1
|
Efeoglu C, Taskin S, Selcuk O, Celik B, Tumkaya E, Ece A, Sari H, Seferoglu Z, Ayaz F, Nural Y. Synthesis, anti-inflammatory activity, inverse molecular docking, and acid dissociation constants of new naphthoquinone-thiazole hybrids. Bioorg Med Chem 2023; 95:117510. [PMID: 37926047 DOI: 10.1016/j.bmc.2023.117510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
Chronic Inflammation is associated with various types of diseases that involves pro-inflammatory cytokines like IL-6 and TNF-α. High costs and serious side effects of available anti-inflammatory/immunomodulatory drugs led us to design new compounds with promising anti-inflammatory activities. Many drugs and biologically important compounds involve naphthoquinone and thiazole moieties in their core structures. Thereby, here we report the synthesis, characterization and anti-inflammatory activities of new naphthoquinone thiazole hybrids by reaction of naphthoquinone acyl thioureas with various α-bromoketone derivatives. The position of NO2 group in one of the phenyl rings of naphthoquinone thiazole hybrids was changed while different substituents were introduced at the para position of the second phenyl ring. All compounds were tested for potential immunomodulatory effect. No inflammatory cytokines were observed in the absence of LPS stimulant. On the other hand, they had promising anti-inflammatory immunomodulatory activities by being able to decrease the production of the pro-inflammatory cytokines (TNF-α and IL-6) in the LPS-stimulated cells. In an effort to find the possible mechanism of action, several enzymes involved in signalling pathways that play critical roles in inflammatory responses were screened in silico. Subsequent to inverse molecular docking approach, PI3K was predicted be the potential target. The docked complexes of the most potent compounds 5g and 5i were subjected to molecular dynamics simulation to assess the binding stability of the igands with the putative target. Acid dissociation constants (pKa) of the products were also determined potentiometrically.
Collapse
Affiliation(s)
- Cagla Efeoglu
- Department of Analytical Chemistry, Faculty of Pharmacy, Mersin University, Mersin TR-33169, Türkiye
| | - Sena Taskin
- Department of Analytical Chemistry, Faculty of Pharmacy, Biruni University, İstanbul 34010, Türkiye
| | - Ozge Selcuk
- Department of Analytical Chemistry, Faculty of Pharmacy, Mersin University, Mersin TR-33169, Türkiye
| | - Begum Celik
- Department of Biotechnology, Faculty of Arts and Science, Mersin University, TR-33440 Mersin, Türkiye; Mersin University Biotechnology Research and Application Center, Mersin University, TR-33440 Mersin, Türkiye
| | - Ece Tumkaya
- Department of Biotechnology, Faculty of Arts and Science, Mersin University, TR-33440 Mersin, Türkiye; Mersin University Biotechnology Research and Application Center, Mersin University, TR-33440 Mersin, Türkiye
| | - Abdulilah Ece
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Biruni University, İstanbul 34010, Türkiye.
| | - Hayati Sari
- Department of Chemistry, Faculty of Science and Arts, Gaziosmanpasa University, 60250 Tokat, Türkiye
| | - Zeynel Seferoglu
- Department of Chemistry, Faculty of Science, Gazi University, TR-06560 Ankara, Türkiye
| | - Furkan Ayaz
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Biruni University, İstanbul 34010, Türkiye.
| | - Yahya Nural
- Department of Analytical Chemistry, Faculty of Pharmacy, Mersin University, Mersin TR-33169, Türkiye.
| |
Collapse
|
2
|
Ertano BY, Demir Y, Nural Y, Erdoğan O. Investigation of The Effect of Acylthiourea Derivatives on Diabetes‐Associated Enzymes. ChemistrySelect 2022. [DOI: 10.1002/slct.202204149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Bükre Yaren Ertano
- Department of Molecular Biology and Genetics Faculty of Science Atatürk University Erzurum 25240 Turkey
- Department of Molecular Biology and Genetics Faculty of Science Atatürk University Erzurum 25240 Turkey
| | - Yeliz Demir
- Department of Pharmacy Services Nihat Delibalta Göle Vocational High School Ardahan University Ardahan 75700 Turkey
| | - Yahya Nural
- Department of Analytical Chemistry Faculty of Pharmacy Mersin University Mersin 33169 Turkey
| | - Orhan Erdoğan
- Department of Molecular Biology and Genetics Faculty of Science Atatürk University Erzurum 25240 Turkey
- Department of Molecular Biology and Genetics Faculty of Science Atatürk University Erzurum 25240 Turkey
| |
Collapse
|
3
|
Mohammad Abu-Taweel G, Ibrahim MM, Khan S, Al-Saidi HM, Alshamrani M, Alhumaydhi FA, Alharthi SS. Medicinal Importance and Chemosensing Applications of Pyridine Derivatives: A Review. Crit Rev Anal Chem 2022; 54:599-616. [PMID: 35724248 DOI: 10.1080/10408347.2022.2089839] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Pyridine derivatives are the most common and significant heterocyclic compounds, which play an important role in various fields ranging from medicinal to chemosensing applications. Pyridine derivatives possess different biological activities such as antifungal, antibacterial, antioxidant, antiglycation, analgesic, antiparkinsonian, anticonvulsant, anti-inflammatory, ulcerogenic, antiviral, and anticancer activity. Furthermore, these derivatives have a high affinity for various ions and neutral species and can be used as a highly effective chemosensor for the determination of different species. In this review article, generally used synthetic routes of pyridine, structural characterization, medicinal applications, and potential of pyridine derivatives in analytical chemistry as chemosensors have been discussed. We hope this study will support the new thoughts to design biological active compounds and highly selective and effective chemosensors for the detection of various species (anions, cations, and neutral species) in various samples (environmental, agricultural, and biological). [Figure: see text].
Collapse
Affiliation(s)
| | - Munjed M Ibrahim
- Department of Pharmaceutical Chemistry, College of pharmacy, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia
| | - Sikandar Khan
- Department of Chemistry, University of Malakand, Chakdara, Khyber Pakhtunkhwa, Pakistan
| | - Hamed M Al-Saidi
- Department of Chemistry, University College in Al-Jamoum, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Meshal Alshamrani
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Salman S Alharthi
- Department of Chemistry, College of Science, Taif University, P.O. Box 110999, Taif 21944, Saudi Arabia
| |
Collapse
|
4
|
Kurt AH, Ayaz L, Ayaz F, Seferoglu Z, Nural Y. A review on the design, synthesis, and structure-activity relationships of benzothiazole derivatives against hypoxic tumors. Curr Org Synth 2022; 19:772-796. [PMID: 35352663 DOI: 10.2174/1570179419666220330001036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/23/2022] [Accepted: 02/11/2022] [Indexed: 12/24/2022]
Abstract
There has been a growing body of studies on benzothiazoles and benzothiazole derivatives as strong and effective antitumor agents against lung, liver, pancreas, breast, and brain tumors. Due to highly proliferative nature of the tumor cells, the oxygen levels get lower than that of a normal tissue in the tumor microenvironment. This situation is called as hypoxia and has been associated with increased ability for carcinogenesis. For the drug design and development strategies, hypoxic nature of the tumor tissues has been exploited more aggressively. Hypoxia itself acts as a signal initiating system to activate the pathways that eventually lead to the spread of the tumor cells into the different tissues, increases the rate of DNA damage and eventually ends up with more mutation levels that may increase the drug resistance. As one of the major mediators of hypoxic response, hypoxia inducible factors (HIFs) has been shown to activate to angiogenesis, metastasis, apoptosis resistance, and many other protumorigenic responses in cancer development. In the current review, we will be discussing the design, synthesis and structure-activity relationships of benzothiazole derivatives against hypoxic tumors such lung, liver, pancreas, breast and brain as potential anticancer drug candidates. The focus points of the study will be the biology behind carcinogenesis and how hypoxia contributes to the process, recent studies on benzothiazole and its derivatives as anti-cancer agents against hypoxic cancers, conclusions and future perspectives. We believe that this review will be useful for the researchers in the field of drug design during their studies to generate novel benzothiazole-containing hybrids against hypoxic tumors with higher efficacies.
Collapse
Affiliation(s)
- Akif Hakan Kurt
- Department of Medicinal Pharmacology, Faculty of Medicine, Bolu Abant İzzet Baysal University, 14030, Bolu, Turkey
| | - Lokman Ayaz
- Department of Biochemistry, Faculty of Pharmacy, Trakya University, Edirne, Turkey
| | - Furkan Ayaz
- Department of Biotechnology, Faculty of Arts and Science, Mersin University, 33343, Mersin, Turkey
| | - Zeynel Seferoglu
- Department of Chemistry, Faculty of Science, Gazi University, TR-06500, Ankara, Turkey
| | - Yahya Nural
- Advanced Technology, Research and Application Center, Mersin University, 33343 Mersin, Turkey
| |
Collapse
|
5
|
Nural Y, Ozdemir S, Yalcin MS, Demir B, Atabey H, Seferoglu Z, Ece A. New bis- and tetrakis-1,2,3-triazole derivatives: Synthesis, DNA cleavage, molecular docking, antimicrobial, antioxidant activity and acid dissociation constants. Bioorg Med Chem Lett 2022; 55:128453. [PMID: 34801684 DOI: 10.1016/j.bmcl.2021.128453] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/01/2021] [Accepted: 11/09/2021] [Indexed: 01/02/2023]
Abstract
In this study, a series of bis- and tetrakis-1,2,3-triazole derivatives were synthesized using copper-catalyzed azide-alkyne cycloaddition (CuAAC) click chemistry in 73-95% yield. The bis- and tetrakis-1,2,3-triazoles exhibited significant DNA cleavage activity while the tetrakis-1,2,3-triazole analog 6g completely degraded the plasmid DNA. Molecular docking simulations suggest that compound 6g acts as minor groove binder of DNA by binding through several noncovalent interactions with base pairs. All bis- and tetrakis-1,2,3-triazole derivatives were screened for antibacterial activity against E. coli, B. cereus, S. aureus, P. aeruginosa, E. hirae, L. pneumophila subsp. pneumophila strains and antifungal activity against microfungus C. albicans and C. tropicalis strains. Compound 4d exhibited the best antibacterial activity among bis-1,2,3-triazoles against E. coli and E. hirae, while 6c exhibited the best antibacterial activity among tetrakis-1,2,3-triazoles against E. hirae. Furthermore, the best antifungal activity against C. albicans and C. tropicalis was reported for the compound 5, while 6d displayed the best antifungal activity against C. tropicalis and C. albicans. Reasonable iron chelating activities and DPPH radical scavenging abilities were found for some of the compounds. Finally, the acid dissociation constants (pKa) of the bis-1,2,3-triazoles were also determined with the help of HYPERQUAD program using the data obtained from potentiometric titrations. The reported data here concludes that the bis- and tetrakis-1,2,3-triazoles are important cores that should be considered for further development of especially new anticancer agents acting through the DNA cleavage activity.
Collapse
Affiliation(s)
- Yahya Nural
- Department of Analytical Chemistry, Faculty of Pharmacy, Mersin University, Mersin 33169, Turkey; Advanced Technology, Research and Application Center, Mersin University, 33343 Mersin, Turkey.
| | - Sadin Ozdemir
- Food Processing Programme, Technical Science Vocational School, Mersin University, Mersin 33343, Turkey
| | - Mustafa Serkan Yalcin
- Department of Chemistry and Chemical Processing Technologies, Technical Science Vocational School, Mersin University, Mersin 33343, Turkey
| | - Bunyamin Demir
- Advanced Technology, Research and Application Center, Mersin University, 33343 Mersin, Turkey; Department of Mechanical Engineering, Faculty of Engineering, Mersin University, Mersin 33169, Turkey
| | - Hasan Atabey
- Mersin National Education Directorate, Department of Analytical Chemistry, Mersin, Turkey
| | - Zeynel Seferoglu
- Department of Chemistry, Faculty of Science, Gazi University, Yenimahalle, Ankara TR-06560, Turkey
| | - Abdulilah Ece
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Biruni University, Istanbul 34010, Turkey
| |
Collapse
|
6
|
Nural Y, Ozdemir S, Yalcin MS, Demir B, Atabey H, Ece A, Seferoglu Z. Synthesis, Biological Evaluation, Molecular Docking, and Acid Dissociation Constant of New Bis‐1,2,3‐triazole Compounds. ChemistrySelect 2021. [DOI: 10.1002/slct.202101148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yahya Nural
- Department of Analytical Chemistry Faculty of Pharmacy Mersin University Mersin, TR 33169 Turkey
- Advanced Technology Research and Application Center Mersin University Mersin, TR 33343 Turkey
| | - Sadin Ozdemir
- Food Processing Programme Technical Science Vocational School Mersin University Mersin, TR 33343 Turkey
| | - Mustafa Serkan Yalcin
- Department of Chemistry and Chemical Processing Technologies Technical Science Vocational School Mersin University Mersin, TR 33343 Turkey
| | - Bunyamin Demir
- Advanced Technology Research and Application Center Mersin University Mersin, TR 33343 Turkey
- Department of Mechanical Engineering, orgDiv/>Faculty of Engineering Mersin University Mersin, TR 33169 Turkey
| | - Hasan Atabey
- Mersin National Education Directorate Department of Analytical Chemistry Mersin Turkey
| | - Abdulilah Ece
- Department of Phaarmaceutical Chemistry Faculty of Pharmacy Biruni University Istanbul 34010 Turkey
| | - Zeynel Seferoglu
- Department of Chemistry Faculty of Science Gazi University,Yenimahalle Ankara, TR 06560 Turkey
| |
Collapse
|
7
|
Nural Y, Keleş E, Aydıner B, Seferoğlu N, Atabey H, Seferoğlu Z. New naphthoquinone-imidazole hybrids: Synthesis, anion recognition properties, DFT studies and acid dissociation constants. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114855] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
El-Din A. Abuo-Rahma G, Hassan A, A. Hassan H, Abdelhamid D. Synthetic Approaches toward Certain Structurally Related Antimicrobial Thiazole Derivatives (2010-2020). HETEROCYCLES 2021. [DOI: 10.3987/rev-21-956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Jagadale SM, Abhale YK, Pawar HR, Shinde A, Bobade VD, Chavan AP, Sarkar D, Mhaske PC. Synthesis of New Thiazole and Pyrazole Clubbed 1,2,3-Triazol Derivatives as Potential Antimycobacterial and Antibacterial Agents. Polycycl Aromat Compd 2020. [DOI: 10.1080/10406638.2020.1857272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Shivaji M. Jagadale
- Post-Graduate Department of Chemistry, S. P. Mandali’s Sir Parashurambhau College, Tilak Road, Pune, India (Affiliated to Savitribai Phule Pune University)
- Department of Chemistry, S.K. Gandhi Arts, Amolak Science and P.H. Gandhi Commerce College Kada, Tal. Ashti, District Beed, India(Affiliated to Dr. Babasaheb Ambedkar Marathwada University, Aurangabad)
| | - Yogita K. Abhale
- Department of Chemistry, Government College, Daman, India (Affiliated to Veer Narmad Gujarat University, Surat)
| | - Hari R. Pawar
- Department of Chemistry, Government College, Daman, India (Affiliated to Veer Narmad Gujarat University, Surat)
| | - Abhijit Shinde
- Department of Chemistry, Abasaheb Garware College, Pune, India (Affiliated to Savitribai Phule Pune University)
| | - Vivek D. Bobade
- Post-Graduate Department of Chemistry, H. P. T. Arts and R. Y. K. Science College, Nashik, India (Affiliated to Savitribai Phule Pune University)
| | - Abhijit P. Chavan
- Post-Graduate Department of Chemistry, S. P. Mandali’s Sir Parashurambhau College, Tilak Road, Pune, India (Affiliated to Savitribai Phule Pune University)
| | - Dhiman Sarkar
- CombiChemBio Resource Centre, CSIR-National Chemical Laboratory, Pune, India
| | - Pravin C. Mhaske
- Post-Graduate Department of Chemistry, S. P. Mandali’s Sir Parashurambhau College, Tilak Road, Pune, India (Affiliated to Savitribai Phule Pune University)
| |
Collapse
|
10
|
Nural Y, Ozdemir S, Doluca O, Demir B, Yalcin MS, Atabey H, Kanat B, Erat S, Sari H, Seferoglu Z. Synthesis, biological properties, and acid dissociation constant of novel naphthoquinone–triazole hybrids. Bioorg Chem 2020; 105:104441. [DOI: 10.1016/j.bioorg.2020.104441] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/17/2020] [Accepted: 10/27/2020] [Indexed: 12/18/2022]
|
11
|
Ince T, Serttas R, Demir B, Atabey H, Seferoglu N, Erdogan S, Sahin E, Erat S, Nural Y. Polysubstituted pyrrolidines linked to 1,2,3-triazoles: Synthesis, crystal structure, DFT studies, acid dissociation constant, drug-likeness, and anti-proliferative activity. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128400] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
12
|
Gemili M, Nural Y, Keleş E, Aydıner B, Seferoğlu N, Ülger M, Şahin E, Erat S, Seferoğlu Z. Novel highly functionalized 1,4-naphthoquinone 2-iminothiazole hybrids: Synthesis, photophysical properties, crystal structure, DFT studies, and anti(myco)bacterial/antifungal activity. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.06.087] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|