1
|
Sui L, Lu Y, Xu M, Liu J, Zhao Y, Li Q, Zhang Z. Insect hypovirulence-associated mycovirus confers entomopathogenic fungi with enhanced resistance against phytopathogens. Virulence 2024; 15:2401978. [PMID: 39263889 PMCID: PMC11404608 DOI: 10.1080/21505594.2024.2401978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/12/2024] [Accepted: 08/31/2024] [Indexed: 09/13/2024] Open
Abstract
Mycoviruses can alter the biological characteristics of host fungi, including change virulence or pathogenicity of phytopathogens and entomopathogenic fungi (EPF). However, most studies on the mycoviruses found in EPF have focused on the effects of the viruses on the virulence of host fungi towards insect pests, with relatively few reports on the effects to the host fungi with regard to plant disease resistance in hosts. The present study investigated the effects of the mycovirus Beauveria bassiana chrysovirus 2 (BbCV2) virus infection on host biological characteristics, evaluated antagonistic activity of BbCV2 against two phytopathogenic fungi (Sclerotinia sclerotiorum and Botrytis cinerea), and transcriptome analysis was used to reveal the interactions between viruses and hosts. Our results showed that BbCV2 virus infection increased B. bassiana's growth rate, spore production, and biomass, it also enhanced the capacity of host fungi and their metabolic products to inhibit phytopathogenic fungi. BbCV2 virus infection reduced the contents of the two pathogens in tomato plants significantly, and transcriptome analysis revealed that the genes related to competition for ecological niches and nutrition, mycoparasitism and secondary metabolites in B. bassiana were significantly up-regulated after viral infection. These findings indicated that the mycovirus infection is an important factor to enhance the ability of B. bassiana against plant disease after endophytic colonization. We suggest that mycovirus infection causes a positive effect on B. bassiana against phytopathogens, which should be considered as a potential strategy to promote the plant disease resistance of EPF.
Collapse
Affiliation(s)
- Li Sui
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Gongzhuling, Jilin, China
| | - Yang Lu
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Gongzhuling, Jilin, China
| | - Mengnan Xu
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Gongzhuling, Jilin, China
- College of Life Sciences, Jilin Normal University, Siping, China
| | - Jianfeng Liu
- College of Life Sciences, Jilin Normal University, Siping, China
| | - Yu Zhao
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Gongzhuling, Jilin, China
| | - Qiyun Li
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Gongzhuling, Jilin, China
- College of Life Sciences, Jilin Normal University, Siping, China
- College of Agriculture, Jilin Agricultural Science and Technology University, Jilin, China
| | - Zhengkun Zhang
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Gongzhuling, Jilin, China
- College of Life Sciences, Jilin Normal University, Siping, China
| |
Collapse
|
2
|
Shi N, Zhu Q, Yang G, Wang P, Huang B. Prevalence and species diversity of dsRNA mycoviruses from Beauveria bassiana strains in the China's Guniujiang nature. Heliyon 2024; 10:e30186. [PMID: 38694113 PMCID: PMC11061733 DOI: 10.1016/j.heliyon.2024.e30186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/03/2024] Open
Abstract
We investigated the prevalence and species diversity of dsRNA mycoviruses in Beauveria bassiana isolates from the China's Guniujiang Nature Preserve. Among the 28 isolates analyzed, electropherotyping revealed viral infections in 28.6 % (8 out of 28) of the isolates. Metatranscriptomic identification and RT-PCR confirmed the presence of six putative virus species, including two novel species: Beauveria bassiana victorivirus 2 (BbV-2) and Beauveria bassiana bipartite mycovirus 2 (BbBV-2). Four previously characterized mycoviruses were also identified: Beauveria bassiana polymycovirus 4 (BbPmV4), Beauveria bassiana partitivirus 1 (BbPV-1), Beauveria bassiana bipartite mycovirus 1 (BbBV-1), and Beauveria bassiana chrysovirus 2 (BbCV-2). BbPmV4 was found to be the prevailing mycovirus among the infected isolates, and three isolates showed co-infection with both BbPmV4 and BbBV-2. This study enhances our understanding of fungal viral taxonomy and diversity, providing insights into mycovirus infections in B. bassiana populations in China's Guniujiang Nature Preserve. Furthermore, the study on the diversity of B. bassiana viruses lays the foundation for recognizing fungal viruses as potential enhancers of biocontrol agents.
Collapse
Affiliation(s)
- Najie Shi
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, 230036, China
| | - Qiuyan Zhu
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, 230036, China
| | - Guogen Yang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Ping Wang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, 230036, China
| | - Bo Huang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, 230036, China
| |
Collapse
|
3
|
Xu M, Liu H, Jia X, Zou X, Lu Y, Sui L, Li Q, Zhang Z, Liu J. The complete genome sequences of a negative single-stranded RNA virus and a double-stranded RNA virus coinfecting the entomopathogenic fungus Beauveria bassiana Vuillemin. Arch Virol 2024; 169:42. [PMID: 38332318 DOI: 10.1007/s00705-024-05985-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/11/2024] [Indexed: 02/10/2024]
Abstract
Beauveria bassiana Vuillemin is an entomopathogenic fungus that has been developed as a biological insecticide. B. bassiana can be infected by single or multiple mycoviruses, most of which are double-stranded RNA (dsRNA) viruses, while infections with single-stranded RNA (ssRNA) viruses, especially negative single-stranded RNA (-ssRNA) viruses, have been observed less frequently. In the present study, we sequenced and analyzed the complete genomes of two new different mycoviruses coinfecting a single B. bassiana strain: a -ssRNA virus which we have named "Beauveria bassiana negative-strand RNA virus 1" (BbNSRV1), and a dsRNA virus, which we have named "Beauveria bassiana orthocurvulavirus 1" (BbOCuV1). The genome of BbNSRV1 consists of a single segment of negative-sense, single-stranded RNA with a length of 6169 nt, containing a single open reading frame (ORF) encoding a putative RNA-dependent RNA polymerase (RdRp) with 1949 aa (220.1 kDa). BLASTx analysis showed that the RdRp had the highest sequence similarity (59.79%) to that of Plasmopara viticola lesion associated mononegaambi virus 2, a member of the family Mymonaviridae. This is the first report of a -ssRNA mycovirus infecting B. bassiana. The genome of BbOCuV1 consists of two dsRNA segments, 2164 bp and 1765 bp in length, respectively, with dsRNA1 encoding a protein with conserved RdRp motifs and 70.75% sequence identity to the putative RdRp of the taxonomically unassigned mycovirus Fusarium graminearum virus 5 (FgV5), and the dsRNA2 encoding a putative coat protein with sequence identity 64.26% to the corresponding protein of the FgV5. Phylogenetic analysis indicated that BbOCuV1 belongs to a taxonomically unassigned group of dsRNA mycoviruses related to members of the families Curvulaviridae and Partitiviridae. Hence, it might be the member of a new family that remains to be named and formally recognized.
Collapse
Affiliation(s)
- Mengnan Xu
- Jilin Normal University, Siping, 136000, China
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of agriculture and rural affairs, Changchun, 130033, China
| | - Hongyu Liu
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of agriculture and rural affairs, Changchun, 130033, China
- Jilin Agricultural University, Changchun, 130118, China
| | - Xue Jia
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of agriculture and rural affairs, Changchun, 130033, China
- Jilin Agricultural University, Changchun, 130118, China
| | - Xiaowei Zou
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of agriculture and rural affairs, Changchun, 130033, China
| | - Yizhuo Lu
- Jilin Normal University, Siping, 136000, China
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of agriculture and rural affairs, Changchun, 130033, China
| | - Li Sui
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of agriculture and rural affairs, Changchun, 130033, China
| | - Qiyun Li
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of agriculture and rural affairs, Changchun, 130033, China
- Jilin Agricultural University, Changchun, 130118, China
- Jilin Agricultural Science and Technology University, Jilin, 132101, China
| | - Zhengkun Zhang
- Jilin Normal University, Siping, 136000, China.
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of agriculture and rural affairs, Changchun, 130033, China.
- Jilin Agricultural University, Changchun, 130118, China.
| | | |
Collapse
|
4
|
Complete genome sequence of a novel victorivirus infecting cicada flower (Cordyceps chanhua). Arch Virol 2023; 168:4. [DOI: 10.1007/s00705-022-05640-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 08/25/2022] [Indexed: 01/18/2023]
|
5
|
Zhang Y, Shi N, Wang P, Zhu Q, Yang G, Huang B. Molecular characterization of a novel alternavirus infecting the entomopathogenic fungus Cordyceps chanhua. Arch Virol 2022; 167:1467-1470. [PMID: 35412147 DOI: 10.1007/s00705-022-05446-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/08/2022] [Indexed: 11/24/2022]
Abstract
In this study, a novel double-stranded (ds) RNA mycovirus, named Cordyceps chanhua alternavirus 1 (CcAV1), was detected in the entomogenous fungus Cordyceps chanhua in China and characterized. The complete genome of CcAV1 is composed of three dsRNA segments: dsRNA 1 (3,512 bp), dsRNA 2 (2,655 bp), and dsRNA 3 (2,415 bp). Each of the three dsRNAs possesses a single open reading frame (ORF). dsRNA 1 encodes a putative RNA-dependent RNA polymerase (RdRp), and dsRNA 2 and dsRNA 3 encode hypothetical protein 1 (HP 1) and hypothetical protein 2 (HP 2), respectively. The predicted amino acid sequences of the putative RdRp, HP 1, and HP 2 had the highest identity of 66.99%, 49.30%, and 56.91%, respectively, to those of Aspergillus foetidus dsRNA mycovirus. A maximum-likelihood phylogenetic tree based on RdRp amino acid sequences showed that CcAV1 clustered with members of the proposed family "Alternaviridae". Hence, we propose that Cordyceps chanhua alternavirus 1 is a novel member of the proposed family "Alternaviridae".
Collapse
Affiliation(s)
- Yuxiang Zhang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, 230036, China
| | - Najie Shi
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, 230036, China
| | - Ping Wang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, 230036, China
| | - Qiuyan Zhu
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, 230036, China
| | - Guogen Yang
- School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Bo Huang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
6
|
Complete genome sequence of a novel partitivirus infecting the phytopathogenic fungus Alternaria tenuissima. Arch Virol 2022; 167:635-639. [PMID: 35031860 DOI: 10.1007/s00705-021-05332-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/30/2021] [Indexed: 11/02/2022]
Abstract
In the present study, a novel double-stranded RNA (dsRNA) mycovirus designated as "Alternaria tenuissima partitivirus 2" (AttPV2), was isolated from Alternaria tenuissima strain BJ-SY-1, a phytopathogenic fungus causing muskmelon leaf blight in Beijing municipality of China. The genome of AttPV2 comprises two dsRNA segments. The larger segment is 1829 bp in length and has a single open reading frame (ORF), potentially encoding a 65.8-kDa RNA-dependent RNA polymerase (RdRp), and the smaller segment is 1681 bp in length and also contains a single ORF, encoding a putative coat protein (CP) with a molecular mass of 56.0 kDa. BLASTp analysis revealed that the RdRp and CP encoded by the two ORFs of AttPV2 have the highest sequence identity, 85.9% and 75.0%, respectively, to their counterparts in Colletotrichum eremochloae partitivirus 1 (CePV1). Phylogenetic analysis based on RdRp sequences showed that AttPV2 clustered most closely with CePV1, a member of the proposed genus "Epsilonpartitivirus" in the family Partitiviridae. Hence, we propose that AttPV2 is a new epsilonpartitivirus from A. tenuissima. To the best of our knowledge, this is the first report of an epsilonpartitivirus infecting A. tenuissima.
Collapse
|
7
|
WANG L, ZHAO Y. Transcriptome analysis of Callosobruchus chinensis: insight into the biological control using entomopathogenic bacteria, Bacillus thuringiensis. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.26122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Lei WANG
- Jiangsu University of Science and Technology, China; Shanghai Jiao Tong University, China
| | - Yaru ZHAO
- Jiangsu University of Science and Technology, China
| |
Collapse
|
8
|
Kang Q, Li L, Li J, Zhang S, Xie J, Li Q, Zhang Z. A novel polymycovirus with defective RNA isolated from the entomopathogenic fungus Beauveria bassiana Vuillemin. Arch Virol 2021; 166:3487-3492. [PMID: 34623502 DOI: 10.1007/s00705-021-05238-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
A novel double-stranded RNA virus was isolated and identified from Beauveria bassiana Vuillemin, derived from the muscardine cadaver of an Ostrinia furnacalis larva in China. The virus contains six dsRNAs, and each viral dsRNA contains only one open reading frame (ORF). As in other polymycoviruses, dsRNA1 encodes an RNA-dependent RNA polymerase (RdRp), dsRNA3 encodes a methyltransferase (MTR), and dsRNA4 encodes a proline-alanine-serine-rich protein. A BLASTp search revealed that the viral RdRp domain showed 79.43%, 79.04%, and 59.05% sequence identity to Beauveria bassiana polymycovirus 2 and 3 (BbPmV-2, BbPmV-3) and Magnaporthe oryzae polymycovirus 1 (MoPmV-1), respectively. Phylogenetic analysis based on RdRp sequences showed that the phylogenetically closest relatives of this virus are BbPmV-2, BbPmV-3, and MoPmV-1. This virus, along with previously ill-defined polymycoviruses (BbPmV-2 and BbPmV-3), appears to belong to an as-yet-unestablished species. The findings further suggest that the virus is a new member of the genus Polymycovirus within the family Polymycoviridae, and we have named it "Beauveria bassiana polymycovirus 4" (BbPmV-4). However, the sixth dsRNA is a defective RNA with the same sequence as that of dsRNA4 except for a deletion of 312 bp from nt 185 to nt 496, but it still contains a complete ORF. To our knowledge, this is the first report of the existence of a defective RNA in a polymycovirus.
Collapse
Affiliation(s)
- Qin Kang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, 100193, China.,Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Le Li
- Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Jilin Academy of Agricultural Sciences, Changchun, 130033, China.,College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China
| | - Jincang Li
- State Key Laboratory of Agricultural Microbiology, Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Songbai Zhang
- Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Qiyun Li
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, 100193, China. .,Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Jilin Academy of Agricultural Sciences, Changchun, 130033, China.
| | - Zhengkun Zhang
- Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Jilin Academy of Agricultural Sciences, Changchun, 130033, China.
| |
Collapse
|
9
|
Li L, Kang Q, Zhang S, Hai D, Lu Y, Sui L, Zhang Z, Li Q. The complete genome sequence of a novel chrysovirus from the entomopathogenic fungus Beauveria bassiana Vuillemin. Arch Virol 2021; 166:3443-3447. [PMID: 34553285 DOI: 10.1007/s00705-021-05215-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 07/09/2021] [Indexed: 10/20/2022]
Abstract
Beauveria bassiana, an entomopathogenic fungus, is used for arthropod pest control worldwide. Here, we report the discovery and characterization of a novel double-stranded RNA (dsRNA) mycovirus, Beauveria bassiana chrysovirus 2 (BbCV-2), isolated from a Chinese B. bassiana strain. The genome sequence of the virus was determined by metagenomic sequencing, RT-PCR, and RACE cloning and was found to consist of four dsRNA segments that are 3441 bp, 2779 bp, 2925 bp, and 2688 bp long, respectively. Each dsRNA segment contains a single ORF. The ORF of dsRNA1 encodes a 1114-amino-acid (aa) protein (123.4 kDa) with a conserved RNA-dependent RNA polymerase (RdRp) motif, the sequence of which showed the highest identity of only 16.13% to that of Beauveria bassiana chrysovirus-1 (BbCV-1). The ORF of dsRNA2 encodes an 805-aa coat protein (CP) (84.7 kDa). The ORFs of dsRNAs 3 and 4 encodes proteins of undetermined function. The virus is a new member of the family Chrysoviridae from B. bassiana.
Collapse
Affiliation(s)
- Le Li
- Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture, Jilin Academy of Agricultural Sciences, Changchun, 130033, Jilin, People's Republic of China.,College of Plant Protection, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Qin Kang
- Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture, Jilin Academy of Agricultural Sciences, Changchun, 130033, Jilin, People's Republic of China.,Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Songbai Zhang
- Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou, 434025, Hubei, People's Republic of China
| | - Du Hai
- State Key Laboratory of Agricultural Microbiology, Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Yang Lu
- Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture, Jilin Academy of Agricultural Sciences, Changchun, 130033, Jilin, People's Republic of China
| | - Li Sui
- Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture, Jilin Academy of Agricultural Sciences, Changchun, 130033, Jilin, People's Republic of China
| | - Zhengkun Zhang
- Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture, Jilin Academy of Agricultural Sciences, Changchun, 130033, Jilin, People's Republic of China.
| | - Qiyun Li
- Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture, Jilin Academy of Agricultural Sciences, Changchun, 130033, Jilin, People's Republic of China. .,College of Plant Protection, Jilin Agricultural University, Changchun, 130118, People's Republic of China. .,Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
10
|
Shi N, Hu F, Wang P, Zhang Y, Zhu Q, Yang G, Huang B. Molecular characterization of two dsRNAs that could correspond to the genome of a new mycovirus that infects the entomopathogenic fungus Beauveria bassiana. Arch Virol 2021; 166:3233-3237. [PMID: 34535823 DOI: 10.1007/s00705-021-05239-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/28/2021] [Indexed: 10/20/2022]
Abstract
The entomopathogenic fungus Beauveria bassiana is used worldwide for biological control of insects. Seven dsRNA segments were detected in a single B. bassiana strain, RCEF1446. High-throughput sequencing indicated the presence of three mycoviruses in RCEF1446. Two were identified as the known mycoviruses Beauveria bassiana victorivirus 1 and Beauveria bassiana polymycovirus 1, and the novel mycovirus was designated as "Beauveria bassiana bipartite mycovirus 1" (BbBV1). The complete sequence of the BbBV1 is described here. The mycovirus contains two dsRNA segments. The RNA 1 (dsRNA 4) of BbBV1 is 2,026 bp in length, encoding a RNA-dependent RNA polymerase (RdRp) (68.54 kDa), while the RNA 2 (dsRNA 6) is 1,810 bp in length, encoding a hypothetical protein (35.55 kDa) with unknown function. Moreover, the amino acid sequence of RdRp showed the highest sequence identity of 62.31% to Botryosphaeria dothidea bipartite mycovirus 1. Phylogenetic analysis based on RdRp sequences revealed that BbBV1 represents a distinct lineage of unassigned dsRNA mycoviruses infecting fungi.
Collapse
Affiliation(s)
- Najie Shi
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, 230036, China
| | - Fei Hu
- Institute of Plant Protection and Agro-products Safety, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Ping Wang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, 230036, China
| | - Yuxiang Zhang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, 230036, China
| | - Qiuyan Zhu
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, 230036, China
| | - Guogen Yang
- School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Bo Huang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
11
|
Wang L, Liu C, Geng X. Identify immune-related genes of adzuki bean weevil (Callosobruchus chinensis) in response to bacteria challenge by transcriptome analysis. Microb Pathog 2021; 151:104749. [PMID: 33484809 DOI: 10.1016/j.micpath.2021.104749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 01/13/2023]
Abstract
BACKGROUND Callosobruchus chinensis is one of the important postharvest pests in legume growing areas. Bacterial pesticide is a potential alternative method to control storage pests. However, the effect of these pathogen bacteria on storage pests, and the molecular mechanisms of insect response remain to be to investigated. RESULTS Using the next generation sequencing technology, we established a transcriptomic library for C. chinensis larvae in response to Escherichia coli. Total of 355 differential expressed genes (DEGs) were identified, which 178 DEGs were upregulated, and 177 DEGs were downregulated compared to control group. To validate the RNA-seq analysis, 20 DEGs and 14 immune-related genes were selected to perform quantitative polymerase chain reaction (RT-qPCR). These immune-related genes were involved in recognition (peptidoglycan recognition proteins), signal transduction (fibrinogen-related proteins, serine proteinases and NF-κB), and execution effectors (phenoloxidase, defensin, attacin, and antimicrobial peptide). In addition, genes that encode digestive and respiratory enzymes were altered in C. chinensis larvae in response to infection. Some genes that involved in juvenile hormone and insulin pathway appeared to express differentially, suggesting that pathogen infection might lead to developmental arrest. Furthermore, iron homeostasis and chitin metabolism appeared significantly altered after infection. CONCLUSION In this study, we characterized the immune response of C. chinensis larvae in response to E. coli using RNA-seq, from pathogen recognition, signal transduction, to execution. Some other identified genes were involved in iron homeostasis, respiration, and digestion. A better understanding of molecular response of beetle to pathogen will facilitate us to develop an available strategy to control storage pests.
Collapse
Affiliation(s)
- Lei Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212100, PR China; School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| | - Chang Liu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212100, PR China
| | - Xueqing Geng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| |
Collapse
|
12
|
Synergism between Hydramethylnon and Metarhizium anisopliae and Their Influence on the Gut Microbiome of Blattella germanica (L.). INSECTS 2020; 11:insects11080538. [PMID: 32824260 PMCID: PMC7469186 DOI: 10.3390/insects11080538] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 11/17/2022]
Abstract
Simple Summary The widespread use of insecticides has cause extensive resistance in German cockroach (Blattella germanica) populations globally. Biological control has the potential to mitigate insecticide resistance, and Metarhizium anisopliae, an entomopathogenic fungus, alone and in combination with various insecticides has shown good effects against cockroaches. This experiment compared the cumulative mortality after infecting B. germanica with M. anisopliae conidia by per os infection and topical dorsal infection. To probe the mechanisms that underlie the synergism between M. anisopliae and hydramethylnon, we conducted dose-response assays with cockroaches fed combinations of them and characterized the gut microbiome of treated cockroaches. The results showed that the mortality of per os infection was lower than that of topical dorsal infection. In addition, the combination of M. anisopliae and hydramethylnon had a synergistic effect. The gut microbiome was also altered by hydramethylnon treatment. Therefore, we speculate that one of the mechanism underlying this synergism is that hydramethylnon promotes the survival of M. anisopliae in the harsh gut environment and enhances its virulence on German cockroaches by altering the gut microbiome. This may help to develop new types of bio-control glue baits for the control of cockroaches. Abstract (1) Background: The widespread use of insecticides has cause extensive resistance in German cockroach (Blattella germanica) populations globally. Biological control has the potential to mitigate insecticide resistance, and Metarhizium anisopliae (Meschn.) Sorokin, an entomopathogenic fungus, alone and in combination with various insecticides, has shown good effects against cockroaches. (2) Methods: This experiment compared the cumulative mortality after infecting B. germanica with M. anisopliae conidia by two routes, per os and topical application. To probe the mechanisms that underlie the synergism between M. anisopliae and hydramethylnon, we conducted dose–response assays with cockroaches fed combinations of M. anisopliae and hydramethylnon and characterized the gut microbiomes of the treated cockroaches. (3) Results: The study showed that the mortality with per os infection was lower than that with topical application. In addition, the combination of M. anisopliae and hydramethylnon had a synergistic effect in 16 treatments. The gut microbiome was also altered by hydramethylnon treatment. The abundance of Parabacteroides and Enterococcus declined with the hydramethylnon and combination treatments, which are known to have anti-inflammatory and antifungal activities. The abundance of Alistipes, which is a fungal cell wall component, significantly increased in these treatments. (4) Conclusions: Therefore, we speculate that the major mechanism underlying this synergism is hydramethylnon promoting the survival of M. anisopliae in the harsh gut environment and enhancing its virulence for German cockroaches by altering the gut microbiome. This may provide a method for the fight against B. germanica and lay the foundation for the development of new baits.
Collapse
|
13
|
Molecular characterization of a new partitivirus, MbPV1, isolated from the entomopathogenic fungus Metarhizium brunneum in China. Arch Virol 2020; 165:765-769. [PMID: 31894416 DOI: 10.1007/s00705-019-04517-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/20/2019] [Indexed: 12/17/2022]
Abstract
Mycoviruses from Metarhizium anisopliae have been extensively studied, but their sequences have yet to be deposited in the NCBI database. In the present study, we characterized a new partitivirus obtained from the entomogenous fungus Metarhizium brunneum, named "Metarhizium brunneum partitivirus 1" (MbPV1). The complete genome of MbPV1, determined by metagenomic sequencing, RT-PCR, and RACE, comprised two dsRNA segments of 1,829 bp and 1,720 bp, respectively. Both dsRNAs contained a single open reading frame (ORF), encoding a putative RNA-dependent RNA polymerase (RdRp) and a coat protein (CP), respectively. The sequences of the RdRp and CP showed the highest similarity (61.4% and 44.4% identity, respectively) to those of Colletotrichum eremochloae partitivirus 1 (CePV1), which were obtained from the NCBI database. A phylogenetic tree based on the RdRp sequence showed that MbPV1 clustered with members of the proposed genus "Epsilonpartitivirus", belonging to family Partitiviridae. Here, we propose that MbPV1 is a member of a new species of the proposed genus "Epsilonpartitivirus". This is the first sequence data report of a new mycovirus from a member of the genus Metarhizium.
Collapse
|