIM, Université Montpellier, IRD, CIRAD, INRAE, Institut Agro, Avenue du Campus d’Agropolis - ZAC de Baillarguet, Montpellier 34980, France
| | - Yannis Michalakis
- MIVEGEC, Université Montpellier, CNRS, IRD, 911, Avenue Agropolis, Montpellier 34394, France
| |
Collapse
|
4
|
Trapani S, Bhat EA, Yvon M, Lai-Kee-Him J, Hoh F, Vernerey MS, Pirolles E, Bonnamy M, Schoehn G, Zeddam JL, Blanc S, Bron P. Structure-guided mutagenesis of the capsid protein indicates that a nanovirus requires assembled viral particles for systemic infection. PLoS Pathog 2023; 19:e1011086. [PMID: 36622854 PMCID: PMC9858847 DOI: 10.1371/journal.ppat.1011086] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 01/20/2023] [Accepted: 12/27/2022] [Indexed: 01/10/2023] Open
Abstract
Nanoviruses are plant multipartite viruses with a genome composed of six to eight circular single-stranded DNA segments. The distinct genome segments are encapsidated individually in icosahedral particles that measure ≈18 nm in diameter. Recent studies on the model species Faba bean necrotic stunt virus (FBNSV) revealed that complete sets of genomic segments rarely occur in infected plant cells and that the function encoded by a given viral segment can complement the others across neighbouring cells, presumably by translocation of the gene products through unknown molecular processes. This allows the viral genome to replicate, assemble into viral particles and infect anew, even with the distinct genome segments scattered in different cells. Here, we question the form under which the FBNSV genetic material propagates long distance within the vasculature of host plants and, in particular, whether viral particle assembly is required. Using structure-guided mutagenesis based on a 3.2 Å resolution cryogenic-electron-microscopy reconstruction of the FBNSV particles, we demonstrate that specific site-directed mutations preventing capsid formation systematically suppress FBNSV long-distance movement, and thus systemic infection of host plants, despite positive detection of the mutated coat protein when the corresponding segment is agroinfiltrated into plant leaves. These results strongly suggest that the viral genome does not propagate within the plant vascular system under the form of uncoated DNA molecules or DNA:coat-protein complexes, but rather moves long distance as assembled viral particles.
Collapse
Affiliation(s)
- Stefano Trapani
- CBS (Centre de Biologie Structurale), Univ Montpellier, CNRS, INSERM, Montpellier, France
| | - Eijaz Ahmed Bhat
- CBS (Centre de Biologie Structurale), Univ Montpellier, CNRS, INSERM, Montpellier, France
| | - Michel Yvon
- PHIM, INRAE, CIRAD, IRD, SupAgro, Univ Montpellier, Montpellier, France
| | - Joséphine Lai-Kee-Him
- CBS (Centre de Biologie Structurale), Univ Montpellier, CNRS, INSERM, Montpellier, France
| | - François Hoh
- CBS (Centre de Biologie Structurale), Univ Montpellier, CNRS, INSERM, Montpellier, France
| | | | - Elodie Pirolles
- PHIM, INRAE, CIRAD, IRD, SupAgro, Univ Montpellier, Montpellier, France
| | - Mélia Bonnamy
- PHIM, INRAE, CIRAD, IRD, SupAgro, Univ Montpellier, Montpellier, France
| | - Guy Schoehn
- Univ. Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| | - Jean-Louis Zeddam
- PHIM, INRAE, CIRAD, IRD, SupAgro, Univ Montpellier, Montpellier, France
| | - Stéphane Blanc
- PHIM, INRAE, CIRAD, IRD, SupAgro, Univ Montpellier, Montpellier, France
| | - Patrick Bron
- CBS (Centre de Biologie Structurale), Univ Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
5
|
Fox A, Gibbs AJ, Fowkes AR, Pufal H, McGreig S, Jones RAC, Boonham N, Adams IP. Enhanced Apiaceous Potyvirus Phylogeny, Novel Viruses, and New Country and Host Records from Sequencing Apiaceae Samples. PLANTS 2022; 11:plants11151951. [PMID: 35956429 PMCID: PMC9370115 DOI: 10.3390/plants11151951] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/18/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022]
Abstract
The family Apiaceae comprises approximately 3700 species of herbaceous plants, including important crops, aromatic herbs and field weeds. Here we report a study of 10 preserved historical or recent virus samples of apiaceous plants collected in the United Kingdom (UK) import interceptions from the Mediterranean region (Egypt, Israel and Cyprus) or during surveys of Australian apiaceous crops. Seven complete new genomic sequences and one partial sequence, of the apiaceous potyviruses apium virus Y (ApVY), carrot thin leaf virus (CaTLV), carrot virus Y (CarVY) and celery mosaic virus (CeMV) were obtained. When these 7 and 16 earlier complete non-recombinant apiaceous potyvirus sequences were subjected to phylogenetic analyses, they split into 2 separate lineages: 1 containing ApVY, CeMV, CarVY and panax virus Y and the other CaTLV, ashitabi mosaic virus and konjac virus Y. Preliminary dating analysis suggested the CarVY population first diverged from CeMV and ApVY in the 17th century and CeMV from ApVY in the 18th century. They also showed the “time to most recent common ancestor” of the sampled populations to be more recent: 1997 CE, 1983 CE and 1958 CE for CarVY, CeMV and ApVY, respectively. In addition, we found a new family record for beet western yellows virus in coriander from Cyprus; a new country record for carrot torradovirus-1 and a tentative novel member of genus Ophiovirus as a co-infection in a carrot sample from Australia; and a novel member of the genus Umbravirus recovered from a sample of herb parsley from Israel.
Collapse
Affiliation(s)
- Adrian Fox
- Fera Science Ltd., Sand Hutton, York YO41 1LZ, UK; (A.R.F.); (S.M.); (I.P.A.)
- Correspondence:
| | - Adrian J. Gibbs
- Emeritus Faculty, Australian National University, Canberra, ACT 2601, Australia;
| | - Aimee R. Fowkes
- Fera Science Ltd., Sand Hutton, York YO41 1LZ, UK; (A.R.F.); (S.M.); (I.P.A.)
| | - Hollie Pufal
- School of Natural and Environmental Sciences, Newcastle University, Agriculture Building, King’s Road, Newcastle upon Tyne NE1 7RU, UK; (H.P.); (N.B.)
| | - Sam McGreig
- Fera Science Ltd., Sand Hutton, York YO41 1LZ, UK; (A.R.F.); (S.M.); (I.P.A.)
| | - Roger A. C. Jones
- UWA Institute of Agriculture, University of Western Australia, Crawley, WA 6009, Australia;
| | - Neil Boonham
- School of Natural and Environmental Sciences, Newcastle University, Agriculture Building, King’s Road, Newcastle upon Tyne NE1 7RU, UK; (H.P.); (N.B.)
| | - Ian P. Adams
- Fera Science Ltd., Sand Hutton, York YO41 1LZ, UK; (A.R.F.); (S.M.); (I.P.A.)
| |
Collapse
|
6
|
Guyot V, Rajeswaran R, Chu HC, Karthikeyan C, Laboureau N, Galzi S, Mukwa LFT, Krupovic M, Kumar PL, Iskra-Caruana ML, Pooggin MM. A newly emerging alphasatellite affects banana bunchy top virus replication, transcription, siRNA production and transmission by aphids. PLoS Pathog 2022; 18:e1010448. [PMID: 35413079 PMCID: PMC9049520 DOI: 10.1371/journal.ppat.1010448] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 04/28/2022] [Accepted: 03/16/2022] [Indexed: 12/22/2022] Open
Abstract
Banana bunchy top virus (BBTV) is a six-component ssDNA virus (genus Babuvirus, family Nanoviridae) transmitted by aphids, infecting monocots (mainly species in the family Musaceae) and likely originating from South-East Asia where it is frequently associated with self-replicating alphasatellites. Illumina sequencing analysis of banana aphids and leaf samples from Africa revealed an alphasatellite that should be classified in a new genus, phylogenetically related to alphasatellites of nanoviruses infecting dicots. Alphasatellite DNA was encapsidated by BBTV coat protein and accumulated at high levels in plants and aphids, thereby reducing helper virus loads, altering relative abundance (formula) of viral genome components and interfering with virus transmission by aphids. BBTV and alphasatellite clones infected dicot Nicotiana benthamiana, followed by recovery and symptomless persistence of alphasatellite, and BBTV replication protein (Rep), but not alphasatellite Rep, induced leaf chlorosis. Transcriptome sequencing revealed 21, 22 and 24 nucleotide small interfering (si)RNAs covering both strands of the entire viral genome, monodirectional Pol II transcription units of viral mRNAs and pervasive transcription of each component and alphasatellite in both directions, likely generating double-stranded precursors of viral siRNAs. Consistent with the latter hypothesis, viral DNA formulas with and without alphasatellite resembled viral siRNA formulas but not mRNA formulas. Alphasatellite decreased transcription efficiency of DNA-N encoding a putative aphid transmission factor and increased relative siRNA production rates from Rep- and movement protein-encoding components. Alphasatellite itself spawned the most abundant siRNAs and had the lowest mRNA transcription rate. Collectively, following African invasion, BBTV got associated with an alphasatellite likely originating from a dicot plant and interfering with BBTV replication and transmission. Molecular analysis of virus-infected banana plants revealed new features of viral DNA transcription and siRNA biogenesis, both affected by alphasatellite. Costs and benefits of alphasatellite association with helper viruses are discussed. Self-replicating alphasatellites are frequently associated with plant ssDNA viruses. Their origin and costs versus benefits for helper virus replication, antiviral defense evasion and transmission by insect vectors are poorly understood. Here we describe identification in Africa and in depth molecular and biological characterization of a newly emerging alphasatellite of BBTV, a multicomponent ssDNA babuvirus causing one of the most economically-important diseases of monocotyledonous bananas and plantains. Phylogenetically, this alphasatellite represents a novel genus and is more related to alphasatellites of nanoviruses infecting dicot hosts than to other BBTV alphasatellites previously identified only in Asia. Consistent with its hypothetical dicot origin, cloned alphasatellite and BBTV can establish systemic infection in a model dicot plant, followed by recovery and symptomless alphasatellite persistence. In banana plants, alphasatellite competes for the host replication and transcription machinery and accumulates at high levels, thereby reducing loads of the helper virus, modifying relative abundance of its components and interfering with its acquisition and transmission by aphids. On the other hand, plant antiviral defenses silence alphasatellite gene expression at both transcriptional and posttranscriptional levels, generating highly-abundant 21, 22 and 24 nucleotide small interfering RNAs, suggesting that alphasatellite may serve as a decoy protecting its helper virus from gene silencing.
Collapse
Affiliation(s)
- Valentin Guyot
- PHIM Plant Health Institute, University of Montpellier, INRAE, CIRAD, IRD, Institute Agro, Montpellier, France
| | - Rajendran Rajeswaran
- PHIM Plant Health Institute, University of Montpellier, INRAE, CIRAD, IRD, Institute Agro, Montpellier, France
| | - Huong Cam Chu
- PHIM Plant Health Institute, University of Montpellier, INRAE, CIRAD, IRD, Institute Agro, Montpellier, France
| | - Chockalingam Karthikeyan
- PHIM Plant Health Institute, University of Montpellier, INRAE, CIRAD, IRD, Institute Agro, Montpellier, France
| | - Nathalie Laboureau
- PHIM Plant Health Institute, University of Montpellier, INRAE, CIRAD, IRD, Institute Agro, Montpellier, France
| | - Serge Galzi
- PHIM Plant Health Institute, University of Montpellier, INRAE, CIRAD, IRD, Institute Agro, Montpellier, France
| | - Lyna F. T. Mukwa
- Faculté des Sciences Agronomiques, Université Pédagogique Nationale, Kinshasa, Democratic Republic of the Congo
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris, France
| | - P. Lava Kumar
- International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| | - Marie-Line Iskra-Caruana
- PHIM Plant Health Institute, University of Montpellier, INRAE, CIRAD, IRD, Institute Agro, Montpellier, France
- CIRAD, DGD-RS, Montpellier, France
| | - Mikhail M. Pooggin
- PHIM Plant Health Institute, University of Montpellier, INRAE, CIRAD, IRD, Institute Agro, Montpellier, France
- * E-mail:
| |
Collapse
|
7
|
Hasanvand V, Heydanejad J, Massumi H, Kleinow T, Jeske H, Fontenele RS, Kraberger S, Varsani A. Genome characterization of parsley severe stunt-associated virus in Iran. Virus Genes 2021; 57:293-301. [PMID: 33881682 DOI: 10.1007/s11262-021-01835-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 04/08/2021] [Indexed: 11/28/2022]
Abstract
Parsley severe stunt-associated virus (PSSaV) is a recently identified nanovirus first reported in Germany. During a survey for identification of nanoviruses infecting apiaceous plants in south-eastern Iran, PSSaV was identified and characterized using a combination of rolling circle amplification (RCA) and high-throughput sequencing. Parsley plant samples were collected from vegetable production farms in Kerman province. From two symptomatic samples (39Ba and 40Ba), seven PSSaV components (DNA-C, -S, -M, -R, -N, -U1 and -U2) with two phylogenetically distinct variants of DNA-R (R1 and R2) were identified. In common with the German isolate of PSSaV, no DNA-U4 component was identified. In addition, associated alphasatellite molecules were identified in samples 39Ba [n = 6] and 40Ba [n = 5]. Sequence analyses showed that concatenated component sequences of the two Iranian PSSaVs share 97.2% nucleotide identity with each other and 82% to the German isolate. The coat proteins (CPs) of the PSSaV Iranian sequences share 97.2% amino acid identity and ~ 84% identity with that of the German isolate. Sequence and phylogenetic analyses of a total of 11 recovered alphasatellites from the two samples can be classified into the genera Fabenesatellite [n = 2], Milvetsatellite [n = 1], Mivedwarsatellite [n = 2], Subclovsatellite [n = 2], Sophoyesatellite [n = 4] in the family Alphasatellitidae. Identification of PSSaV and other nanoviruses in wild and cultivated plants in Iran reveals that nanoviruses could be causing yield reduction in crops plants in this country.
Collapse
Affiliation(s)
- Vahid Hasanvand
- Department of Plant Protection, College of Agriculture, Shahid Bahonar University of Kerman, 7616914111, Kerman, Iran
| | - Jahangir Heydanejad
- Department of Plant Protection, College of Agriculture, Shahid Bahonar University of Kerman, 7616914111, Kerman, Iran. .,Research and Technology Institute of Plant Production (RTIPP), Shahid Bahonar University of Kerman, 7616914111, Kerman, Iran.
| | - Hossain Massumi
- Department of Plant Protection, College of Agriculture, Shahid Bahonar University of Kerman, 7616914111, Kerman, Iran
| | - Tatjana Kleinow
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
| | - Holger Jeske
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
| | - Rafaela S Fontenele
- The Biodesign Center of Fundamental and Applied Microbiomics, School of Life Sciences, Center for Evolution and Medicine, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ, 85287-5001, USA
| | - Simona Kraberger
- The Biodesign Center of Fundamental and Applied Microbiomics, School of Life Sciences, Center for Evolution and Medicine, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ, 85287-5001, USA
| | - Arvind Varsani
- The Biodesign Center of Fundamental and Applied Microbiomics, School of Life Sciences, Center for Evolution and Medicine, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ, 85287-5001, USA.,Structural Biology Research Unit, Department of Clinical Laboratory Sciences, University of Cape Town, Rondebosch, Cape Town, 7701, South Africa
| |
Collapse
|
8
|
Lal A, Vo TTB, Sanjaya IGNPW, Ho PT, Kim JK, Kil EJ, Lee S. Nanovirus Disease Complexes: An Emerging Threat in the Modern Era. FRONTIERS IN PLANT SCIENCE 2020; 11:558403. [PMID: 33329624 PMCID: PMC7710663 DOI: 10.3389/fpls.2020.558403] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 10/28/2020] [Indexed: 06/12/2023]
Abstract
Multipartite viruses package their genomic segments independently and mainly infect plants; few target animals. Nanoviridae is a family of multipartite single-stranded DNA plant viruses that individually encapsidate single-stranded DNAs of approximately 1 kb and transmit them through aphids without replication in the aphid vectors, thereby causing important diseases of leguminous crops and banana. Significant findings regarding nanoviruses have recently been made on important features, such as their multicellular way of life, the transmission of distinct encapsidated genome segments through the vector body, evolutionary ambiguities, mode of infection, host range and geographical distribution. This review deals with all the above-mentioned features in view of recent advances with special emphasis on the emergence of new species and recognition of new host range of nanoviruses and aims to shed light on the evolutionary linkages, the potentially devastating impact on the world economy, and the future challenges imposed by nanoviruses.
Collapse
Affiliation(s)
- Aamir Lal
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Thuy Thi Bich Vo
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | | | - Phuong Thi Ho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Ji-Kwang Kim
- Research and Development Bureau, Chungcheongnam-do Agricultural Research and Extension Services, Yesan, South Korea
| | - Eui-Joon Kil
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
- Department of Plant Medicals, Andong National University, Andong, South Korea
| | - Sukchan Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
9
|
Gaafar YZA, Herz K, Hartrick J, Fletcher J, Blouin AG, MacDiarmid R, Ziebell H. Investigating the Pea Virome in Germany-Old Friends and New Players in the Field(s). Front Microbiol 2020; 11:583242. [PMID: 33281777 PMCID: PMC7691430 DOI: 10.3389/fmicb.2020.583242] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/28/2020] [Indexed: 12/21/2022] Open
Abstract
Peas are an important legume for human and animal consumption and are also being used as green manure or intermediate crops to sustain and improve soil condition. Pea production faces constraints from fungal, bacterial, and viral diseases. We investigated the virome of German pea crops over the course of three successive seasons in different regions of pea production to gain an overview of the existing viruses. Pools from 540 plants, randomly selected from symptomatic and asymptomatic peas, and non-crop plants surrounding the pea fields were used for ribosomal RNA-depleted total RNA extraction followed by high-throughput sequencing (HTS) and RT-PCR confirmation. Thirty-five different viruses were detected in addition to nine associated nucleic acids. From these viruses, 25 are classified as either new viruses, novel strains or viruses that have not been reported previously from Germany. Pea enation mosaic virus 1 and 2 were the most prevalent viruses detected in the pea crops, followed by pea necrotic yellow dwarf virus (PNYDV) and turnip yellows virus which was also found also in the surrounding non-legume weeds. Moreover, a new emaravirus was detected in symptomatic peas in one region for two successive seasons. Most of the identified viruses are known to be aphid transmissible. The results revealed a high virodiversity in the German pea fields that poses new challenges to diagnosticians, researchers, risk assessors and policy makers, as the impact of the new findings are currently unknown.
Collapse
Affiliation(s)
- Yahya Z A Gaafar
- Julius Kühn Institute, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Kerstin Herz
- Julius Kühn Institute, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Jonas Hartrick
- Julius Kühn Institute, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - John Fletcher
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Arnaud G Blouin
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand.,School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Robin MacDiarmid
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand.,School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Heiko Ziebell
- Julius Kühn Institute, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| |
Collapse
|
10
|
Hasanvand V, Heydanejad J, Massumi H, Kleinow T, Jeske H, Varsani A. Isolation and characterization of a novel geminivirus from parsley. Virus Res 2020; 286:198056. [PMID: 32593914 DOI: 10.1016/j.virusres.2020.198056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 01/06/2023]
Abstract
Fresh leaf vegetables are a significant part of the Persian food. Following a survey for identification of nanoviruses and geminivirus infecting leaf vegetables, a novel geminivirus was identified in a diseased parsley sample showing upward marginal leaf curling, marginal leaf yellowing, dwarfing and reduced leaf size in south-eastern Iran. The genome was identified through combination of rolling circle amplification (RCA) and high throughput sequencing (HTS) approaches. The full-length genome (2779 nts) of the cloned geminivirus, parsley yellow leaf curl virus (PYLCV), shares <66 % genome-wide pairwise identity with all other known geminiviruses. The PYLCV genome has six open reading frames (ORFs) and appears to be a hybrid with the virion sense encoded proteins being most similar to those of becurtoviruses and curtoviruses, whereas the complementary sense encoded proteins are most similar to those of begomoviruses. In comparison with other geminivirus encoded capsid proteins (CPs) and replication associated proteins (Reps), the CP of PYLCV shares <56 % amino acid pairwise identity whereas the Rep shares <73 % amino acid pairwise identity. To demonstrate the pathogenicity of the geminivirus, a partial dimer infectious clone was constructed and used to agro-infect parsley as well as Nicotiana benthamiana, turnip, radish and tomato. The agro-inoculation resulted in infection with symptoms in 83.7 % (82/98) of the tested plant. Based on the similarity of the CP encoded by PYLCV to those of becurtoviruses and curtoviruses, it is likely that leafhoppers may be the primary transmission vector.
Collapse
Affiliation(s)
- Vahid Hasanvand
- Shahid Bahonar University of Kerman, Kerman, 7616914111, Iran
| | - Jahangir Heydanejad
- Shahid Bahonar University of Kerman, Kerman, 7616914111, Iran; Research and Technology Institute of Plant Production (RTIPP), Shahid Bahonar University of Kerman, Kerman, 7616914111, Iran.
| | - Hossain Massumi
- Shahid Bahonar University of Kerman, Kerman, 7616914111, Iran
| | - Tatjana Kleinow
- University of Stuttgart, Institute of Biomaterials and Biomolecular Systems, Department of Molecular Biology and Plant Virology, Stuttgart, Germany
| | - Holger Jeske
- University of Stuttgart, Institute of Biomaterials and Biomolecular Systems, Department of Molecular Biology and Plant Virology, Stuttgart, Germany
| | - Arvind Varsani
- The Biodesign Center of Fundamental and Applied Microbiomics, School of Life Sciences, Center for Evolution and Medicine, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ, 85287-5001, USA; Structural Biology Research Unit, Department of Clinical Laboratory Sciences, University of Cape Town, Rondebosch, 7701, Cape Town, South Africa
| |
Collapse
|
11
|
Gaafar YZA, Ziebell H. Aphid transmission of nanoviruses. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 104:e21668. [PMID: 32212397 DOI: 10.1002/arch.21668] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 02/28/2020] [Accepted: 03/03/2020] [Indexed: 06/10/2023]
Abstract
The genus Nanovirus consists of plant viruses that predominantly infect legumes leading to devastating crop losses. Nanoviruses are transmitted by various aphid species. The transmission occurs in a circulative nonpropagative manner. It was long suspected that a virus-encoded helper factor would be needed for successful transmission by aphids. Recently, a helper factor was identified as the nanovirus-encoded nuclear shuttle protein (NSP). The mode of action of NSP is currently unknown in contrast to helper factors from other plant viruses that, for example, facilitate binding of virus particles to receptors within the aphids' stylets. In this review, we are summarizing the current knowledge about nanovirus-aphid vector interactions.
Collapse
Affiliation(s)
- Yahya Z A Gaafar
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kuehn Institute, Braunschweig, Lower Saxony, Germany
| | - Heiko Ziebell
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kuehn Institute, Braunschweig, Lower Saxony, Germany
| |
Collapse
|
12
|
Hasanvand V, Heydarnejad J, Massumi H, Kleinow T, Jeske H. First report of parsley severe stunt associated virus in Iran. ACTA ACUST UNITED AC 2020. [DOI: 10.5197/j.2044-0588.2020.041.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- V. Hasanvand
- Department of Plant ProtectionCollege of AgricultureShahid Bahonar University of KermanKerman7616914111Iran
| | - J. Heydarnejad
- Department of Plant ProtectionCollege of AgricultureShahid Bahonar University of KermanKerman7616914111Iran
| | - H. Massumi
- Department of Plant ProtectionCollege of AgricultureShahid Bahonar University of KermanKerman7616914111Iran
| | - T. Kleinow
- University of StuttgartInstitute of Biomaterials and Biomolecular SystemsDepartment of Molecular Biology and Plant VirologyStuttgartGermany
| | - H. Jeske
- University of StuttgartInstitute of Biomaterials and Biomolecular SystemsDepartment of Molecular Biology and Plant VirologyStuttgartGermany
| |
Collapse
|
13
|
Hassan-Sheikhi P, Heydarnejad J, Massumi H, Kraberger S, Varsani A. Novel nanovirus and associated alphasatellites identified in milk vetch plants with chlorotic dwarf disease in Iran. Virus Res 2019; 276:197830. [PMID: 31790775 DOI: 10.1016/j.virusres.2019.197830] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 11/27/2019] [Accepted: 11/29/2019] [Indexed: 02/03/2023]
Abstract
Members of the family Nanoviridae are multi-component single-stranded DNA viruses that infect a variety of plant species. Using a combination of conventional PCR and high throughput sequencing-based approach, we identified a novel nanovirus infecting two symptomatic milk vetch plants (Astragalus myriacanthus Boiss.; family Fabaceae) showing marginal leaf chlorosis, little leaves and dwarfing in Iran. All eight segments (DNA-C, DNA-M, DNA-N, DNA-R, DNA-S, DNA-U1, DNA-U2 and DNAU4) were recovered and Sanger sequenced. The genome of this new nanovirus, hereby referred to as milk vetch chlorotic dwarf virus (MVCDV), shares 62.2-74.7 % nucleotide pairwise identity with the genomes of other nanoviruses. DNA-C, DNA-M, DNA-N, DNA-S components are most closely related to those of black medic leaf roll virus (BMLRV), sharing between 67.8-81.2 % identity. We also identified three nanoalphasatellites (family Alphasatellitidae) associated with the nanovirus which belong to species Faba bean necrotic yellows alphasatellite 1 (genus Subclovsatellite), Faba bean necrotic yellows alphasatellite 2 (genus Fabenesatellite) and Sophora yellow stunt alphasatellite 5 (genus Clostunsatellite). Given the significant diversity of Astragalus spp. in Iran, it is likely that there could be more nanoviruses circulating in these plants and that these may play a role in the spread of these nanovirus to cultivated fabaceous hosts.
Collapse
Affiliation(s)
- Parisa Hassan-Sheikhi
- Department of Plant Protection, College of Agriculture, Shahid Bahonar University of Kerman, Kerman 7616914111, Iran
| | - Jahangir Heydarnejad
- Department of Plant Protection, College of Agriculture, Shahid Bahonar University of Kerman, Kerman 7616914111, Iran; Research and Technology Institute of Plant Production (RTIPP), Shahid Bahonar University of Kerman, 7616914111, Iran.
| | - Hossain Massumi
- Department of Plant Protection, College of Agriculture, Shahid Bahonar University of Kerman, Kerman 7616914111, Iran
| | - Simona Kraberger
- The Biodesign Center of Fundamental and Applied Microbiomics, School of Life Sciences, Center for Evolution and Medicine, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ 85287-5001, USA
| | - Arvind Varsani
- The Biodesign Center of Fundamental and Applied Microbiomics, School of Life Sciences, Center for Evolution and Medicine, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ 85287-5001, USA; Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Observatory, Cape Town, South Africa
| |
Collapse
|