1
|
Khalil AM, Esaki M, Okuya K, Ozawa M. Stability of the Virucidal Activity of Commercial Disinfectants against Avian Influenza Viruses under Different Environmental Conditions. Pathogens 2023; 12:1382. [PMID: 38133267 PMCID: PMC10745779 DOI: 10.3390/pathogens12121382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/23/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
Highly pathogenic avian influenza viruses (HPAIVs) have caused outbreaks in both domestic and wild birds during the winter seasons in several countries in the Northern Hemisphere, most likely because virus-infected wild ducks overwinter and serve as the primary source of infection for other birds in these countries. Several chemical disinfectants are available to deactivate these viruses outside a living organism. However, their virucidal activity is known to be compromised by various factors, including temperature and contamination with organic matter. Hence, the effectiveness of virucidal activity under winter field conditions is crucial for managing HPAIV outbreaks. To investigate the impact of the winter field conditions on the virucidal activity of disinfectants against AIVs, we assessed the stability of the virucidal activity of seven representative disinfectants that are commercially available for poultry farms in Japan against both LPAIVs and HPAIVs under cold and/or organic contamination conditions. Of the seven disinfectants examined, the ortho-dichlorobenzene/cresol-based disinfectant exhibited the most consistent virucidal activity under winter field conditions, regardless of the virus pathogenicity or subtype tested.
Collapse
Affiliation(s)
- Ahmed Magdy Khalil
- Department of Pathogenetic and Preventive Veterinary Science, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan; (A.M.K.); (M.E.); (K.O.)
- United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi 753-8515, Japan
- Department of Zoonotic Diseases, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Mana Esaki
- Department of Pathogenetic and Preventive Veterinary Science, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan; (A.M.K.); (M.E.); (K.O.)
- Joint Graduate School of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
| | - Kosuke Okuya
- Department of Pathogenetic and Preventive Veterinary Science, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan; (A.M.K.); (M.E.); (K.O.)
- Joint Graduate School of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
- Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
| | - Makoto Ozawa
- Department of Pathogenetic and Preventive Veterinary Science, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan; (A.M.K.); (M.E.); (K.O.)
- United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi 753-8515, Japan
- Joint Graduate School of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
- Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
- Kagoshima Crane Conservation Committee, Izumi 899-0208, Japan
| |
Collapse
|
2
|
Okuya K, Khalil AM, Esaki M, Nishi N, Koyamada D, Saito R, Tokorozaki K, Hasegawa T, Ozawa M. Newly emerged genotypes of highly pathogenic H5N8 avian influenza viruses in Kagoshima prefecture, Japan during winter 2020/21. J Gen Virol 2023; 104. [PMID: 37351928 DOI: 10.1099/jgv.0.001870] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023] Open
Abstract
During the 2020/21 winter season, 29 and 10 H5N8 high pathogenicity avian influenza viruses (HPAIVs) were isolated from environmental water and wild birds, respectively, in Kagoshima prefecture, Japan. Furthermore, seven subtypes of low pathogenicity avian influenza viruses (LPAIVs) were also isolated; H1N1, H2N9, H3N2, H3N6, H3N8, H4N6, and H6N6 subtypes. While the H5 hemagglutinin (HA) genes of the G1 cluster were isolated throughout the winter season, those of the G2 cluster were also detected in late winter, suggesting that H5 HPAIVs possessing H5 HA genes from the two different clusters were individually introduced into Kagoshima prefecture. Intriguingly, genetic constellations revealed that the H5N8 HPAIVs could be classified into six genotypes, including four previously reported genotypes (E1, E2, E3, and E7), and two new genotypes (tentatively named E8 and E9). The PB1 and PA gene segments of genotypes E8 and E9 shared high similarity with those of LPAIVs, whereas the remaining gene segments were close to those of genotype E1. Furthermore, LPAIVs whose PA gene segment was close to that of genotype E9 were isolated from the environmental water. Overall, we revealed that various HPAIV genotypes circulated in Kagoshima prefecture during the 2020/21 winter season. This study highlights the importance of monitoring both HPAIV and LPAIV to better understand AIV ecology in migratory waterfowl populations.
Collapse
Affiliation(s)
- Kosuke Okuya
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
- Joint Graduate School of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
- Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
| | - Ahmed Magdy Khalil
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
- Faculty of Veterinary Medicine, Zagazig University, 44511 Zagazig, Egypt
- United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi 753-8511, Japan
- Present address: Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Mana Esaki
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
- Joint Graduate School of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
| | - Natsuko Nishi
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
| | - Donna Koyamada
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
| | - Rara Saito
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
| | - Kaori Tokorozaki
- Kagoshima Crane Conservation Committee, Izumi, Kagoshima 899-0208, Japan
| | - Taichi Hasegawa
- Matsuoka Research Institute for Science, Tokyo, Japan United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
| | - Makoto Ozawa
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
- Joint Graduate School of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
- Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
- United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi 753-8511, Japan
| |
Collapse
|
3
|
Matsunaga N, Ijiri M, Ishikawa K, Ozawa M, Okuya K, Khalil AM, Kojima I, Esaki M, Masatani T, Matsui T, Fujimoto Y. Avian paramyxovirus serotype-1 isolation from migratory birds and environmental water in southern Japan: An epidemiological survey during the 2018/19-2021/2022 winter seasons. Microbiol Immunol 2023; 67:185-193. [PMID: 36628409 DOI: 10.1111/1348-0421.13053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 01/12/2023]
Abstract
Newcastle disease caused by highly pathogenic viruses of avian paramyxovirus serotype-1 (APMV-1) is a highly contagious poultry disease. Although a large-scale epidemic of Newcastle disease had occurred in Japan between the 1950s and the 2000s, there have been no outbreaks anywhere since 2010. In addition, there are no reports of epidemiological surveys of APMV-1 in wild birds in Japan in the last 10 years. We conducted the first epidemiological survey of APMV-1 in the Izumi plain, Kagoshima prefecture of southern Japan from the winter of 2018 to 2022. A total of 15 APMV-1 strains were isolated, and isolation rates from roosting water and duck fecal samples were 2.51% and 0.10%, respectively. These results indicate that the isolation method from environmental water may be useful for efficient surveillance of APMV-1 in wild birds. Furthermore, this is the first report on the success of APMV-1 isolation from environmental water samples. Genetic analysis of the Fusion (F) gene showed that all APMV-1 isolates were closely related to virus strains circulating among waterfowl in Far East Asian countries. All isolates have avirulent motifs in their cleavage site of F genes, all of which were presumed to be low pathogenic viruses in poultry. However, pathogenicity test using embryonated chicken eggs demonstrated that some isolates killed all chicken embryos regardless of viral doses inoculated (102 -106 50% egg infectious dose). These results indicated that APMV-1 strains, which are potentially pathogenic to chickens, are continuously brought into the Izumi plain by migrating wild birds.
Collapse
Affiliation(s)
- Nonoka Matsunaga
- Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Moe Ijiri
- Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Kemi Ishikawa
- Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Makoto Ozawa
- Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan.,Joint Graduate School of Veterinary Medicine, Kagoshima University, Kagoshima, Japan.,Kagoshima Crane Conservation Committee, Izumi, Kagoshima, Japan
| | - Kosuke Okuya
- Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan.,Joint Graduate School of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Ahmed Magdy Khalil
- Joint Graduate School of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Isshu Kojima
- Joint Graduate School of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Mana Esaki
- Joint Graduate School of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Tatsunori Masatani
- Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan.,Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Tsutomu Matsui
- Kagoshima Crane Conservation Committee, Izumi, Kagoshima, Japan
| | - Yoshikazu Fujimoto
- Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan.,Joint Graduate School of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
4
|
Mateus-Anzola J, Martínez-López B, Espinosa-García AC, Ojeda-Flores R. Global subtype diversity, spatial distribution patterns, and phylogenetic analysis of avian influenza virus in water. Transbound Emerg Dis 2021; 69:e344-e355. [PMID: 34464033 DOI: 10.1111/tbed.14307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/28/2021] [Accepted: 08/29/2021] [Indexed: 12/14/2022]
Abstract
The current COVID-19 pandemic highlights the need for zoonotic infectious disease surveillance. Avian influenza virus (AIV) poses a significant threat to animal and public health due to its pandemic potential. Virus-contaminated water has been suggested as an important AIV spread mechanism among multiple species. Nevertheless, few studies have characterized the global AIV subtype diversity and distribution in environmental water. Therefore, this study aims to provide an updated descriptive and phylogenetic analysis of AIVs isolated in water samples from high risk-sites for influenza outbreaks (i.e. live bird markets, poultry farms, and wild bird habitats) on a global scale. The descriptive analysis evidenced that 21 subtypes were reported from nine countries between 2003 and 2020. Fourteen AIV subtypes were solely reported from Asian countries. Most of the viral sequences were obtained in China and Bangladesh with 47.44% and 23.93%, respectively. Likewise, the greatest global AIV subtype diversity was observed in China with 12 subtypes. Live bird markets represented the main sampling site for AIV detection in water samples (64.1%), mostly from poultry cage water. Nevertheless, the highest subtype diversity was observed in water samples from wild bird habitats, especially from the Izumi plain and the Dongting Lake located in Japan and China, respectively. Water from drinking poultry troughs evidenced the greatest subtype diversity in live bird markets; meanwhile, environmental water used by ducks had the highest number of different subtypes in poultry farms. Maximum-likelihood phylogenetic trees of hemagglutinin (HA) and neuraminidase (NA) genes showed that some sequences were closely related among different poultry/wild bird-related environments from different geographic origins. Therefore, the results suggest that even though the availability of gene sequences in public-access databases varies greatly among countries, environmental AIV surveillance represents a useful tool to elucidate potential viral diversity in wild and domestic bird populations.
Collapse
Affiliation(s)
- Jessica Mateus-Anzola
- Laboratorio de Ecología de Enfermedades y Una Salud, Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Beatriz Martínez-López
- Center for Animal Disease Modeling and Surveillance (CADMS), Department of Medicine & Epidemiology, School of Veterinary Medicine, University of California-Davis, Davis, California, USA
| | - Ana Cecilia Espinosa-García
- Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Rafael Ojeda-Flores
- Laboratorio de Ecología de Enfermedades y Una Salud, Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
5
|
Khalil AM, Yoshida R, Masatani T, Takada A, Ozawa M. Variation in the HA antigenicity of A(H1N1)pdm09-related swine influenza viruses. J Gen Virol 2021; 102. [PMID: 33616517 DOI: 10.1099/jgv.0.001569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Since the influenza pandemic in 2009, the causative agent 'A(H1N1)pdm09 virus', has been circulating in both human and swine populations. Although phylogenetic analyses of the haemagglutinin (HA) gene segment have revealed broader genetic diversity of A(H1N1)pdm09-related swine influenza A viruses (swIAVs) compared with human A(H1N1)pdm09 viruses, it remains unclear whether the genetic diversity reflects the antigenic differences in HA. To assess the impact of the diversity of the HA gene of A(H1N1)pdm09-related swIAVs on HA antigenicity, we characterized 12 swIAVs isolated in Japan from 2013 to 2018. We used a ferret antiserum and a panel of anti-HA mouse monoclonal antibodies (mAbs) raised against an early A(H1N1)pdm09 isolate. The neutralization assay with the ferret antiserum revealed that five of the 12 swIAVs were significantly different in their HA antigenicity from the early A(H1N1)pdm09 isolate. The mAbs also showed differential neutralization patterns depending on the swIAV strains. In addition, the single amino acid substitution at position 190 of HA, which was found in one of the five antigenically different swIAVs but not in human isolates, was shown to be one of the critical determinants for the antigenic difference of swIAV HAs. Two potential N-glycosylation sites at amino acid positions 185 and 276 of the HA molecule were identified in two antigenically different swIAVs. These results indicated that the genetic diversity of HA in the A(H1N1)pdm09-related swIAVs is associated with their HA antigenic variation. Our findings highlighted the need for surveillance to monitor the emergence of swIAV antigenic variants with public health importance.
Collapse
Affiliation(s)
- Ahmed Magdy Khalil
- Joint Faculty of Veterinary Medicine, Kagoshima University, Japan.,United Graduate School of Veterinary Science, Yamaguchi University, Japan.,Faculty of Veterinary Medicine, Zagazig University, Egypt
| | - Reiko Yoshida
- Research Center for Zoonosis Control, Hokkaido University, Japan
| | - Tatsunori Masatani
- United Graduate School of Veterinary Science, Yamaguchi University, Japan.,Joint Faculty of Veterinary Medicine, Kagoshima University, Japan
| | - Ayato Takada
- Research Center for Zoonosis Control, Hokkaido University, Japan
| | - Makoto Ozawa
- United Graduate School of Veterinary Science, Yamaguchi University, Japan.,Joint Faculty of Veterinary Medicine, Kagoshima University, Japan
| |
Collapse
|
6
|
Khalil AM, Fujimoto Y, Kojima I, Esaki M, Ri K, Masatani T, Matsui T, Ozawa M. Genetic Characterization of H5N8 Highly Pathogenic Avian Influenza Viruses Isolated from Falcated Ducks and Environmental Water in Japan in November 2020. Pathogens 2021; 10:pathogens10020171. [PMID: 33557405 PMCID: PMC7915289 DOI: 10.3390/pathogens10020171] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 12/20/2022] Open
Abstract
We isolated two highly pathogenic avian influenza viruses (HPAIVs) of subtype H5N8 clade 2.3.4.4b from falcated duck (Anas falcata) feces and environmental water collected at an overwintering site in Japan. Our isolates were almost genetically identical to each other and showed high genetic similarity with H5N8 HPAIVs recently isolated in South Korea, a distant part of Japan, and European countries. These results suggest the potential role of falcated ducks in the dissemination of HPAIVs.
Collapse
Affiliation(s)
- Ahmed Magdy Khalil
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan; (A.M.K.); (Y.F.); (M.E.); (K.R.); (T.M.)
- United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi 753-8511, Japan
- Faculty of Veterinary Medicine, Zagazig University, 44511 Zagazig, Egypt
| | - Yoshikazu Fujimoto
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan; (A.M.K.); (Y.F.); (M.E.); (K.R.); (T.M.)
- Joint Graduate School of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan;
| | - Isshu Kojima
- Joint Graduate School of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan;
| | - Mana Esaki
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan; (A.M.K.); (Y.F.); (M.E.); (K.R.); (T.M.)
| | - Kyonha Ri
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan; (A.M.K.); (Y.F.); (M.E.); (K.R.); (T.M.)
| | - Tatsunori Masatani
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan; (A.M.K.); (Y.F.); (M.E.); (K.R.); (T.M.)
- United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi 753-8511, Japan
- Joint Graduate School of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan;
| | - Tsutomu Matsui
- Kagoshima Crane Conservation Committee, Izumi, Kagoshima 899-0208, Japan;
| | - Makoto Ozawa
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan; (A.M.K.); (Y.F.); (M.E.); (K.R.); (T.M.)
- United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi 753-8511, Japan
- Joint Graduate School of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan;
- Kagoshima Crane Conservation Committee, Izumi, Kagoshima 899-0208, Japan;
- Correspondence: ; Tel.: +81-99-285-3651
| |
Collapse
|