1
|
Buyel JF. Towards a seamless product and process development workflow for recombinant proteins produced by plant molecular farming. Biotechnol Adv 2024; 75:108403. [PMID: 38986726 DOI: 10.1016/j.biotechadv.2024.108403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/25/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
Plant molecular farming (PMF) has been promoted as a fast, efficient and cost-effective alternative to bacteria and animal cells for the production of biopharmaceutical proteins. Numerous plant species have been tested to produce a wide range of drug candidates. However, PMF generally lacks a systematic, streamlined and seamless workflow to continuously fill the product pipeline. Therefore, it is currently unable to compete with established platforms in terms of routine, throughput and horizontal integration (the rapid translation of product candidates to preclinical and clinical development). Individual management decisions, limited funding and a lack of qualified production capacity can hinder the execution of such projects, but we also lack suitable technologies for sample handling and data management. This perspectives article will highlight current bottlenecks in PMF and offer potential solutions that combine PMF with existing technologies to build an integrated facility of the future for product development, testing, manufacturing and clinical translation. Ten major bottlenecks have been identified and are discussed in turn: automated cloning and simplified transformation options, reproducibility of bacterial cultivation, bioreactor integration with automated cell handling, options for rapid mid-scale candidate and product manufacturing, interconnection with (group-specific or personalized) clinical trials, diversity of (post-)infiltration conditions, development of downstream processing platforms, continuous process operation, compliance of manufacturing conditions with biosafety regulations, scaling requirements for cascading biomass.
Collapse
Affiliation(s)
- J F Buyel
- University of Natural Resources and Life Sciences, Vienna (BOKU), Department of Biotechnology (DBT), Institute of Bioprocess Science and Engineering (IBSE), Muthgasse 18, A-1190 Vienna, Austria.
| |
Collapse
|
2
|
Barata IS, Rueff J, Kranendonk M, Esteves F. Pleiotropy of Progesterone Receptor Membrane Component 1 in Modulation of Cytochrome P450 Activity. J Xenobiot 2024; 14:575-603. [PMID: 38804287 PMCID: PMC11130977 DOI: 10.3390/jox14020034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
Progesterone receptor membrane component 1 (PGRMC1) is one of few proteins that have been recently described as direct modulators of the activity of human cytochrome P450 enzymes (CYP)s. These enzymes form a superfamily of membrane-bound hemoproteins that metabolize a wide variety of physiological, dietary, environmental, and pharmacological compounds. Modulation of CYP activity impacts the detoxification of xenobiotics as well as endogenous pathways such as steroid and fatty acid metabolism, thus playing a central role in homeostasis. This review is focused on nine main topics that include the most relevant aspects of past and current PGRMC1 research, focusing on its role in CYP-mediated drug metabolism. Firstly, a general overview of the main aspects of xenobiotic metabolism is presented (I), followed by an overview of the role of the CYP enzymatic complex (IIa), a section on human disorders associated with defects in CYP enzyme complex activity (IIb), and a brief account of cytochrome b5 (cyt b5)'s effect on CYP activity (IIc). Subsequently, we present a background overview of the history of the molecular characterization of PGRMC1 (III), regarding its structure, expression, and intracellular location (IIIa), and its heme-binding capability and dimerization (IIIb). The next section reflects the different effects PGRMC1 may have on CYP activity (IV), presenting a description of studies on the direct effects on CYP activity (IVa), and a summary of pathways in which PGRMC1's involvement may indirectly affect CYP activity (IVb). The last section of the review is focused on the current challenges of research on the effect of PGRMC1 on CYP activity (V), presenting some future perspectives of research in the field (VI).
Collapse
Affiliation(s)
- Isabel S. Barata
- Department of Pediatrics, Division of Endocrinology, Diabetology and Metabolism, University Children’s Hospital, University of Bern, 3010 Bern, Switzerland;
- Translational Hormone Research Program, Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - José Rueff
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisboa, Portugal;
| | - Michel Kranendonk
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisboa, Portugal;
| | - Francisco Esteves
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisboa, Portugal;
| |
Collapse
|
3
|
Houghton MC, Kashanian SV, Derrien TL, Masuda K, Vollmer F. Whispering-Gallery Mode Optoplasmonic Microcavities: From Advanced Single-Molecule Sensors and Microlasers to Applications in Synthetic Biology. ACS PHOTONICS 2024; 11:892-903. [PMID: 38523742 PMCID: PMC10958601 DOI: 10.1021/acsphotonics.3c01570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 03/26/2024]
Abstract
Optical microcavities, specifically, whispering-gallery mode (WGM) microcavities, with their remarkable sensitivity to environmental changes, have been extensively employed as biosensors, enabling the detection of a wide range of biomolecules and nanoparticles. To push the limits of detection down to the most sensitive single-molecule level, plasmonic nanorods are strategically introduced to enhance the evanescent fields of WGM microcavities. This advancement of optoplasmonic WGM sensors allows for the detection of single molecules of a protein, conformational changes, and even atomic ions, marking significant contributions in single-molecule sensing. This Perspective discusses the exciting research prospects in optoplasmonic WGM sensing of single molecules, including the study of enzyme thermodynamics and kinetics, the emergence of thermo-optoplasmonic sensing, the ultrasensitive single-molecule sensing on WGM microlasers, and applications in synthetic biology.
Collapse
Affiliation(s)
- Matthew C. Houghton
- Department
of Physics and Astronomy, University of
Exeter, Exeter
Devon EX4 4QL, United Kingdom
- Department
of Life Sciences, University of Bath, Bath BA2 7AX, United Kingdom
| | - Samir Vartabi Kashanian
- Department
of Physics and Astronomy, University of
Exeter, Exeter
Devon EX4 4QL, United Kingdom
| | - Thomas L. Derrien
- Department
of Physics and Astronomy, University of
Exeter, Exeter
Devon EX4 4QL, United Kingdom
| | - Koji Masuda
- Department
of Physics and Astronomy, University of
Exeter, Exeter
Devon EX4 4QL, United Kingdom
| | - Frank Vollmer
- Department
of Physics and Astronomy, University of
Exeter, Exeter
Devon EX4 4QL, United Kingdom
| |
Collapse
|
4
|
Prajapati KP, Ansari M, Yadav DK, Mittal S, Anand BG, Kar K. A robust yet simple method to generate fluorescent amyloid nanofibers. J Mater Chem B 2023; 11:8765-8774. [PMID: 37661927 DOI: 10.1039/d3tb01203d] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Covalent tagging of fluorophores is central to the mechanistic understanding of important biological processes including protein-protein interaction and protein aggregation. Hence, studies on fluorophore-tagged peptides help in elucidating the molecular mechanism of amyloidogenesis, its cellular internalization, and crosstalk potential. Despite the many advantages the covalently tagged proteins offer, difficulties such as expensive and tedious synthesis and purification protocols have become a matter of concern. Importantly, covalently tagged fluorophores could introduce structural constraints, which may influence the conformation of the monomeric and aggregated forms of proteins. Here, we describe a robust-yet-simple method to make fluorescent-amyloid nanofibers through a coassembly-reaction route that does not alter the aggregation kinetics and the characteristic β-sheet-conformers of resultant nanofibers. Fluorescent amyloid nanofibers derived from insulin, lysozyme, Aβ1-42, and metabolites were successfully fabricated in our study. Importantly, the incorporated fluorophores exhibited remarkable stability, remaining intact without leaching even after undergoing serial dilutions and prolonged storage periods. This method enables monitoring of cellular internalization of the fluorescent-amyloid-nanofibers and the detection of FRET-signals during interfibrillar interactions. This simple and affordable protocol may significantly help amyloid researchers working on both in vitro and animal models.
Collapse
Affiliation(s)
- Kailash Prasad Prajapati
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Masihuzzaman Ansari
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Deepak Kumar Yadav
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Shikha Mittal
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Bibin Gnanadhason Anand
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Karunakar Kar
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
5
|
Smith CN, Kihn K, Williamson ZA, Chow KM, Hersh LB, Korotkov KV, Deredge D, Blackburn JS. Development and characterization of nanobodies that specifically target the oncogenic Phosphatase of Regenerating Liver-3 (PRL-3) and impact its interaction with a known binding partner, CNNM3. PLoS One 2023; 18:e0285964. [PMID: 37220097 PMCID: PMC10204944 DOI: 10.1371/journal.pone.0285964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/04/2023] [Indexed: 05/25/2023] Open
Abstract
Phosphatase of Regenerating Liver-3 (PRL-3) is associated with cancer progression and metastasis. The mechanisms that drive PRL-3's oncogenic functions are not well understood, partly due to a lack of research tools available to study this protein. We have begun to address these issues by developing alpaca-derived single domain antibodies, or nanobodies, targeting PRL-3 with a KD of 30-300 nM and no activity towards highly homologous family members PRL-1 and PRL-2. We found that longer and charged N-terminal tags on PRL-3, such as GFP and FLAG, changed PRL-3 localization compared to untagged protein, indicating that the nanobodies may provide new insights into PRL-3 trafficking and function. The nanobodies perform equally, if not better, than commercially available antibodies in immunofluorescence and immunoprecipitation. Finally, hydrogen-deuterium exchange mass spectrometry (HDX-MS) showed that the nanobodies bind partially within the PRL-3 active site and can interfere with PRL-3 phosphatase activity. Co-immunoprecipitation with a known PRL-3 active site binding partner, the CBS domain of metal transporter CNNM3, showed that the nanobodies reduced the amount of PRL-3:CBS inter-action. The potential of blocking this interaction is highly relevant in cancer, as multiple research groups have shown that PRL-3 binding to CNNM proteins is sufficient to promote metastatic growth in mouse models. The anti-PRL-3 nanobodies represent an important expansion of the research tools available to study PRL-3 function and can be used to define the role of PRL-3 in cancer progression.
Collapse
Affiliation(s)
- Caroline N. Smith
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
- University of Kentucky Markey Cancer Center, Lexington, Kentucky, United States of America
| | - Kyle Kihn
- University of Maryland School of Pharmacy, Baltimore, Maryland, United States of America
| | - Zachary A. Williamson
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - K. Martin Chow
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Louis B. Hersh
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Konstantin V. Korotkov
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Daniel Deredge
- University of Maryland School of Pharmacy, Baltimore, Maryland, United States of America
| | - Jessica S. Blackburn
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
- University of Kentucky Markey Cancer Center, Lexington, Kentucky, United States of America
| |
Collapse
|
6
|
Jimenez-Moreno N, Salomo-Coll C, Murphy LC, Wilkinson S. Signal-Retaining Autophagy Indicator as a Quantitative Imaging Method for ER-Phagy. Cells 2023; 12:1134. [PMID: 37190043 PMCID: PMC10136497 DOI: 10.3390/cells12081134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/24/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
Autophagy is an intracellular lysosomal degradation pathway by which cytoplasmic cargoes are removed to maintain cellular homeostasis. Monitoring autophagy flux is crucial to understand the autophagy process and its biological significance. However, assays to measure autophagy flux are either complex, low throughput or not sensitive enough for reliable quantitative results. Recently, ER-phagy has emerged as a physiologically relevant pathway to maintain ER homeostasis but the process is poorly understood, highlighting the need for tools to monitor ER-phagy flux. In this study, we validate the use of the signal-retaining autophagy indicator (SRAI), a fixable fluorescent probe recently generated and described to detect mitophagy, as a versatile, sensitive and convenient probe for monitoring ER-phagy. This includes the study of either general selective degradation of the endoplasmic reticulum (ER-phagy) or individual forms of ER-phagy involving specific cargo receptors (e.g., FAM134B, FAM134C, TEX264 and CCPG1). Crucially, we present a detailed protocol for the quantification of autophagic flux using automated microscopy and high throughput analysis. Overall, this probe provides a reliable and convenient tool for the measurement of ER-phagy.
Collapse
Affiliation(s)
- Natalia Jimenez-Moreno
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XR, UK; (C.S.-C.); (S.W.)
| | - Carla Salomo-Coll
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XR, UK; (C.S.-C.); (S.W.)
| | - Laura C. Murphy
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK;
| | - Simon Wilkinson
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XR, UK; (C.S.-C.); (S.W.)
| |
Collapse
|
7
|
Mochnáčová E, Petroušková P, Danišová O, Hudecová P, Bhide K, Kulkarni A, Bhide M. Simple and rapid pipeline for the production of cyclic and linear small-sized peptides in E. coli. Protein Expr Purif 2021; 191:106026. [PMID: 34838724 DOI: 10.1016/j.pep.2021.106026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 10/19/2022]
Abstract
Small and medium-sized peptides are gaining popularity in biomedical applications, including therapeutic target development. As an alternative to chemical synthesis, we describe a complete pipeline for the production of linear as well as structurally constrained cyclic peptides in an E. coli expression system in this study. A plasmid vector containing a novel N terminal HOE tag (28 amino acids in length) that fuses with the peptide was created. The HOE tag contains sites for both chemical (CNBr) and enzymatic (enterokinase) cleavage, making it easy to isolate the peptide after production. A total of 21 peptides (17 cyclic and 4 linear) were synthesized, and the HOE tag was successfully removed using either CNBr (9 peptides) or enterokinase (12 peptides). The presence of a disulfide bond was confirmed in six representative cyclic peptides. In this study we have provided detailed instructions on primers design strategy, overexpression and purification of HOE tagged peptides, chemical and enzymatic cleavage, and confirmation of the cyclic form of peptides. We are confident that this pipeline will assist researchers in producing multiple recombinant peptides in a cost-effective and time-efficient manner.
Collapse
Affiliation(s)
- Evelína Mochnáčová
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovakia
| | - Patrícia Petroušková
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovakia
| | - Oľga Danišová
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovakia
| | - Patrícia Hudecová
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovakia
| | - Katarína Bhide
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovakia
| | - Amod Kulkarni
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovakia; Institute of Neuroimmunology of Slovak Academy of Sciences, Bratislava, Slovakia
| | - Mangesh Bhide
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovakia; Institute of Neuroimmunology of Slovak Academy of Sciences, Bratislava, Slovakia.
| |
Collapse
|
8
|
Rauwolf S, Steegmüller T, Schwaminger SP, Berensmeier S. Purification of a peptide tagged protein via an affinity chromatographic process with underivatized silica. Eng Life Sci 2021; 21:549-557. [PMID: 34690628 PMCID: PMC8518568 DOI: 10.1002/elsc.202100019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/06/2021] [Accepted: 05/25/2021] [Indexed: 11/11/2022] Open
Abstract
Silica is widely used for chromatography resins due to its high mechanical strength, column efficiency, easy manufacturing (i.e. controlled size and porosity), and low-cost. Despite these positive attributes to silica, it is currently used as a backbone for chromatographic resins in biotechnological downstream processing. The aim of this study is to show how the octapeptide (RH)4 can be used as peptide tag for high-purity protein purification on bare silica. The tag possesses a high affinity to deprotonated silanol groups because the tag's arginine groups interact with the surface via an ion pairing mechanism. A chromatographic workflow to purify GFP fused with (RH)4 could be implemented. Purities were determined by SDS-PAGE and RP-HPLC. The equilibrium binding capacity of the fusion protein GFP-(RH)4 on silica is 450 mg/g and the dynamic binding capacity around 3 mg/mL. One-step purification from clarified lysate achieved a purity of 93% and a recovery of 94%. Overloading the column enhances the purity to >95%. Static experiments with different buffers showed variability of the method making the system independent from buffer choice. Our designed peptide tag allows bare silica to be utilized in preparative chromatography for downstream bioprocessing; thus, providing a cost saving factor regarding expensive surface functionalization. Underivatized silica in combination with our (RH)4 peptide tag allows the purification of proteins, in all scales, without relying on complex resins.
Collapse
Affiliation(s)
- Stefan Rauwolf
- Department of Mechanical EngineeringTechnical University of MunichMunichGermany
| | - Tobias Steegmüller
- Department of Mechanical EngineeringTechnical University of MunichMunichGermany
| | | | - Sonja Berensmeier
- Department of Mechanical EngineeringTechnical University of MunichMunichGermany
| |
Collapse
|
9
|
López-Laguna H, Voltà-Durán E, Parladé E, Villaverde A, Vázquez E, Unzueta U. Insights on the emerging biotechnology of histidine-rich peptides. Biotechnol Adv 2021; 54:107817. [PMID: 34418503 DOI: 10.1016/j.biotechadv.2021.107817] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/16/2021] [Accepted: 08/16/2021] [Indexed: 02/07/2023]
Abstract
In the late 70's, the discovery of the restriction enzymes made possible the biological production of functional proteins by recombinant DNA technologies, a fact that largely empowered both biotechnological and pharmaceutical industries. Short peptides or small protein domains, with specific molecular affinities, were developed as purification tags in downstream processes to separate the target protein from the culture media or cell debris, upon breaking the producing cells. Among these tags, and by exploiting the interactivity of the imidazole ring of histidine residues, the hexahistidine peptide (H6) became a gold standard. Although initially used almost exclusively in protein production, H6 and related His-rich peptides are progressively proving a broad applicability in novel utilities including enzymatic processes, advanced drug delivery systems and diagnosis, through a so far unsuspected adaptation of their binding capabilities. In this context, the coordination of histidine residues and metals confers intriguing functionalities to His-rich sequences useable in the forward-thinking design of protein-based nano- and micro-materials and devices, through strategies that are comprehensively presented here.
Collapse
Affiliation(s)
- Hèctor López-Laguna
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Eric Voltà-Durán
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Eloi Parladé
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain.
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain.
| | - Ugutz Unzueta
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain; Biomedical Research Institute Sant Pau (IIB Sant Pau), Sant Antoni Mª Claret 167, 08025 Barcelona, Spain.
| |
Collapse
|