1
|
Harris EB, Ewool KKK, Bowden LC, Fierro J, Johnson D, Meinzer M, Tayler S, Grose JH. Genomic and Proteomic Analysis of Six Vi01-like Phages Reveals Wide Host Range and Multiple Tail Spike Proteins. Viruses 2024; 16:289. [PMID: 38400064 PMCID: PMC10892097 DOI: 10.3390/v16020289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Enterobacteriaceae is a large family of Gram-negative bacteria composed of many pathogens, including Salmonella and Shigella. Here, we characterize six bacteriophages that infect Enterobacteriaceae, which were isolated from wastewater plants in the Wasatch front (Utah, United States). These phages are highly similar to the Kuttervirus vB_SenM_Vi01 (Vi01), which was isolated using wastewater from Kiel, Germany. The phages vary little in genome size and are between 157 kb and 164 kb, which is consistent with the sizes of other phages in the Vi01-like phage family. These six phages were characterized through genomic and proteomic comparison, mass spectrometry, and both laboratory and clinical host range studies. While their proteomes are largely unstudied, mass spectrometry analysis confirmed the production of five hypothetical proteins, several of which unveiled a potential operon that suggests a ferritin-mediated entry system on the Vi01-like phage family tail. However, no dependence on this pathway was observed for the single host tested herein. While unable to infect every genus of Enterobacteriaceae tested, these phages are extraordinarily broad ranged, with several demonstrating the ability to infect Salmonella enterica and Citrobacter freundii strains with generally high efficiency, as well as several clinical Salmonella enterica isolates, most likely due to their multiple tail fibers.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Julianne H. Grose
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84604, USA; (E.B.H.); (K.K.K.E.)
| |
Collapse
|
2
|
Petrzik K, Vacek J, Kmoch M, Binderová D, Brázdová S, Lenz O, Ševčík R. Field Use of Protective Bacteriophages against Pectinolytic Bacteria of Potato. Microorganisms 2023; 11:microorganisms11030620. [PMID: 36985194 PMCID: PMC10056506 DOI: 10.3390/microorganisms11030620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/05/2023] Open
Abstract
The pectinolytic Dickeya solani bacterium is an important pathogen found in potatoes. We conducted laboratory and field experiments mimicking severe and mild Dickeya spp. infection and investigated the application of a mixture of two lytic bacteriophages before and after bacterial infection to protect the plants. Application of the phage solution to tuber disks and wounded tubers did not completely eliminate the infection but reduced the development of soft rot symptoms by 59.5–91.4%, depending on the phage concentration. In the field trial, plants treated with bacteriophages after severe Dickeya infection had 5–33% greater leaf cover and 4–16% greater tuber yield compared to untreated plants. When simulating a mild infection, leaf cover was 11–42% greater, and tuber yield was 25–31% greater compared to untreated plants. We conclude that the phage mixture has the potential to protect potatoes ecologically from D. solani.
Collapse
Affiliation(s)
- Karel Petrzik
- Institute of Molecular Biology, Biology Centre of the Czech Academy of Sciences, Branišovská 1160/31, 370 05 České Budějovice, Czech Republic
| | - Josef Vacek
- Department of Growing Technologies, Potato Research Institute Havlíčkův Brod, Dobrovského 2366, 580 01 Havlíčkův Brod, Czech Republic
| | - Martin Kmoch
- Laboratory of Virology, Department of Genetic Resources, Potato Research Institute Havlíčkův Brod, Dobrovského 2366, 580 01 Havlíčkův Brod, Czech Republic
- Correspondence:
| | - Denisa Binderová
- Laboratory of Virology, Department of Genetic Resources, Potato Research Institute Havlíčkův Brod, Dobrovského 2366, 580 01 Havlíčkův Brod, Czech Republic
| | - Sára Brázdová
- Institute of Molecular Biology, Biology Centre of the Czech Academy of Sciences, Branišovská 1160/31, 370 05 České Budějovice, Czech Republic
| | - Ondřej Lenz
- Institute of Molecular Biology, Biology Centre of the Czech Academy of Sciences, Branišovská 1160/31, 370 05 České Budějovice, Czech Republic
| | - Rudolf Ševčík
- Institute of Food Preservation, Faculty of Food and Biochemical Technology, University of Chemistry and Technology (VŠCHT), Technická 3, 166 28 Prague, Czech Republic
| |
Collapse
|
3
|
Bacteriophages as a Strategy to Protect Potato Tubers against Dickeya dianthicola and Pectobacterium carotovorum Soft Rot. Microorganisms 2022; 10:microorganisms10122369. [PMID: 36557622 PMCID: PMC9785987 DOI: 10.3390/microorganisms10122369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
The protective effect of bacteriophage suspensions (Ds3CZ + Ds20CZ and PcCB7V + PcCB251) on phytopathogenic bacteria causing soft rot of potato tubers, namely Dickeya dianthicola (D50, D200) and Pectobacterium carotovorum (P87, P224), was observed in ex vivo and in vitro experiments. Ex vivo tests were performed (with air access) on potato slices, on cylindrical cuts from the center of the tubers, and directly in whole potato tubers. In vitro experiments were carried out in a liquid medium using RTS-8 bioreactors, where bacterial growth was monitored as optical density. In particular, the inhibitory effects of phages were confirmed in experiments on potato slices, where suppression of rot development was evident at first glance. Phage treatment against selected bacteria positively affected potato hardness. Hardness of samples treated with bacteria only was statistically significantly reduced (p < 0.05 for D50 and p < 0.001 for D200 and P87). Ex vivo experiments confirmed significant inhibition of P87 symptom development, partial inhibition of D200 and D50 in phage-treated tubers, and no effect was observed for P224. The inhibitory effect of phages against bacteria was not observed in the in vitro experiment.
Collapse
|
4
|
Alanazi F, Nour I, Hanif A, Al-Ashkar I, Aljowaie RM, Eifan S. Novel findings in context of molecular diversity and abundance of bacteriophages in wastewater environments of Riyadh, Saudi Arabia. PLoS One 2022; 17:e0273343. [PMID: 35980993 PMCID: PMC9387821 DOI: 10.1371/journal.pone.0273343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 08/05/2022] [Indexed: 11/18/2022] Open
Abstract
The diversity among bacteriophages depends on different factors like ecology, temperature conditions and genetic pool. Current study focused on isolation, identification and diversity of phages from 34 sewage water samples collected from two different wastewater treatment plants (WWTPs), King Saud University wastewater treatment plants (KSU-WWTP) and Manfoha wastewater treatment plants (MN-WWTP) in Riyadh, Saudi Arabia. Samples were analyzed by PCR and Next Generation Sequencing (NGS). Siphoviridae, Podoviridae and Myoviridae families were detected by family-specific PCR and highest prevalence of Myoviridae 29.40% was found at MN-WWTP followed by 11.76% at KSU-WWTP. Siphoviridae was detected 11.76% at MN-WWTP and 5.88% at KSU-WWTP. Lowest prevalence for Podoviridae family (5.88%) was recorded at MN-WWTP. Significant influence of temporal variations on prevalence of Myoviridae and Siphoviridae was detected in both WWTP and MN-WWTP, respectively. Highest phage prevalence was obtained in August (75%), followed by September (50%). Highest phage prevalence was recorded at a temperature range of 29–33°C. Significant influence of temperature on the prevalence of Myoviridae phages was detected at MN-WWTP. Four bacteriophages with various abundance levels were identified by NGS. Cronobacter virus Esp2949-1 was found first time with highest abundance (4.41%) in wastewater of Riyadh. Bordetella virus BPP1 (4.14%), Dickeya virus Limestone (1.55%) and Ralstonia virus RSA1 (1.04%) were also detected from samples of MN-WWTP. Highest occurrence of Bordetella virus BPP1 (67%) and (33.33%) was recorded at KSU-WWTP and MN-WWTP, respectively. Highest Bordetella virus BPP1 occurrence was recorded in September (50%) followed by August (40%). The findings of study showed new insights of phage diversity from wastewater sources and further large-scale data studies are suggested for comprehensive understanding.
Collapse
Affiliation(s)
- Fahad Alanazi
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Islam Nour
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Atif Hanif
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ibrahim Al-Ashkar
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Reem M. Aljowaie
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saleh Eifan
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
- * E-mail:
| |
Collapse
|
5
|
Resistance of Dickeya solani strain IPO 2222 to lytic bacteriophage ΦD5 results in fitness tradeoffs for the bacterium during infection. Sci Rep 2022; 12:10725. [PMID: 35750797 PMCID: PMC9232599 DOI: 10.1038/s41598-022-14956-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/15/2022] [Indexed: 11/24/2022] Open
Abstract
Resistance to bacteriophage infections protects bacteria in phage-replete environments, enabling them to survive and multiply in the presence of their viral predators. However, such resistance may confer costs for strains, reducing their ecological fitness as expressed as competitiveness for resources or virulence or both. There is limited knowledge about such costs paid by phage-resistant plant pathogenic bacteria in their natural habitats. This study analyzed the costs of phage resistance paid by the phytopathogenic pectinolytic bacterium Dickeya solani both in vitro and in potato (Solanum tuberosum L.) plants. Thirteen Tn5 mutants of D. solani IPO 2222 were identified that exhibited resistance to infection by lytic bacteriophage vB_Dsol_D5 (ΦD5). The genes disrupted in these mutants encoded proteins involved in the synthesis of bacterial envelope components (viz. LPS, EPS and capsule). Although phage resistance did not affect most of the phenotypes of ΦD5-resistant D. solani such as growth rate, production of effectors, swimming and swarming motility, use of various carbon and nitrogen sources and biofilm formation evaluated in vitro, all phage resistant mutants were significantly compromised in their ability to survive on leaf surfaces as well as to grow within and cause disease symptoms in potato plants.
Collapse
|
6
|
Miroshnikov KA, Evseev PV, Lukianova AA, Ignatov AN. Tailed Lytic Bacteriophages of Soft Rot Pectobacteriaceae. Microorganisms 2021; 9:1819. [PMID: 34576713 PMCID: PMC8472413 DOI: 10.3390/microorganisms9091819] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 02/07/2023] Open
Abstract
The study of the ecological and evolutionary traits of Soft Rot Pectobacteriaceae (SRP) comprising genera Pectobacterium and Dickeya often involves bacterial viruses (bacteriophages). Bacteriophages are considered to be a prospective tool for the ecologically safe and highly specific protection of plants and harvests from bacterial diseases. Information concerning bacteriophages has been growing rapidly in recent years, and this has included new genomics-based principles of taxonomic distribution. In this review, we summarise the data on phages infecting Pectobacterium and Dickeya that are available in publications and genomic databases. The analysis highlights not only major genomic properties that assign phages to taxonomic families and genera, but also the features that make them potentially suitable for phage control applications. Specifically, there is a discussion of the molecular mechanisms of receptor recognition by the phages and problems concerning the evolution of phage-resistant mutants.
Collapse
Affiliation(s)
- Konstantin A Miroshnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997 Moscow, Russia
- Timiryazev Agricultural Academy, Russian State Agrarian University, Timiryazevskaya Str., 49, 127434 Moscow, Russia
| | - Peter V Evseev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997 Moscow, Russia
| | - Anna A Lukianova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997 Moscow, Russia
- Timiryazev Agricultural Academy, Russian State Agrarian University, Timiryazevskaya Str., 49, 127434 Moscow, Russia
- Department of Biology, Lomonosov Moscow State University, Leninskie Gory, 1, bldg. 12, 119234 Moscow, Russia
| | - Alexander N Ignatov
- Timiryazev Agricultural Academy, Russian State Agrarian University, Timiryazevskaya Str., 49, 127434 Moscow, Russia
- Agrobiotechnology Department, Agrarian and Technological Institute, RUDN University, Miklukho-Maklaya Str., 6, 117198 Moscow, Russia
| |
Collapse
|
7
|
Bartnik P, Jafra S, Narajczyk M, Czaplewska P, Czajkowski R. Pectobacterium parmentieri SCC 3193 Mutants with Altered Synthesis of Cell Surface Polysaccharides Are Resistant to N4-Like Lytic Bacteriophage ϕA38 (vB_Ppp_A38) but Express Decreased Virulence in Potato ( Solanum tuberosum L.) Plants. Int J Mol Sci 2021; 22:7346. [PMID: 34298965 PMCID: PMC8304393 DOI: 10.3390/ijms22147346] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 01/15/2023] Open
Abstract
Pectobacterium parmentieri is a Gram-negative plant-pathogenic bacterium able to infect potato (Solanum tuberosum L.). Little is known about lytic bacteriophages infecting P. parmentieri and how phage-resistance influences the environmental fitness and virulence of this species. A lytic phage vB_Ppp_A38 (ϕA38) has been previously isolated and characterized as a potential biological control agent for the management of P. parmentieri. In this study, seven P. parmentieri SCC 3193 Tn5 mutants were identified that exhibited resistance to infection caused by vB_Ppp_A38 (ϕA38). The genes disrupted in these seven mutants encoded proteins involved in the assembly of O-antigen, sugar metabolism, and the production of bacterial capsule exopolysaccharides. The potential of A38-resistant P. parmentieri mutants for plant colonization and pathogenicity as well as other phenotypes expected to contribute to the ecological fitness of P. parmentieri, including growth rate, use of carbon and nitrogen sources, production of pectinolytic enzymes, proteases, cellulases, and siderophores, swimming and swarming motility, presence of capsule and flagella as well as the ability to form biofilm were assessed. Compared to the wild-type P. parmentieri strain, all phage-resistant mutants exhibited a reduced ability to colonize and to cause symptoms in growing potato (S. tuberosum L.) plants. The implications of bacteriophage resistance on the ecological fitness of P. parmentieri are discussed.
Collapse
Affiliation(s)
- Przemyslaw Bartnik
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, Antoniego Abrahama 58, 80-307 Gdansk, Poland;
| | - Sylwia Jafra
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, Antoniego Abrahama 58, 80-307 Gdansk, Poland;
| | - Magdalena Narajczyk
- Laboratory of Electron Microscopy, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland;
| | - Paulina Czaplewska
- Laboratory of Mass Spectrometry-Core Facility Laboratories, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, Antoniego Abrahama 58, 80-307 Gdansk, Poland;
| | - Robert Czajkowski
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, Antoniego Abrahama 58, 80-307 Gdansk, Poland;
| |
Collapse
|
8
|
Petrzik K, Kmoch M, Brázdová S, Ševčík R. Complete genome sequences of novel Berlinvirus and novel Certrevirus lytic for Pectobacterium sp. causing soft rot and black leg disease of potato. Virus Genes 2021; 57:302-305. [PMID: 33914264 DOI: 10.1007/s11262-021-01838-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/23/2021] [Indexed: 11/25/2022]
Abstract
Two novel dsDNA bacteriophages named Pectobacterium virus CB251 (PcCB251) and Pectobacterium virus CB7V (PcCB7V) targeting plant pathogen Pectobacterium parmentieri have been isolated and sequenced. The PcCB251 genome consists of 40,557 bp with G+C content of 48.6% and contains 47 predicted genes on a single strand. The phage is classified in genus Berlinvirus, family Autographiviridae. The PcCB7V phage has a circular dsDNA genome of 146,054 bp with G+C content of 50.4% and contains 269 predicted protein genes on both strands and 13 tRNA genes. The PcCB7V phage can be classified in genus Certrevirus, subfamily Vequintavirinae. Both novel bacteriophages have narrow host ranges, but they extend the list of candidates for phage-based control of pectolytic bacteria causing soft rot disease of potato.
Collapse
Affiliation(s)
- Karel Petrzik
- Department of Plant Virology, Institute of Plant Molecular Biology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, České Budějovice, Czech Republic.
| | - Martin Kmoch
- Potato Research Institute Havlíčkův Brod, Dobrovského 2366, Havlíčkův Brod, 580 01, Czech Republic
| | - Sára Brázdová
- Department of Plant Virology, Institute of Plant Molecular Biology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, České Budějovice, Czech Republic
| | - Rudolf Ševčík
- University of Chemistry and Technology Prague, Technická 1905/5, Prague 6-Dejvice, Prague, Czech Republic
| |
Collapse
|