1
|
Del Sorbo L, Giugliano R, Cerracchio C, Iovane V, Salvatore MM, Serra F, Amoroso MG, Pellegrini F, Levante M, Capozza P, Diakoudi G, Galdiero M, Fusco G, Pratelli A, Andolfi A, Fiorito F. In Vitro Evaluation of Aryl Hydrocarbon Receptor Involvement in Feline Coronavirus Infection. Viruses 2025; 17:227. [PMID: 40006982 PMCID: PMC11860311 DOI: 10.3390/v17020227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/01/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025] Open
Abstract
Feline coronavirus (FCoV) is an alphacoronavirus (αCoV) that causes moderate or chronic asymptomatic infection in cats. However, in a single infected cat, FCoV can modify its cellular tropism by acquiring the ability to infect macrophages, resulting in the development of feline infectious peritonitis (FIP). In this context, to restrain the impact of FCoV infection, scientific research has focused attention on the development of antiviral therapies involving novel mechanisms of action. Recent studies have demonstrated that aryl hydrocarbon receptor (AhR) signaling regulates the host response to different human and animal CoVs. Hence, the mechanism of action of AhR was evaluated upon FCoV infection in Crandell Feline Kidney (CRFK) and in canine fibrosarcoma (A72) cells. Following infection with feline enteric CoV (FECV), strain "München", a significant activation of AhR and of its target CYP1A1, was observed. The selective AhR antagonist CH223191 provoked a reduction in FCoV replication and in the levels of viral nucleocapsid protein (NP). Furthermore, the effect of the AhR inhibitor on the acidity of lysosomes in infected cells was observed. Our findings indicate that FCoV acts on viral replication that upregulates AhR. CH223191 repressed virus yield through the inhibition of AhR. In this respect, for counteracting FCoV, AhR represents a new target useful for identifying antiviral drugs. Moreover, in the presence of CH223191, the alkalinization of lysosomes in FCoV-infected CRFK cells was detected, outlining their involvement in antiviral activity.
Collapse
Affiliation(s)
- Luca Del Sorbo
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy; (L.D.S.); (R.G.); (C.C.)
| | - Rosa Giugliano
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy; (L.D.S.); (R.G.); (C.C.)
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy;
| | - Claudia Cerracchio
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy; (L.D.S.); (R.G.); (C.C.)
| | - Valentina Iovane
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (V.I.); (A.A.)
| | - Maria Michela Salvatore
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy; (L.D.S.); (R.G.); (C.C.)
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Francesco Serra
- Istituto Zooprofilattico del Mezzogiorno, 80055 Portici, Italy; (F.S.); (M.G.A.); (M.L.)
| | - Maria Grazia Amoroso
- Istituto Zooprofilattico del Mezzogiorno, 80055 Portici, Italy; (F.S.); (M.G.A.); (M.L.)
| | - Francesco Pellegrini
- Department of Veterinary Medicine, University of Bari, 70010 Valenzan, Italy; (F.P.); (P.C.); (G.D.)
| | - Martina Levante
- Istituto Zooprofilattico del Mezzogiorno, 80055 Portici, Italy; (F.S.); (M.G.A.); (M.L.)
| | - Paolo Capozza
- Department of Veterinary Medicine, University of Bari, 70010 Valenzan, Italy; (F.P.); (P.C.); (G.D.)
| | - Georgia Diakoudi
- Department of Veterinary Medicine, University of Bari, 70010 Valenzan, Italy; (F.P.); (P.C.); (G.D.)
| | - Massimiliano Galdiero
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy;
| | - Giovanna Fusco
- Istituto Zooprofilattico del Mezzogiorno, 80055 Portici, Italy; (F.S.); (M.G.A.); (M.L.)
| | - Annamaria Pratelli
- Department of Veterinary Medicine, University of Bari, 70010 Valenzan, Italy; (F.P.); (P.C.); (G.D.)
| | - Anna Andolfi
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (V.I.); (A.A.)
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80055 Portici, Italy
| | - Filomena Fiorito
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy; (L.D.S.); (R.G.); (C.C.)
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80055 Portici, Italy
| |
Collapse
|
2
|
Timurkan MÖ, Aydin H, Polat E. Detection and Molecular Characterization of Kobuviruses: An Agent of Canine Viral Diarrhea. Curr Microbiol 2024; 81:309. [PMID: 39150576 DOI: 10.1007/s00284-024-03831-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 08/02/2024] [Indexed: 08/17/2024]
Abstract
Clarifying the etiology of diarrhea cases of unknown cause is important in the fight against enteric infections. In this study, we aimed to investigate the role of canine kobuvirus (CaKoV), in cases of diarrhea of unknown origin in dogs. A total 121 swab samples from dogs with diarrhea were collected. Molecular analyses of the samples were performed. For this purpose, after the sequence reaction, a phylogenetic tree was created, and bioinformatics analyses were performed. The prevalence rate of CaKoV in the sampled population was determined as 16.5% (20/121). The presence of parvovirus and coronavirus, which are common viral agents in CaKoV-positive dogs, was determined as 35% (7/20) and 10% (2/20), respectively. The rate of dogs with only CaKoV detected was 65% (13/20). Phylogenetic analysis of CaKoV strains clustered together closely related to reference strains. There are very limited studies on the role of CaKoV in the etiology of diarrhea cases of unknown cause in dogs around the world. So far, only one study has been done on CaKoV in Turkey. In this report which includes molecular characterization and epidemiological data on CaKoV determined the importance of CaKoV in cases of diarrhea of unknown origin. More comprehensive studies are needed to better understand the pathogenesis, epidemiology, and biology of CaKoV and to determine effective strategies to combat it.
Collapse
Affiliation(s)
- Mehmet Özkan Timurkan
- Faculty of Veterinary Medicine, Department of Virology, Atatürk University, Erzurum, Turkey.
| | - Hakan Aydin
- Faculty of Veterinary Medicine, Department of Virology, Atatürk University, Erzurum, Turkey
| | - Erdal Polat
- Faculty of Veterinary Medicine, Department of Virology, Siirt University, Siirt, Turkey
| |
Collapse
|
3
|
Brostoff T, Savage HP, Jackson KA, Dutra JC, Fontaine JH, Hartigan-O’Connor DJ, Carney RP, Pesavento PA. Feline Infectious Peritonitis mRNA Vaccine Elicits Both Humoral and Cellular Immune Responses in Mice. Vaccines (Basel) 2024; 12:705. [PMID: 39066343 PMCID: PMC11281389 DOI: 10.3390/vaccines12070705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 07/28/2024] Open
Abstract
Feline infectious peritonitis (FIP) is a devastating and often fatal disease caused by feline coronavirus (FCoV). Currently, there is no widely used vaccine for FIP, and many attempts using a variety of platforms have been largely unsuccessful due to the disease's highly complicated pathogenesis. One such complication is antibody-dependent enhancement (ADE) seen in FIP, which occurs when sub-neutralizing antibody responses to viral surface proteins paradoxically enhance disease. A novel vaccine strategy is presented here that can overcome the risk of ADE by instead using a lipid nanoparticle-encapsulated mRNA encoding the transcript for the internal structural nucleocapsid (N) FCoV protein. Both wild type and, by introduction of silent mutations, GC content-optimized mRNA vaccines targeting N were developed. mRNA durability in vitro was characterized by quantitative reverse-transcriptase PCR and protein expression by immunofluorescence assay for one week after transfection of cultured feline cells. Both mRNA durability and protein production in vitro were improved with the GC-optimized construct as compared to wild type. Immune responses were assayed by looking at N-specific humoral (by ELISA) and stimulated cytotoxic T cell (by flow cytometry) responses in a proof-of-concept mouse vaccination study. These data together demonstrate that an LNP-mRNA FIP vaccine targeting FCoV N is stable in vitro, capable of eliciting an immune response in mice, and provides justification for beginning safety and efficacy trials in cats.
Collapse
Affiliation(s)
- Terza Brostoff
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (H.P.S.); (K.A.J.); (P.A.P.)
| | - Hannah P. Savage
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (H.P.S.); (K.A.J.); (P.A.P.)
| | - Kenneth A. Jackson
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (H.P.S.); (K.A.J.); (P.A.P.)
| | - Joseph C. Dutra
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA 95616, USA; (J.C.D.); (J.H.F.); (D.J.H.-O.)
| | - Justin H. Fontaine
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA 95616, USA; (J.C.D.); (J.H.F.); (D.J.H.-O.)
| | - Dennis J. Hartigan-O’Connor
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA 95616, USA; (J.C.D.); (J.H.F.); (D.J.H.-O.)
| | - Randy P. Carney
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, USA;
| | - Patricia A. Pesavento
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (H.P.S.); (K.A.J.); (P.A.P.)
| |
Collapse
|
4
|
Li N, Bai Y, Liu R, Guo Z, Yan X, Xiang K, Liu F, Zhao L, Ge J. Prevalence and genetic diversity of canine coronavirus in northeastern China during 2019-2021. Comp Immunol Microbiol Infect Dis 2023; 94:101956. [PMID: 36804645 DOI: 10.1016/j.cimid.2023.101956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 02/07/2023] [Accepted: 02/12/2023] [Indexed: 02/15/2023]
Abstract
Canine coronavirus (CCoV) is associated with diarrhea in dogs, with a high incidence and sometimes even death. However, there is currently limited information about its prevalence and molecular characterization in northeastern China. Therefore, in this study, we examined 325 canine fecal specimens in four provinces in northeastern China from 2019 to 2021. PCR results revealed that 57 out of 325 (17.5%) samples were found to be positive for CCoV, and the positive rate varies obviously with city, season, age and so on. High incidence (65%) of viral co-infection was detected in the diarrhea samples and mixed infection of distinct CCoV genotypes occurs extensively. More importantly, sequence analysis showed that the S gene has a strong mutation. Phylogenetic analysis demonstrated that CCoV-I and CCoV-II strains has different origins. In particular, we found the CCoV-IIa strains of S gene sequenced and the reference strain B906_ZJ_2019 were highly clustered, and the reference strain was a recombinant strain of CCoV-I and CCoV-II. Our findings provide useful orienting clues for evaluating the pathogenic potential of CCoV in canines, and point out more details on characterization in northeastern China. Further work is required to determine the significance and continuous genetic evolution of CCoV.
Collapse
Affiliation(s)
- Nuowa Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yue Bai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Runhang Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Zhiyuan Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xin Yan
- China Animal Health and Epidemiology Center, Qingdao 266033, China
| | - Kongrui Xiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Feng Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Lili Zhao
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, 5333 Xian Road, Changchun 130062, China.
| | - Junwei Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Provincial Key Laboratory of Zoonosis, Harbin 150030, China.
| |
Collapse
|
5
|
Karamese M. All Microbiological Aspects of SARS-CoV-2 Virus. Eurasian J Med 2022; 54:106-114. [PMID: 36655453 PMCID: PMC11163349 DOI: 10.5152/eurasianjmed.2022.22315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/22/2022] [Indexed: 01/19/2023] Open
Abstract
The COVID-19 disease, caused by SARS-CoV-2 virus, which was first seen in Wuhan (China) on December 31, 2019, rapidly spread to cities, countries, and continents and was noted in history as the first pandemic caused by coronaviruses. According to the World Health Organization reports, more than 645 million confirmed SARS-CoV-2-positive cases and more than 6.5 million confirmed deaths were noted all over the world during the pandemic (between December 2020 and December 2022). Although SARS-CoV-2 is a virus belonging to the coronavirus family, our knowledge of the pathogenesis and immune response of SARS-CoV-2 is still limited. Approximately 10 years (2012) after the Middle East Respiratory Syndrome (MERS-CoV) (nearly 2200 confirmed cases and 791 confirmed deaths) and 20 years (2002-2004) after the SARS-CoV epidemic (29 different countries, nearly 8000 confirmed cases, and 774 confirmed deaths), the current COVID-19 pandemic is a reminder of how new pathogens can emerge and spread rapidly, eventually causing serious public health problems. Further research is needed to establish animal models for SARSCoV-2 to investigate replication, transmission dynamics, and pathogenesis in humans in order to develop effective antiviral treatments and vaccines.
Collapse
Affiliation(s)
- Murat Karamese
- Faculty of Medicine, Department of Medical Microbiology, Kafkas University, Kars, Turkey
| |
Collapse
|
6
|
Cerracchio C, Iovane V, Salvatore MM, Amoroso MG, Dakroub H, DellaGreca M, Nicoletti R, Andolfi A, Fiorito F. Effectiveness of the Fungal Metabolite 3- O-Methylfunicone towards Canine Coronavirus in a Canine Fibrosarcoma Cell Line (A72). Antibiotics (Basel) 2022; 11:1594. [PMID: 36421238 PMCID: PMC9687078 DOI: 10.3390/antibiotics11111594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 07/30/2023] Open
Abstract
Canine coronavirus (CCoV), an alphacoronavirus, may cause self-limiting enteric disease in dogs, especially in puppies. The noteworthy plasticity of coronaviruses (CoVs) occurs through mutation and recombination processes, which sometimes generate new dangerous variants. The ongoing SARS-CoV-2 pandemic and the isolation of a novel canine-feline recombinant alphacoronavirus from humans emphasizes the cross-species transmission ability of CoVs. In this context, exploring antiviral compounds is essential to find new tools for fighting against CoVs infections. Fungi produce secondary metabolites, which are often developed as antibiotics, fungicides, hormones, and plant growth regulators. Previous examinations of benzo-γ-pyrone 3-O-methylfunicone (OMF), obtained from Talaromyces pinophilus, showed that it reduces the infectivity of hepatitis C virus and bovine herpesvirus 1. Based on this evidence, this study evaluated the antiviral ability of OMF against CCoV infection in a canine fibrosarcoma (A72) cell line. During CCoV infection, a non-toxic dose of OMF markedly increased features of cell viability. Moreover, OMF induced a significant reduction in virus yield in the presence of an intense downregulation of the viral nucleocapsid protein (NP). These findings occurred in the presence of a marked reduction in the aryl hydrocarbon receptor (AhR) expression. Taken together, preliminary findings suggest that OMF inhibiting AhR shows promising activity against CCoV infection.
Collapse
Affiliation(s)
- Claudia Cerracchio
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy
| | - Valentina Iovane
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Maria Michela Salvatore
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
- Institute for Sustainable Plant Protection, National Research Council, 80055 Portici, Italy
| | - Maria Grazia Amoroso
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Unit of Virology, Department of Animal Health, 80055 Portici, Italy
| | - Hiba Dakroub
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Unit of Virology, Department of Animal Health, 80055 Portici, Italy
| | - Marina DellaGreca
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Rosario Nicoletti
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
- Council for Agricultural Research and Economics, Research Centre for Olive, Fruit and Citrus Crops, 81100 Caserta, Italy
| | - Anna Andolfi
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80055 Portici, Italy
| | - Filomena Fiorito
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80055 Portici, Italy
| |
Collapse
|
7
|
Cerracchio C, Serra F, Amoroso MG, Fiorito F. Canine Coronavirus Activates Aryl Hydrocarbon Receptor during In Vitro Infection. Viruses 2022; 14:v14112437. [PMID: 36366535 PMCID: PMC9692492 DOI: 10.3390/v14112437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/20/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that interacts with substrates, including microbial metabolites. Recent advances reveal that AhR is involved in the host response to coronaviruses (CoVs) infection. Particularly, AhR antagonists decrease the expression of angiotensin-converting enzyme 2 (ACE2) via AhR up-regulation, resulting in suppression of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection in mammalian cells. Herein, we report that AhR is expressed in canine fibrosarcoma (A72) cells, where it is considerably activated by infection with genotype II of canine coronavirus (CCoV-II). The pharmacological inhibition of AhR, by CH223191, suppressed cell death signs and increased cell viability. Furthermore, the AhR antagonist induced a meaningful decline in virus yield, accompanied by the inhibition of the expression of viral nuclear protein (NP). Fascinatingly, during CCoV infection, a novel co-expression of NP and AhR expression was found. Taken together, our preliminary findings show that infection with CCoV activates AhR, and pharmacologic AhR inhibition reduces CCoV replication, identifying AhR as a possible candidate target for CCoV antiviral therapy.
Collapse
Affiliation(s)
- Claudia Cerracchio
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy
| | - Francesco Serra
- Department of Animal Health, Unit of Virology, Istituto Zooprofilattico del Mezzogiorno, 80055 Portici, Naples, Italy
| | - Maria Grazia Amoroso
- Department of Animal Health, Unit of Virology, Istituto Zooprofilattico del Mezzogiorno, 80055 Portici, Naples, Italy
| | - Filomena Fiorito
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy
- Correspondence: (F.F.); Tel.: +39-0812536180
| |
Collapse
|
8
|
Gan J, Tang Y, Lv H, Xiong W, Tian X. Identification and phylogenetic analysis of two canine coronavirus strains. ANIMAL DISEASES 2021; 1:10. [PMID: 34778880 PMCID: PMC8286986 DOI: 10.1186/s44149-021-00013-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/05/2021] [Indexed: 11/10/2022] Open
Abstract
Canine coronavirus (CCoV), a member of the genus Alphacoronavirus, is an enveloped, single-stranded positive-sense RNA virus that responsible for gastroenteritis in dogs. In this study, two CCoV isolates were successfully propagated from 53 CCoV-positive clinical specimens by serial passaging in A-72 cells. These two strains, CCoV JS1706 and CCoV JS1712, caused cytopathic effects in A-72 cells. The sizes of virus plaque formed by them differed in early passages. Electron microscopy revealed a large quantity of typical coronavirus particles with 80–120 nm in diameter in cell culture media and cytoplasm of infected cells, in which they appeared as inclusion bodies. RT-PCR analysis of S gene indicated that these two isolates were belonged to CCoV IIa subtype. Homology of RdRp, S, M and N proteins between the two strains were 100, 99.6, 99.2 and 100.0%, respectively, whereas they were 99.4–100%, 83.1–95.2%, 88.5–99.2% and 91.9–99.7% identity compared to CCoV II reference strains. Phylogenetic analysis of RdRp, S, M and N protein showed that they were closely related to CCoV II strains. These two subtype IIa isolates will be useful for evaluating the pathogenesis and evolution of CCoV and for developing diagnostic reagents and vaccines.
Collapse
Affiliation(s)
- Junji Gan
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Ye Tang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Haifeng Lv
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Wenbin Xiong
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
| | - Xiaoyan Tian
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
| |
Collapse
|
9
|
Pattnaik B, S Patil S, S C, G. Amachawadi R, Dash AP, Yadav MP, Prasad KS, P S, Jain AS, Shivamallu C. COVID-19 PANDEMIC: A SYSTEMATIC REVIEW ON THE CORONAVIRUSES OF ANIMALS AND SARS-CoV-2. JOURNAL OF EXPERIMENTAL BIOLOGY AND AGRICULTURAL SCIENCES 2021; 9:117-130. [DOI: 10.18006/2021.9(2).117.130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Coronaviruses (CoVs), classified into four genera, viz., alpha-, beta-, gamma-, and Delta- CoV, represent an important group of diverse transboundary pathogens that can infect a variety of mammalian and avian species including humans, animals, poultry, and non-poultry birds. CoVs primarily infect lung and gut epithelial cells, besides monocytes and macrophages. CoVs have high mutation rates causing changes in host specificity, tissue tropism, and mode of virus excretion and transmissions. The recent CoV zoonoses are SARS, MERS, and COVID-19 that are caused by the transmission of beta-CoVs of bats to humans. Recently, reverse zoonoses of the COVID-19 virus have been detected in dogs, tigers, and minks. Beta-CoV strains also infect bovine (BCoV) and canine species (CRCoV); both these beta-CoVs might have originated from a common ancestor. Despite the high genetic similarity between BCoV, CRCoV, and HCoV-OC43, these differ in species specificity. Alpha-CoV strains infect canine (CCoV), feline (FIPV), swine (TGEV and PEDV), and humans (HCoV229E and NL63). Six coronavirus species are known to infect and cause disease in pigs, seven in human beings, and two in dogs. The high mutation rate in CoVs is attributed to error-prone 3′-5′ exoribonuclease (NSP 14), and genetic recombination to template shift by the polymerase. The present compilation describes the important features of the CoVs and diseases caused in humans, animals, and birds that are essential in surveillance of diverse pool of CoVs circulating in nature, and monitoring interspecies transmission, zoonoses, and reverse zoonoses.
Collapse
|