1
|
Jang G, Lee C. Complete genome sequence of a novel classical swine fever virus subgenotype 1.1 detected from a live Japanese encephalitis virus vaccine in South Korea. Microbiol Resour Announc 2025; 14:e0112024. [PMID: 39807868 PMCID: PMC11812297 DOI: 10.1128/mra.01120-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 11/20/2024] [Indexed: 01/16/2025] Open
Abstract
A novel classical swine fever virus (CSFV) strain GNU-240601 was identified from a commercial live Japanese encephalitis virus (JEV) vaccine. The whole-genome sequence of GNU-240601 shared the highest similarity with strains belonging to subgenotype 1.1. This is the first identification and complete genome sequence of CSFV from the JEV vaccine.
Collapse
Affiliation(s)
- Guehwan Jang
- College of Veterinary Medicine and Virus Vaccine Research Center, Gyeongsang National University, Jinju, South Korea
| | - Changhee Lee
- College of Veterinary Medicine and Virus Vaccine Research Center, Gyeongsang National University, Jinju, South Korea
| |
Collapse
|
2
|
Jang G, Kim J, Park C, Song K, Kang W, Yang K, Lee C. Pathogenicity of a novel classical swine fever LOM vaccine‐derived virus isolated on Jeju Island, South Korea. Vet Med Sci 2022; 8:2434-2443. [DOI: 10.1002/vms3.903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Guehwan Jang
- College of Veterinary Medicine and Virus Vaccine Research Center Gyeongsang National University Jinju Republic of Korea
| | - Joo‐Ah Kim
- Livestock Affairs Division Jeju Special Self‐Governing Province Jeju Republic of Korea
| | - Changnam Park
- Veterinary Research Institute Jeju Special Self‐Governing Province Jeju Republic of Korea
| | - Kyungok Song
- Veterinary Research Institute Jeju Special Self‐Governing Province Jeju Republic of Korea
| | - Won‐Myoung Kang
- Veterinary Research Institute Jeju Special Self‐Governing Province Jeju Republic of Korea
| | - Kyungsu Yang
- Farm & Pharm Veterinary Hospital Jeju Republic of Korea
| | - Changhee Lee
- College of Veterinary Medicine and Virus Vaccine Research Center Gyeongsang National University Jinju Republic of Korea
| |
Collapse
|
3
|
Jang G, Kim EJ, Cho SC, Moon SU, Kim BS, Kim J, Jeong KJ, Song K, Mun SH, Kang WM, Lee J, Park C, Yang HS, Lee C. Field evaluation of the safety and immunogenicity of a classical swine fever virus E2 subunit vaccine in breeding and nursery animals on Jeju Island, South Korea. Clin Exp Vaccine Res 2022; 11:264-273. [DOI: 10.7774/cevr.2022.11.3.264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/22/2022] [Indexed: 11/22/2022] Open
Affiliation(s)
- Guehwan Jang
- College of Veterinary Medicine and Virus Vaccine Research Center, Gyeongsang National University, Jinju, Korea
| | - Eun-Joo Kim
- Animal Health Division, Jeju Special Self-Governing Province, Jeju, Korea
| | - Seong-Cheol Cho
- Animal Health Division, Jeju Special Self-Governing Province, Jeju, Korea
| | - Sung-Up Moon
- Animal Health Division, Jeju Special Self-Governing Province, Jeju, Korea
| | - Byeong Soo Kim
- Veterinary Research Institute, Jeju Special Self-Governing Province, Jeju, Korea
| | - Jinhee Kim
- Veterinary Research Institute, Jeju Special Self-Governing Province, Jeju, Korea
| | - Kyoung Ju Jeong
- Veterinary Research Institute, Jeju Special Self-Governing Province, Jeju, Korea
| | - Kyungok Song
- Veterinary Research Institute, Jeju Special Self-Governing Province, Jeju, Korea
| | - Seong Hwan Mun
- Veterinary Research Institute, Jeju Special Self-Governing Province, Jeju, Korea
| | - Won-Myoung Kang
- Veterinary Research Institute, Jeju Special Self-Governing Province, Jeju, Korea
| | - Jonghoo Lee
- Jeju-si Livestock Division, Jeju Special Self-Governing Province, Jeju, Korea
| | - Changnam Park
- Seogwipo-si Livestock Division, Jeju Special Self-Governing Province, Jeju, Korea
| | - Hyoung-Seok Yang
- Seogwipo-si Livestock Division, Jeju Special Self-Governing Province, Jeju, Korea
| | - Changhee Lee
- College of Veterinary Medicine and Virus Vaccine Research Center, Gyeongsang National University, Jinju, Korea
| |
Collapse
|
4
|
Oh Y, Park Y, Choi BH, Park S, Gu S, Park J, Kim JK, Sohn EJ. Field Application of a New CSF Vaccine Based on Plant-Produced Recombinant E2 Marker Proteins on Pigs in Areas with Two Different Control Strategies. Vaccines (Basel) 2021; 9:vaccines9060537. [PMID: 34063818 PMCID: PMC8224019 DOI: 10.3390/vaccines9060537] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/12/2021] [Accepted: 05/18/2021] [Indexed: 11/17/2022] Open
Abstract
A classical swine fever virus (CSFV)-modified live LOM (low-virulence strain of Miyagi) vaccine (MLV-LOM) to combat CSF has been used in places where the disease is prevalent around the world, including in Korea, except in Jeju Island. In general, modified live virus-based vaccines (MLV) are known to be highly effective in inducing immune responses. At the same time, MLVs also have potential dangers such as a circulation in the field. There is still a need for safer and more effective vaccines to control CSF in the field. In this study, we applied a new CSF vaccine based on plant-produced recombinant E2 marker proteins at two different locations, Jeju Island and a suburb of Pohang, using different CSF control strategies. The result suggested that vaccinated sows in Jeju Island highly developed immunogenicity and maintained stably until 102 days post-vaccination (dpv). Its piglets that received maternal antibodies were shown to carry high serological values and maintained them until 40 days of age, which was the end of the follow-up. Naïve piglets vaccinated at 40 days of age showed high serological values and these were maintained until 100 days of age (60 dpv), which was the end of the follow-up. The vaccine was also effective in inducing immune responses in newborn piglets that carried maternal antibodies received from MLV-LOM vaccine-immunized mother sows.
Collapse
Affiliation(s)
- Yeonsu Oh
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea;
| | - Youngmin Park
- BioApplications Inc., Pohang Techno Park Complex, 394 Jigok-ro, Pohang 37668, Korea; (Y.P.); (B.-H.C.); (S.P.); (S.G.); (J.P.); (J.-K.K.)
| | - Bo-Hwa Choi
- BioApplications Inc., Pohang Techno Park Complex, 394 Jigok-ro, Pohang 37668, Korea; (Y.P.); (B.-H.C.); (S.P.); (S.G.); (J.P.); (J.-K.K.)
| | - Soohong Park
- BioApplications Inc., Pohang Techno Park Complex, 394 Jigok-ro, Pohang 37668, Korea; (Y.P.); (B.-H.C.); (S.P.); (S.G.); (J.P.); (J.-K.K.)
| | - Sungmin Gu
- BioApplications Inc., Pohang Techno Park Complex, 394 Jigok-ro, Pohang 37668, Korea; (Y.P.); (B.-H.C.); (S.P.); (S.G.); (J.P.); (J.-K.K.)
| | - Jungae Park
- BioApplications Inc., Pohang Techno Park Complex, 394 Jigok-ro, Pohang 37668, Korea; (Y.P.); (B.-H.C.); (S.P.); (S.G.); (J.P.); (J.-K.K.)
| | - Jong-Kook Kim
- BioApplications Inc., Pohang Techno Park Complex, 394 Jigok-ro, Pohang 37668, Korea; (Y.P.); (B.-H.C.); (S.P.); (S.G.); (J.P.); (J.-K.K.)
| | - Eun-Ju Sohn
- BioApplications Inc., Pohang Techno Park Complex, 394 Jigok-ro, Pohang 37668, Korea; (Y.P.); (B.-H.C.); (S.P.); (S.G.); (J.P.); (J.-K.K.)
- Correspondence: ; Tel.: +82-54-223-2090; Fax: +80-54-223-2088
| |
Collapse
|
5
|
Fan J, Liao Y, Zhang M, Liu C, Li Z, Li Y, Li X, Wu K, Yi L, Ding H, Zhao M, Fan S, Chen J. Anti-Classical Swine Fever Virus Strategies. Microorganisms 2021; 9:microorganisms9040761. [PMID: 33917361 PMCID: PMC8067343 DOI: 10.3390/microorganisms9040761] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/24/2021] [Accepted: 04/02/2021] [Indexed: 12/23/2022] Open
Abstract
Classical swine fever (CSF), caused by CSF virus (CSFV), is a highly contagious swine disease with high morbidity and mortality, which has caused significant economic losses to the pig industry worldwide. Biosecurity measures and vaccination are the main methods for prevention and control of CSF since no specific drug is available for the effective treatment of CSF. Although a series of biosecurity and vaccination strategies have been developed to curb the outbreak events, it is still difficult to eliminate CSF in CSF-endemic and re-emerging areas. Thus, in addition to implementing enhanced biosecurity measures and exploring more effective CSF vaccines, other strategies are also needed for effectively controlling CSF. Currently, more and more research about anti-CSFV strategies was carried out by scientists, because of the great prospects and value of anti-CSFV strategies in the prevention and control of CSF. Additionally, studies on anti-CSFV strategies could be used as a reference for other viruses in the Flaviviridae family, such as hepatitis C virus, dengue virus, and Zika virus. In this review, we aim to summarize the research on anti-CSFV strategies. In detail, host proteins affecting CSFV replication, drug candidates with anti-CSFV effects, and RNA interference (RNAi) targeting CSFV viral genes were mentioned and the possible mechanisms related to anti-CSFV effects were also summarized.
Collapse
Affiliation(s)
- Jindai Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.F.); (Y.L.); (M.Z.); (C.L.); (Z.L.); (Y.L.); (X.L.); (K.W.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Yingxin Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.F.); (Y.L.); (M.Z.); (C.L.); (Z.L.); (Y.L.); (X.L.); (K.W.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Mengru Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.F.); (Y.L.); (M.Z.); (C.L.); (Z.L.); (Y.L.); (X.L.); (K.W.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Chenchen Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.F.); (Y.L.); (M.Z.); (C.L.); (Z.L.); (Y.L.); (X.L.); (K.W.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Zhaoyao Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.F.); (Y.L.); (M.Z.); (C.L.); (Z.L.); (Y.L.); (X.L.); (K.W.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Yuwan Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.F.); (Y.L.); (M.Z.); (C.L.); (Z.L.); (Y.L.); (X.L.); (K.W.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Xiaowen Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.F.); (Y.L.); (M.Z.); (C.L.); (Z.L.); (Y.L.); (X.L.); (K.W.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Keke Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.F.); (Y.L.); (M.Z.); (C.L.); (Z.L.); (Y.L.); (X.L.); (K.W.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Lin Yi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.F.); (Y.L.); (M.Z.); (C.L.); (Z.L.); (Y.L.); (X.L.); (K.W.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Hongxing Ding
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.F.); (Y.L.); (M.Z.); (C.L.); (Z.L.); (Y.L.); (X.L.); (K.W.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Mingqiu Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.F.); (Y.L.); (M.Z.); (C.L.); (Z.L.); (Y.L.); (X.L.); (K.W.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.F.); (Y.L.); (M.Z.); (C.L.); (Z.L.); (Y.L.); (X.L.); (K.W.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Correspondence: (S.F.); (J.C.); Tel.: +86-20-8528-8017 (J.C.)
| | - Jinding Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.F.); (Y.L.); (M.Z.); (C.L.); (Z.L.); (Y.L.); (X.L.); (K.W.); (L.Y.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Correspondence: (S.F.); (J.C.); Tel.: +86-20-8528-8017 (J.C.)
| |
Collapse
|
6
|
Coronado L, Perera CL, Rios L, Frías MT, Pérez LJ. A Critical Review about Different Vaccines against Classical Swine Fever Virus and Their Repercussions in Endemic Regions. Vaccines (Basel) 2021; 9:154. [PMID: 33671909 PMCID: PMC7918945 DOI: 10.3390/vaccines9020154] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/31/2021] [Accepted: 02/09/2021] [Indexed: 12/24/2022] Open
Abstract
Classical swine fever (CSF) is, without any doubt, one of the most devasting viral infectious diseases affecting the members of Suidae family, which causes a severe impact on the global economy. The reemergence of CSF virus (CSFV) in several countries in America, Asia, and sporadic outbreaks in Europe, sheds light about the serious concern that a potential global reemergence of this disease represents. The negative aspects related with the application of mass stamping out policies, including elevated costs and ethical issues, point out vaccination as the main control measure against future outbreaks. Hence, it is imperative for the scientific community to continue with the active investigations for more effective vaccines against CSFV. The current review pursues to gather all the available information about the vaccines in use or under developing stages against CSFV. From the perspective concerning the evolutionary viral process, this review also discusses the current problematic in CSF-endemic countries.
Collapse
Affiliation(s)
- Liani Coronado
- National Centre for Animal and Plant Health (CENSA), OIE Collaborating Centre for Disaster Risk Reduction in Animal Health, San José de las Lajas 32700, Cuba; (L.C.); (C.L.P.); (M.T.F.)
| | - Carmen L. Perera
- National Centre for Animal and Plant Health (CENSA), OIE Collaborating Centre for Disaster Risk Reduction in Animal Health, San José de las Lajas 32700, Cuba; (L.C.); (C.L.P.); (M.T.F.)
| | - Liliam Rios
- Reiman Cancer Research Laboratory, Faculty of Medicine, University of New Brunswick, Saint John, NB E2L 4L5, Canada;
| | - María T. Frías
- National Centre for Animal and Plant Health (CENSA), OIE Collaborating Centre for Disaster Risk Reduction in Animal Health, San José de las Lajas 32700, Cuba; (L.C.); (C.L.P.); (M.T.F.)
| | - Lester J. Pérez
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Illinois at Urbana–Champaign, Champaign, IL 61802, USA
| |
Collapse
|
7
|
Ganges L, Crooke HR, Bohórquez JA, Postel A, Sakoda Y, Becher P, Ruggli N. Classical swine fever virus: the past, present and future. Virus Res 2020; 289:198151. [PMID: 32898613 DOI: 10.1016/j.virusres.2020.198151] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/24/2020] [Accepted: 08/28/2020] [Indexed: 12/22/2022]
Abstract
Classical swine fever (CSF) is among the most relevant viral epizootic diseases of swine. Due to its severe economic impact, CSF is notifiable to the world organisation for animal health. Strict control policies, including systematic stamping out of infected herds with and without vaccination, have permitted regional virus eradication. Nevertheless, CSF virus (CSFV) persists in certain areas of the world and has re-emerged regularly. This review summarizes the basic established knowledge in the field and provides a comprehensive and updated overview of the recent advances in fundamental CSFV research, diagnostics and vaccine development. It covers the latest discoveries on the genetic diversity of pestiviruses, with implications for taxonomy, the progress in understanding disease pathogenesis, immunity against acute and persistent infections, and the recent findings in virus-host interactions and virulence determinants. We also review the progress and pitfalls in the improvement of diagnostic tools and the challenges in the development of modern and efficacious marker vaccines compatible with serological tests for disease surveillance. Finally, we highlight the gaps that require research efforts in the future.
Collapse
Affiliation(s)
- Llilianne Ganges
- OIE Reference Laboratory for Classical Swine Fever, Institute of Agrifood Research and Technology, Centre de Recerca en Sanitat Animal (CReSA), 08193 Barcelona, Spain.
| | - Helen R Crooke
- Virology Department, Animal and Plant Health Agency, APHA-Weybridge, Woodham Lane, New Haw, Addlestone, KT15 3NB, UK
| | - Jose Alejandro Bohórquez
- OIE Reference Laboratory for Classical Swine Fever, Institute of Agrifood Research and Technology, Centre de Recerca en Sanitat Animal (CReSA), 08193 Barcelona, Spain
| | - Alexander Postel
- EU & OIE Reference Laboratory for Classical Swine Fever, Institute of Virology, University of Veterinary Medicine, Hannover, Buenteweg 17, 30559 Hannover, Germany
| | - Yoshihiro Sakoda
- Laboratory of Microbiology, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, 060-0818, Japan
| | - Paul Becher
- EU & OIE Reference Laboratory for Classical Swine Fever, Institute of Virology, University of Veterinary Medicine, Hannover, Buenteweg 17, 30559 Hannover, Germany
| | - Nicolas Ruggli
- The Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland; Department of Infectious Diseases and Pathobiology, University of Bern, Bern, Switzerland
| |
Collapse
|