1
|
Li S, Ma Z, Zhang X, Cai Y, Han C, Wu X. Sixteen Novel Mycoviruses Containing Positive Single-Stranded RNA, Double-Stranded RNA, and Negative Single-Stranded RNA Genomes Co-Infect a Single Strain of Rhizoctonia zeae. J Fungi (Basel) 2023; 10:30. [PMID: 38248940 PMCID: PMC10817634 DOI: 10.3390/jof10010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
In the present study, sixteen novel RNA mycoviruses co-infecting a single strain of Rhizoctonia zeae (strain D40) were identified and molecularly characterized using metatranscriptome sequencing combined with a method for rapid amplification of cDNA ends. The fungal strain was isolated from diseased seedlings of sugar beet with damping-off symptoms. Based on genome analysis and phylogenetic analysis of amino acid sequences of RNA-dependent RNA polymerase, the sixteen mycoviruses associated with strain D40 contained three genome types with nine distinct lineages, including positive single-stranded RNA (Hypoviridae, Yadokariviridae, Botourmiaviridae, and Gammaflexiviridae), double-stranded RNA (Phlegiviridae, Megabirnaviridae, Megatotiviridae, and Yadonushiviridae), and negative single-stranded RNA (Tulasviridae), suggesting a complex composition of a mycoviral community in this single strain of R. zeae (strain D40). Full genome sequences of six novel mycoviruses and the nearly full-length sequences of the remaining ten novel mycoviruses were obtained. Furthermore, seven of these sixteen mycoviruses were confirmed to assemble virus particles present in the R. zeae strain D40. To the best of our knowledge, this is the first detailed study of mycoviruses infecting R. zeae.
Collapse
Affiliation(s)
| | | | | | | | | | - Xuehong Wu
- College of Plant Protection, China Agricultural University, Haidian District, Beijing 100193, China; (S.L.); (Z.M.); (X.Z.); (Y.C.); (C.H.)
| |
Collapse
|
2
|
Gao F, Anane RF, Liu Z, Zi S, Li S, Yang Z, Chu B, Chen X, Chen Z, Zhao M. Complete genome sequence of a novel fusarivirus from the phytopathogenic fungus Fusarium sp. Arch Virol 2023; 168:248. [PMID: 37682357 DOI: 10.1007/s00705-023-05872-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 08/04/2023] [Indexed: 09/09/2023]
Abstract
Fusarium diseases include wilts, blights, rots, and cankers of many horticultural, field, ornamental, and forest crops in both agricultural and natural ecosystems, and they significantly hinder food plant production. Here, we describe a novel mycovirus, tentatively designated as "Fusarium fusarivirus 1" (FuFV1), which was discovered in an isolate of the phytopathogenic fungus Fusarium sp. FuFV1 has a positive-sense single-stranded RNA (+ssRNA) genome of 6,391 nucleotides (nt) containing three open reading frames (ORFs). ORF1 encodes a large polypeptide of 1,501 amino acids (aa) with conserved RNA-dependent RNA polymerase (RdRp) and helicase (Hel) domains. ORF2, overlapping ORF1 by 122 nucleotides, encodes a polypeptide with a conserved Smc domain. The third and smaller ORF (ORF3) encodes a polypeptide with an unknown function. BLASTp analysis of the ORF1-encoded polypeptide revealed that FuFV1 shares the highest aa sequence similarity (68.5% identity, E-value 0.0) with Fusarium poae fusarivirus 1 (FpFV1, genus Alphafusarivirus). Phylogenetic analysis of the RdRp and helicase (Hel) sequences indicated that FuFV1 clustered closely with FpFV1 in a separate branch within the clade containing members of the genus Alphafusarivirus. Based on these results, we propose that FuFV1 should be considered a novel mycovirus belonging to the genus Alphafusarivirus of the family Fusariviridae.
Collapse
Affiliation(s)
- Fuhong Gao
- Yunnan Tobacco Company Kunming Branch, No. 523, Beijing Road, Panlong District, Kunming, 650051, Yunnan, China
| | - Rex Frimpong Anane
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, 23 Innovation Walk, Clayton, VIC, 3800, Australia
| | - Zhengling Liu
- Yunnan Tobacco Company Kunming Branch, No. 523, Beijing Road, Panlong District, Kunming, 650051, Yunnan, China
| | - Shaomei Zi
- Key Laboratory for Agricultural Biodiversity for Pest Management of China, Ministry of Education, Yunnan Agricultural University, No. 95, Jinhei Road, Panlong District, Kunming, 650201, Yunnan, China
| | - Shangyun Li
- Key Laboratory for Agricultural Biodiversity for Pest Management of China, Ministry of Education, Yunnan Agricultural University, No. 95, Jinhei Road, Panlong District, Kunming, 650201, Yunnan, China
- College of Agronomy and Biotechnology, Yunnan Agricultural University, No. 95, Jinhei Road, Panlong District, Kunming, 650201, Yunnan, China
| | - Zefen Yang
- Key Laboratory for Agricultural Biodiversity for Pest Management of China, Ministry of Education, Yunnan Agricultural University, No. 95, Jinhei Road, Panlong District, Kunming, 650201, Yunnan, China
- College of Agronomy and Biotechnology, Yunnan Agricultural University, No. 95, Jinhei Road, Panlong District, Kunming, 650201, Yunnan, China
| | - Bifan Chu
- Key Laboratory for Agricultural Biodiversity for Pest Management of China, Ministry of Education, Yunnan Agricultural University, No. 95, Jinhei Road, Panlong District, Kunming, 650201, Yunnan, China
| | - Xingquan Chen
- Key Laboratory for Agricultural Biodiversity for Pest Management of China, Ministry of Education, Yunnan Agricultural University, No. 95, Jinhei Road, Panlong District, Kunming, 650201, Yunnan, China
| | - Zeli Chen
- College of Agronomy and Biotechnology, Yunnan Agricultural University, No. 95, Jinhei Road, Panlong District, Kunming, 650201, Yunnan, China.
- Quality Standard and Testing Technology Research Institute, Yunnan Academy of Agricultural Sciences, Beijing Road, Kunming, 2238650205, NoYunnan, China.
| | - Mingfu Zhao
- Key Laboratory for Agricultural Biodiversity for Pest Management of China, Ministry of Education, Yunnan Agricultural University, No. 95, Jinhei Road, Panlong District, Kunming, 650201, Yunnan, China.
| |
Collapse
|