1
|
Xie K, Lin B, Sun X, Zhu P, Liu C, Liu G, Cao X, Pan J, Qiu S, Yuan X, Liang M, Jiang J, Yuan L. Identification and classification of the genomes of novel microviruses in poultry slaughterhouse. Front Microbiol 2024; 15:1393153. [PMID: 38756731 PMCID: PMC11096546 DOI: 10.3389/fmicb.2024.1393153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/11/2024] [Indexed: 05/18/2024] Open
Abstract
Microviridae is a family of phages with circular ssDNA genomes and they are widely found in various environments and organisms. In this study, virome techniques were employed to explore potential members of Microviridae in a poultry slaughterhouse, leading to the identification of 98 novel and complete microvirus genomes. Using a similarity clustering network classification approach, these viruses were found to belong to at least 6 new subfamilies within Microviridae and 3 higher-level taxonomic units. Genome size, GC content and genome structure of these new taxa showed evident regularities, validating the rationality of our classification method. Our method can divide microviruses into about 45 additional detailed clusters, which may serve as a new standard for classifying Microviridae members. Furthermore, by addressing the scarcity of host information for microviruses, the current study significantly broadened their host range and discovered over 20 possible new hosts, including important pathogenic bacteria such as Helicobacter pylori and Vibrio cholerae, as well as different taxa demonstrated different host specificities. The findings of this study effectively expand the diversity of the Microviridae family, providing new insights for their classification and identification. Additionally, it offers a novel perspective for monitoring and controlling pathogenic microorganisms in poultry slaughterhouse environments.
Collapse
Affiliation(s)
- Keming Xie
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China
| | - Benfu Lin
- Huadu District Animal Health Supervision Institution, Guangzhou, Guangdong, China
| | - Xinyu Sun
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Peng Zhu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Chang Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China
| | - Guangfeng Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China
| | - Xudong Cao
- Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, ON, Canada
| | - Jingqi Pan
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Suiping Qiu
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Xiaoqi Yuan
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Mengshi Liang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Jingzhe Jiang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China
| | - Lihong Yuan
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Use of Cocktail of Bacteriophage for Salmonella Typhimurium Control in Chicken Meat. Foods 2022; 11:foods11081164. [PMID: 35454751 PMCID: PMC9029022 DOI: 10.3390/foods11081164] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/01/2022] [Accepted: 04/13/2022] [Indexed: 11/30/2022] Open
Abstract
Foodborne diseases are extremely relevant and constitute an area of alert for public health authorities due to the high impact and number of people affected each year. The food industry has implemented microbiological control plans that ensure the quality and safety of its products; however, due to the high prevalence of foodborne diseases, the industry requires new microbiological control systems. One of the main causative agents of diseases transmitted by poultry meat is the bacterium Salmonella enterica. Disinfectants, antibiotics, and vaccines are used to control this pathogen. However, they have not been efficient in the total elimination of these bacteria, with numerous outbreaks caused by this bacterium observed today, in addition to the increase in antibiotic-resistant bacteria. The search for new technologies to reduce microbial contamination in the poultry industry continues to be a necessity and the use of lytic bacteriophages is one of the new solutions. In this study, 20 bacteriophages were isolated for Salmonella spp. obtained from natural environments and cocktails composed of five of them were designed, where three belonged to the Siphoviridae family and two to the Microviridae family. This cocktail was tested on chicken meat infected with Salmonella Typhimurium at 10 °C, where it was found that this cocktail was capable of decreasing 1.4 logarithmic units at 48 h compared to the control.
Collapse
|