1
|
Lai DC, Le DKT, Nguyen TH, Van Thach M, Hue VT, Van Le P, Ngo TNT, Nguyen NM, Do DT. Molecular evolution and genotype shift of Porcine circoviruses type 2 in Vietnam. Vet Res Commun 2024; 48:4097-4103. [PMID: 39243305 DOI: 10.1007/s11259-024-10521-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/26/2024] [Indexed: 09/09/2024]
Abstract
Porcine Circovirus Type 2 (PCV2), a significant pathogen in the global swine industry, causes Porcine Circovirus Associated Diseases (PCVAD), contributing to substantial economic losses. This study investigates the genetic diversity and evolutionary dynamics of PCV2 in Vietnam from 2007 to 2023. We sequenced and analyzed 47 PCV2 genomes isolated from swine farms across Vietnam between 2022 and 2023, revealing predominant circulation of PCV2d (80.85%) followed by PCV2b (19.15%). Phylogenetic analysis identified PCV2 genotypes PCV2a, PCV2b, PCV2d, PCV2g, and PCV2h circulating in Vietnam, with PCV2d emerging as the most prevalent genotype. Comparison with historical data highlighted genotype shifts from PCV2b to PCV2d in 2014. Interestingly, PCV2h genotype was mainly observed between 2008 and 2012 but have not been detected since 2014. Regional analysis indicated varied PCV2 epidemiological patterns between northern and southern Vietnam. Amino acid substitutions within the capsid protein were identified, predominantly in antigenic regions critical for immune recognition. Positive selection analysis identified multiple sites under evolutionary pressure, indicating ongoing adaptation of Vietnamese PCV2 strains. These findings enhance understanding of PCV2 dynamics in Vietnam and underscore the importance of continuous surveillance and adaptive management strategies in controlling PCV2-associated diseases in swine populations.
Collapse
Affiliation(s)
- Danh Cong Lai
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Dung Khanh Thi Le
- Department of Infectious Disease and Veterinary Public Health, Faculty of Animal Husbandry and Veterinary Medicine, Nong Lam University, Ho Chi Minh City, Vietnam
| | | | | | - Vo Thi Hue
- Zoetis Vietnam Company, Ho Chi Minh City, Vietnam
| | - Phan Van Le
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Ha Noi, Vietnam
| | - Tram Ngoc Thi Ngo
- Department of Infectious Disease and Veterinary Public Health, Faculty of Animal Husbandry and Veterinary Medicine, Nong Lam University, Ho Chi Minh City, Vietnam
| | - Nam Minh Nguyen
- Department of Biomedical Engineering, School of Medicine, Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, Vietnam
| | - Duy Tien Do
- Department of Infectious Disease and Veterinary Public Health, Faculty of Animal Husbandry and Veterinary Medicine, Nong Lam University, Ho Chi Minh City, Vietnam.
- Faculty of Animal Science and Veterinary Medicine, Nong Lam University (NLU), HCMC, quarter 6, Linh Trung ward, Thu Duc City, Vietnam.
| |
Collapse
|
2
|
Pan H, Huan C, Hou Y, Yan P, Yang F, Jiang L, Gao S. Porcine IGFBP3 promotes porcine circovirus type 2 replication via PERK/eIF2α mediated DNA damage. Vet Microbiol 2023; 287:109897. [PMID: 37922860 DOI: 10.1016/j.vetmic.2023.109897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/07/2023]
Abstract
The infection of porcine circovirus type 2 (PCV2) triggers activation of the protein kinase RNA-like endoplasmic reticulum kinase (PERK) pathway and leads to DNA damage. Insulin-like growth factor-binding protein 3 (IGFBP3) may interact with the endoplasmic reticulum (ER). It remains unclear whether IGFBP3 regulates DNA damage via ER stress to mediate PCV2 replication. In this study, we observed an upregulation of porcine IGFBP3 expression during PCV2 infection, and overexpression of IGFBP3 enhanced the expression of PCV2 Cap protein, PCV2 DNA copy number, and viral titers in PK-15 B6 cells and 3D4/21 cells. Additionally, overexpression of IGFBP3 induced an increase in the DNA damage marker γH2AX by activating the PERK/eIF2α pathway without concomitant activation of ATF4, IRE1α, and ATF6α/GRP78 pathways in PK-15 B6 cells and 3D4/21 cells. Knockdown of IGFBP3 had a reverse effect on PCV2 replication in PK-15 B6 cells and 3D4/21 cells. Furthermore, treatment with etoposide enhanced PCV2 replication while KU57788 decreased it. GSK2606414 and salubrinal limited both DNA damage and viral replication. Therefore, our findings suggest that porcine IGFBP3 promotes PCV2 replication through the PERK/eIF2α pathway-mediated induction of DNA damage in PK-15 B6 cells and 3D4/21 cells. Our study provides a basis for exploring novel antiviral strategies via the extensive understanding of the relationships between host cellular proteins and viral replication.
Collapse
Affiliation(s)
- Haochun Pan
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou 225009, Jiangsu, China
| | - Changchao Huan
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou 225009, Jiangsu, China
| | - Yutong Hou
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou 225009, Jiangsu, China
| | - Ping Yan
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou 225009, Jiangsu, China
| | - Fan Yang
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou 225009, Jiangsu, China
| | - Luyao Jiang
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou 225009, Jiangsu, China
| | - Song Gao
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, China.
| |
Collapse
|
3
|
Lai DC, Nguyen DMT, Nguyen TT, Ngo TNT, Do DT. Co-circulation and genetic characteristics of porcine circoviruses in postweaning multisystemic wasting syndrome cases in commercial swine farms. Virusdisease 2023; 34:531-538. [PMID: 38046060 PMCID: PMC10686971 DOI: 10.1007/s13337-023-00849-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/25/2023] [Indexed: 12/05/2023] Open
Abstract
This study aimed to investigate the co-infection and genetic characteristics of Porcine circoviruses in PMWS-affected pigs in five commercial farrow-to-finish swine farms in Vietnam. By the end of 2022, the percentage of PMWS-affected pigs in these farms has increased significantly compared to previous years. The lymph node samples from ten PMWS typical cases were randomly collected to test for the presence of PRRSV, PCV2, PCV3 and PCV4. While PRRSV and PCV4 were not found in these cases, 10 and 3 out of 10 samples were positive for PCV2 and PCV3, respectively. Three farms in the study showed the co-infection of PCV2 and PCV3 in affected pigs. Besides, all PCV-positive samples were sequenced to evaluate genetic characterization of PCVs in PMWS-affected cases. Phylogenetic analysis showed that all PCV3 strains in the study were clustered into PCV3b genotype. 8 out of 10 PCV2 strains belonged to PCV2d genotype while the remaining two strains belonged to PCV2b genotypes. Two farms had co-circulation of PCV2b and PCV2d genotypes in two different age groups of pigs, which is reported for the first time in Vietnam. Several amino acid substitutions were identified in important antigenic regions in the capsid protein of the PCV2 field strains compared to vaccine strains. Taken together, the results showed the high co-prevalence of PCV3 and PCV2, and the wide genetic diversity of PCV2 field and vaccine strains may be the cause of the increased PMWS situation in these pig farms. Supplementary Information The online version contains supplementary material available at 10.1007/s13337-023-00849-4.
Collapse
Affiliation(s)
- Danh Cong Lai
- Faculty of Animal Science and Veterinary Medicine, Nong Lam University - HCMC (NLU), Quarter 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583 USA
| | - Duyen My Thi Nguyen
- Faculty of Animal Science and Veterinary Medicine, Nong Lam University - HCMC (NLU), Quarter 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Toan Tat Nguyen
- Faculty of Animal Science and Veterinary Medicine, Nong Lam University - HCMC (NLU), Quarter 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Tram Ngoc Thi Ngo
- Faculty of Animal Science and Veterinary Medicine, Nong Lam University - HCMC (NLU), Quarter 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Duy Tien Do
- Faculty of Animal Science and Veterinary Medicine, Nong Lam University - HCMC (NLU), Quarter 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| |
Collapse
|
4
|
Sirisereewan C, Nguyen TC, Janetanakit T, Kedkovid R, Thanawongnuwech R. Emergence of novel porcine circovirus 2d strains in Thailand, 2019-2020. Front Vet Sci 2023; 10:1170499. [PMID: 37408832 PMCID: PMC10318142 DOI: 10.3389/fvets.2023.1170499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/05/2023] [Indexed: 07/07/2023] Open
Abstract
Porcine circovirus 2 (PCV2) has been recognized as a causative agent of porcine circovirus diseases (PCVDs) affecting the global swine industry. In this study, the genetic diversity of PCV2 strains circulating in Thailand between 2019 and 2020 was investigated using 742 swine clinical samples from 145 farms. The results showed PCV2-positive rates of 54.2% (402/742) and 81.4% (118/145) at the sample and farm levels, respectively. Genetic analysis of 51 Thai PCV2 genomic sequences showed that 84.3% (43/51) was PCV2d, 13.7% (7/51) was PCV2b and 1.9% (1/51) was PCV2b/2d recombinant virus. Surprisingly, the majority of the Thai PCV2d sequences from this study (69.77%, 30/43) formed a novel cluster on a phylogenetic tree and contained a unique 133HDAM136 on the ORF2 deduced amino acid sequence, which is in one of the previously identified immunoreactive domains strongly involved in virus neutralization. The PCV2b/2d recombinant virus also carried 133HDAM136. The emergence of the novel PCV2d strains predominating in Thailand was discussed. This study highlights the need for further investigations on the spreading of these PCV2d strains in other regions and the efficacy of current commercial vaccines.
Collapse
Affiliation(s)
- Chaitawat Sirisereewan
- Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Thanh Che Nguyen
- The International Graduate Program of Veterinary Science and Technology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Taveesak Janetanakit
- Center of Excellence for Emerging and Re-emerging Infectious Diseases in Animals and One Health Research Cluster, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Roongtham Kedkovid
- Department of Veterinary Medicine, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Swine Reproduction, Chulalongkorn University, Bangkok, Thailand
| | - Roongroje Thanawongnuwech
- Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence for Emerging and Re-emerging Infectious Diseases in Animals and One Health Research Cluster, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
5
|
Du Q, Shi T, Wang H, Zhu C, Yang N, Tong D, Huang Y. The ultrasonically treated nanoliposomes containing PCV2 DNA vaccine expressing gC1qR binding site mutant Cap is efficient in mice. Front Microbiol 2023; 13:1077026. [PMID: 36713188 PMCID: PMC9874303 DOI: 10.3389/fmicb.2022.1077026] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/28/2022] [Indexed: 01/12/2023] Open
Abstract
Nowadays, vaccines are broadly used to prevent porcine circovirus type 2 (PCV2) infection-induced expenditures, but the virus is still spreading among pigs. The current PCV2 vaccines all rely on the immunogenicity of Cap, yet our previous studies found that Cap is also the major component mediating the PCV2 infection-induced immune suppression through its interaction with host gC1qR. Thereby, new vaccines are still necessary for PCV2 prevention and control. In this study, we constructed a new PCV2 DNA vaccine expressing the gC1qR binding site mutant Cap. We introduced the Intron A and WPRE elements into the vector to improve the Cap expression level, and fused the IL-2 secretory signal peptides to the N-terminal of Cap to mediate the secretion of Cap. We also screened and selected chemokines CXCL12, CCL22, and CCL25 to migrate dendritic cells. In addition, we contained the vectors with PEI and then ultrasonic them into nano size to enhance the entrance of the vectors. Finally, the animal experiments showed that the new PCV2 DNA vaccine expressing the gC1qR binding site mutant Cap could induce stronger humoral and cellular immune responses than the PCV2 DNA vaccine expressing the wild-type Cap and the non-ultrasonic treated PCV2 DNA vaccine in mice, and protect the mice from PCV2 infection and lung lesions. The results indicate the new PCV2 DNA vaccine expressing the gC1qR binding site mutant Cap has a certain development value, and provide new insight into the development of novel PCV2 vaccines.
Collapse
Affiliation(s)
- Qian Du
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China,Engineering Research Center of Efficient New Vaccines for Animals, Ministry of Education, Xianyang, China
| | - Tengfei Shi
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China,Engineering Research Center of Efficient New Vaccines for Animals, Ministry of Education, Xianyang, China
| | - Huaxin Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China,Engineering Research Center of Efficient New Vaccines for Animals, Ministry of Education, Xianyang, China
| | - Changlei Zhu
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China,Engineering Research Center of Efficient New Vaccines for Animals, Ministry of Education, Xianyang, China
| | - Nan Yang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China,Engineering Research Center of Efficient New Vaccines for Animals, Ministry of Education, Xianyang, China
| | - Dewen Tong
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China,Engineering Research Center of Efficient New Vaccines for Animals, Ministry of Education, Xianyang, China,*Correspondence: Dewen Tong,
| | - Yong Huang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China,Engineering Research Center of Efficient New Vaccines for Animals, Ministry of Education, Xianyang, China,Yong Huang,
| |
Collapse
|
6
|
Zhang X, Chen S, Li X, Zhang L, Ren L. Flavonoids as Potential Antiviral Agents for Porcine Viruses. Pharmaceutics 2022; 14:pharmaceutics14091793. [PMID: 36145539 PMCID: PMC9501777 DOI: 10.3390/pharmaceutics14091793] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/20/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Flavonoids are types of natural substances with phenolic structures isolated from a variety of plants. Flavonoids have antioxidant, anti-inflammatory, anticancer, and antiviral activities. Although most of the research or applications of flavonoids are focused on human diseases, flavonoids also show potential applicability against porcine virus infection. This review focuses on the recent progress in antiviral mechanisms of potential flavonoids against the most common porcine viruses. The mechanism discussed in this paper may provide a theoretical basis for drug screening and application of natural flavonoid compounds and flavonoid-containing herbs to control porcine virus infection and guide the research and development of pig feed additives.
Collapse
|