1
|
Guo J, Lai Y, Yang Z, Song W, Zhou J, Li Z, Su W, Xiao S, Fang L. Coinfection and Nonrandom Recombination Drive the Evolution of Swine Enteric Coronaviruses. Emerg Microbes Infect 2024:2332653. [PMID: 38517703 DOI: 10.1080/22221751.2024.2332653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
Coinfection with multiple viruses is a common phenomenon in clinical settings and is a crucial driver of viral evolution. Although numerous studies have demonstrated viral recombination arising from coinfections of different strains of a specific species, the role of coinfections of different species or genera during viral evolution is rarely investigated. Here, we analyzed coinfections of and recombination events between four different swine enteric coronaviruses that infect the jejunum and ileum in pigs, including porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV), and swine acute diarrhea syndrome coronavirus (SADS-CoV), and a deltacoronavirus, porcine deltacoronavirus (PDCoV). Various coinfection patterns were observed in 4,468 fecal and intestinal tissue samples collected from pigs in a 4-year survey. PEDV/PDCoV was the most frequent coinfection. However, recombination analyses have only detected events involving PEDV/TGEV and SADS-CoV/TGEV, indicating that inter-species recombination among coronaviruses is most likely to occur within the same genus. We also analyzed recombination events within the newly identified genus Deltacoronavirus and found that sparrows have played a unique host role in the recombination history of the deltacoronaviruses. The emerging virus PDCoV, which can infect humans, has a different recombination history. In summary, our study demonstrates that swine enteric coronaviruses are a valuable model for investigating the relationship between viral coinfection and recombination, which provide new insights into both inter- and intraspecies recombination events among swine enteric coronaviruses, and extend our understanding of the relationship between coronavirus coinfection and recombination.
Collapse
Affiliation(s)
- Jiahui Guo
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Yinan Lai
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Zhixiang Yang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Wenbo Song
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Junwei Zhou
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Zhuang Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Wen Su
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University. Wuhan, Hubei, 430070, China
| | - Shaobo Xiao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Liurong Fang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| |
Collapse
|
2
|
Li Z, Xiao W, Yang Z, Guo J, Zhou J, Xiao S, Fang P, Fang L. Cleavage of HDAC6 to dampen its antiviral activity by nsp5 is a common strategy of swine enteric coronaviruses. J Virol 2024; 98:e0181423. [PMID: 38289103 PMCID: PMC10878235 DOI: 10.1128/jvi.01814-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 12/21/2023] [Indexed: 02/21/2024] Open
Abstract
HDAC6, a structurally and functionally unique member of the histone deacetylase (HDAC) family, is an important host factor that restricts viral infection. The broad-spectrum antiviral activity of HDAC6 makes it a potent antiviral agent. Previously, we found that HDAC6 functions to antagonize porcine deltacoronavirus (PDCoV), an emerging enteropathogenic coronavirus with zoonotic potential. However, the final outcome is typically a productive infection that materializes as cells succumb to viral infection, indicating that the virus has evolved sophisticated mechanisms to combat the antiviral effect of HDAC6. Here, we demonstrate that PDCoV nonstructural protein 5 (nsp5) can cleave HDAC6 at glutamine 519 (Q519), and cleavage of HDAC6 was also detected in the context of PDCoV infection. More importantly, the anti-PDCoV activity of HDAC6 was damaged by nsp5 cleavage. Mechanistically, the cleaved HDAC6 fragments (amino acids 1-519 and 520-1159) lost the ability to degrade PDCoV nsp8 due to their impaired deacetylase activity. Furthermore, nsp5-mediated cleavage impaired the ability of HDAC6 to activate RIG-I-mediated interferon responses. We also tested three other swine enteric coronaviruses (transmissible gastroenteritis virus, porcine epidemic diarrhea virus, and swine acute diarrhea syndrome-coronavirus) and found that all these coronaviruses have adopted similar mechanisms to cleave HDAC6 in both an overexpression system and virus-infected cells, suggesting that cleavage of HDAC6 is a common strategy utilized by swine enteric coronaviruses to antagonize the host's antiviral capacity. Together, these data illustrate how swine enteric coronaviruses antagonize the antiviral function of HDAC6 to maintain their infection, providing new insights to the interaction between virus and host.IMPORTANCEViral infections and host defenses are in constant opposition. Once viruses combat or evade host restriction, productive infection is achieved. HDAC6 is a broad-spectrum antiviral protein that has been demonstrated to inhibit many viruses, including porcine deltacoronavirus (PDCoV). However, whether HDAC6 is reciprocally targeted and disabled by viruses remains unclear. In this study, we used PDCoV as a model and found that HDAC6 is targeted and cleaved by nsp5, a viral 3C-like protease. The cleaved HDAC6 loses its deacetylase activity as well as its ability to degrade viral proteins and activate interferon responses. Furthermore, this cleavage mechanism is shared among other swine enteric coronaviruses. These findings shed light on the intricate interplay between viruses and HDAC6, highlighting the strategies employed by viruses to evade host antiviral defenses.
Collapse
Affiliation(s)
- Zhuang Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Wenwen Xiao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Zhixiang Yang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Jiahui Guo
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Junwei Zhou
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Shaobo Xiao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Puxian Fang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Liurong Fang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
3
|
Fang P, Zhang H, Cheng T, Ding T, Xia S, Xiao W, Li Z, Xiao S, Fang L. Porcine deltacoronavirus accessory protein NS6 harnesses VPS35-mediated retrograde trafficking to facilitate efficient viral infection. J Virol 2023; 97:e0095723. [PMID: 37815351 PMCID: PMC10617406 DOI: 10.1128/jvi.00957-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/01/2023] [Indexed: 10/11/2023] Open
Abstract
IMPORTANCE Retrograde transport has been reported to be closely associated with normal cellular biological processes and viral replication. As an emerging enteropathogenic coronavirus with zoonotic potential, porcine deltacoronavirus (PDCoV) has attracted considerable attention. However, whether retrograde transport is associated with PDCoV infection remains unclear. Our present study demonstrates that retromer protein VPS35 acts as a critical host factor that is required for PDCoV infection. Mechanically, VPS35 interacts with PDCoV NS6, mediating the retrograde transport of NS6 from endosomes to the Golgi and preventing it from lysosomal degradation. Recombinant PDCoVs with an NS6 deletion display resistance to VPS35 deficiency. Our work reveals a novel evasion mechanism of PDCoV that involves the manipulation of the retrograde transport pathway by VPS35, providing new insight into the mechanism of PDCoV infection.
Collapse
Affiliation(s)
- Puxian Fang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Huichang Zhang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Ting Cheng
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Tong Ding
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - SiJin Xia
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Wenwen Xiao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Zhuang Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Shaobo Xiao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Liurong Fang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
4
|
Zhang Y, Chen H, Yu J, Feng R, Chen Z, Zhang X, Ren Y, Yang G, Huang X, Li G. Comparative transcriptomic analysis of porcine epidemic diarrhea virus epidemic and classical strains in IPEC-J2 cells. Vet Microbiol 2022; 273:109540. [PMID: 35987184 DOI: 10.1016/j.vetmic.2022.109540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 08/01/2022] [Accepted: 08/07/2022] [Indexed: 11/15/2022]
Abstract
In recent years, porcine epidemic diarrhea (PED) has become widespread and caused huge economic losses for the global pig industry. There is growing evidence that frequent outbreaks of diarrhea are caused by the variants of porcine epidemic diarrhea virus (PEDV) with high pathogenicity. Herein, an epidemic strain of PEDV HLJ strain was isolated and characterized from Heilongjiang Province of China, and the whole genomic expression profile of intestinal porcine epithelial cells (IPEC-J2) infected with HLJ strain was investigated in comparison with classical CV777 strain. A total of 26,851 genes were identified, of these, 25,880 were known genes and 971 were novel genes. There were 258 differentially expressed genes (DEGs) identified between PEDV HLJ-infected and uninfected cells at 24 h post infection (hpi), and 201 DEGs between PEDV HLJ and CV777 infection. A comparative analysis revealed that 258 DEGs were enriched in 468 gene ontology (GO) terms and mapped to 179 KEGG pathways, and 201 DEGs in 1120 GO terms and mapped to 115 KEGG pathways for HLJ-infected cells in contrast to the uninfected and CV777-infected cells, respectively. Specifically, PEDV HLJ strain could activate anti-viral innate immune response and inflammation more intensively than CV777, in which mRNA levels of interferon (IFN-β), chemokines (CCL5 and CXCL10) and pro-inflammatory cytokines (IL-8 and TNF-α) were induced earlier and more strongly. Subsequently, 20 DEGs and 5 proteins were selected and validated by real-time fluorescence quantitative PCR (RT-qPCR) and western blot, and the results were consistent with the transcriptomic analysis. Overall, this study may be helpful for understanding the pathogenesis mechanism of PEDV variants, and contribute to the effective prevention and control of PEDV infection.
Collapse
Affiliation(s)
- Yue Zhang
- Veterinary Pathology Laboratory, College of Veterinary Medicine, Heilongjiang Key Laboratory for Animal and Comparative Medicine, Northeast Agricultural University, Harbin, China
| | - Huijie Chen
- Veterinary Pathology Laboratory, College of Veterinary Medicine, Heilongjiang Key Laboratory for Animal and Comparative Medicine, Northeast Agricultural University, Harbin, China; College of Biological and Pharmaceutical Engineering, Jilin Agriculture Science and Technology University, Jilin, China
| | - Jia Yu
- Veterinary Pathology Laboratory, College of Veterinary Medicine, Heilongjiang Key Laboratory for Animal and Comparative Medicine, Northeast Agricultural University, Harbin, China
| | - Rui Feng
- Veterinary Pathology Laboratory, College of Veterinary Medicine, Heilongjiang Key Laboratory for Animal and Comparative Medicine, Northeast Agricultural University, Harbin, China
| | - Zhao Chen
- Veterinary Pathology Laboratory, College of Veterinary Medicine, Heilongjiang Key Laboratory for Animal and Comparative Medicine, Northeast Agricultural University, Harbin, China
| | - Xiaolin Zhang
- Veterinary Pathology Laboratory, College of Veterinary Medicine, Heilongjiang Key Laboratory for Animal and Comparative Medicine, Northeast Agricultural University, Harbin, China
| | - Yudong Ren
- Department of Computer Science and Technology, College of Electrical and Information Technology, Northeast Agricultural University, Harbin 150030, China
| | - Guijun Yang
- Veterinary Pathology Laboratory, College of Veterinary Medicine, Heilongjiang Key Laboratory for Animal and Comparative Medicine, Northeast Agricultural University, Harbin, China
| | - Xiaodan Huang
- Veterinary Pathology Laboratory, College of Veterinary Medicine, Heilongjiang Key Laboratory for Animal and Comparative Medicine, Northeast Agricultural University, Harbin, China.
| | - Guangxing Li
- Veterinary Pathology Laboratory, College of Veterinary Medicine, Heilongjiang Key Laboratory for Animal and Comparative Medicine, Northeast Agricultural University, Harbin, China.
| |
Collapse
|
5
|
Abstract
In the 21st century, several human and swine coronaviruses (CoVs) have emerged suddenly and caused great damage to people's lives and property. The porcine epidemic diarrhea virus (PEDV), leading to enormous economic losses to the pork industry and remains a large challenge. PEDV showed extensive cell tropism, and we cannot ignore the potential risk of cross-species transmission. However, the mechanism of adaptation and cell tropism of PEDV remains largely unknown and in vitro isolation of PEDV remains a huge challenge, which seriously impedes the development of vaccines. In this study, we confirmed that the spike (S) protein determines the adaptability of PEDV to monkey Vero cells and LLC-PK1 porcine cells, and isolated exchange of S1 and S2 subunits of adaptive strains did not make PEDV adapt to cells. Further, we found that the cellular adaptability of rCH/SX/2016-SHNXP depends on S1 and the first half of S2 (S3), and the 803L and 976H of the S2 subunit are critical for rCH/SX/2016-S1HNXP+S3HNXP adaptation to Vero cells. These findings highlight the decisive role of PEDV S protein in cell tropism and the potential role of coronaviruses S protein in cross-species transmissibility. Besides, our work also provides some different insight into finding PEDV receptors and developing PEDV and other coronaviruses vaccines. IMPORTANCE CoVs can spill from an animal reservoir into a naive host to cause diseases in humans or domestic animals. PEDV results in high mortality in piglets, which has caused immense economic losses in the pork industry. Virus isolation is the first step in studying viral pathogenesis and developing effective vaccines. However, the molecular mechanism of PEDV cell tropism is largely unknown, and isolation of endemic PEDV strains remains a major challenge. This study confirmed that the S gene is the decisive gene of PEDV adaptability to monkey Vero cells and porcine LLC-PK1 cells by the PEDV reverse genetics system. Isolated exchange of S1 and S2 of adaptive strains did not make PEDV adapt to cells, and the 803L and 976H of S2 subunit are critical for rCH/SX/2016-S1HNXP+S3HNXP adaptation to Vero cells. These results illustrate the decisive role of PEDV S protein in cell tropism and highlight the potential role of coronaviruses S protein in cross-species transmissibility. Besides, our finding also provides some unique insight into identifying PEDV functional receptors and has guiding significance for developing PEDV and other coronavirus vaccines.
Collapse
|
6
|
Wang H, Qin Y, Zhao W, Yuan T, Yang C, Mi X, Zhao P, Lu Y, Lu B, Chen Z, He Y, Yang C, Yi X, Wu Z, Chen Y, Wei Z, Huang W, Ouyang K. Genetic Characteristics and Pathogenicity of a Novel Porcine Deltacoronavirus Southeast Asia-Like Strain Found in China. Front Vet Sci 2021; 8:701612. [PMID: 34336982 PMCID: PMC8322666 DOI: 10.3389/fvets.2021.701612] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/22/2021] [Indexed: 11/13/2022] Open
Abstract
Farmers involved in the lucrative pork trading business between China and Southeast Asian countries should be aware of a recently discovered novel porcine deltacoronavirus (PDCoV) in Guangxi province, China. A PDCoV strain, CHN/GX/1468B/2017, was isolated from the small intestinal contents of piglets with diarrhea from this region, with a titer of 1 × 108.0 TCID50/mL on LLC-PK cells. The full-length genome sequence consists of 25,399 nt as determined by next-generation sequencing and this was deposited in the GenBank (accession number MN025260.1). Genomic analysis showed that CHN/GX/1468B/2017 strain had 96.9~99.4% nucleotide homology with other 87 referenced PDCoV strains from different areas, and contained 6 and 9-nt deletions at positions 1,733~1,738 and 2,804~2,812, respectively, in the ORF1a gene. Phylogenetic analyses based on the whole gene sequence as well as S protein and ORF1a/1b protein sequences all showed that this strain was closely related to the Southeast Asia strain. When 7-day-old piglets were inoculated orally with the CHN/GX/1468B/2017 strain, they developed severe diarrhea, with a peak of fecal viral shedding at 4 days post-infection. Although no death or fever were observed, the CHN/GX/1468B/2017 strain produced a wide range of tissue tropism, with the main target being the intestine. Importantly, the VH:CD ratios of the jejunum and ileum in infected piglets were significantly lower than controls. These results indicate that CHN/GX/1468B/2017, isolated in China, is a novel PDCoV Southeast Asia-like strain with distinct genetic characteristics and pathogenicity. This finding enriches the international information on the genetic diversity of PDCoV.
Collapse
Affiliation(s)
- Hejie Wang
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yibin Qin
- Department of Virology, Guangxi Veterinary Research Institute, Nanning, China
| | - Wu Zhao
- Department of Virology, Guangxi Veterinary Research Institute, Nanning, China
| | - Tingting Yuan
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Chunjie Yang
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Xue Mi
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Ping Zhao
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Ying Lu
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Bingxia Lu
- Department of Virology, Guangxi Veterinary Research Institute, Nanning, China
| | - Zhongwei Chen
- Department of Virology, Guangxi Veterinary Research Institute, Nanning, China
| | - Ying He
- Department of Virology, Guangxi Veterinary Research Institute, Nanning, China
| | - Cui Yang
- Guangxi Key Laboratory of Livestock Genetic Improvement, Guangxi Institute of Animal Science, Nanning, China
| | - Xianfeng Yi
- Guangxi Key Laboratory of Livestock Genetic Improvement, Guangxi Institute of Animal Science, Nanning, China
| | - Zhuyue Wu
- Guangxi Key Laboratory of Livestock Genetic Improvement, Guangxi Institute of Animal Science, Nanning, China
| | - Ying Chen
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Zuzhang Wei
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Weijian Huang
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Kang Ouyang
- College of Animal Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|