1
|
Alqahtani FM, Arivett BA, Taylor ZE, Handy ST, Farone AL, Farone MB. Chemogenomic profiling to understand the antifungal action of a bioactive aurone compound. PLoS One 2019; 14:e0226068. [PMID: 31825988 PMCID: PMC6905557 DOI: 10.1371/journal.pone.0226068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/18/2019] [Indexed: 12/15/2022] Open
Abstract
Every year, more than 250,000 invasive candidiasis infections are reported with 50,000 deaths worldwide. The limited number of antifungal agents necessitates the need for alternative antifungals with potential novel targets. The 2-benzylidenebenzofuran-3-(2H)-ones have become an attractive scaffold for antifungal drug design. This study aimed to determine the antifungal activity of a synthetic aurone compound and characterize its mode of action. Using the broth microdilution method, aurone SH1009 exhibited inhibition against C. albicans, including resistant isolates, as well as C. glabrata, and C. tropicalis with IC50 values of 4-29 μM. Cytotoxicity assays using human THP-1, HepG2, and A549 human cell lines showed selective toxicity toward fungal cells. The mode of action for SH1009 was characterized using chemical-genetic interaction via haploinsufficiency (HIP) and homozygous (HOP) profiling of a uniquely barcoded Saccharomyces cerevisiae mutant collection. Approximately 5300 mutants were competitively treated with SH1009 followed by DNA extraction, amplification of unique barcodes, and quantification of each mutant using multiplexed next-generation sequencing. Barcode post-sequencing analysis revealed 238 sensitive and resistant mutants that significantly (FDR P values ≤ 0.05) responded to aurone SH1009. The enrichment analysis of KEGG pathways and gene ontology demonstrated the cell cycle pathway as the most significantly enriched pathway along with DNA replication, cell division, actin cytoskeleton organization, and endocytosis. Phenotypic studies of these significantly enriched responses were validated in C. albicans. Flow cytometric analysis of SH1009-treated C. albicans revealed a significant accumulation of cells in G1 phase, indicating cell cycle arrest. Fluorescence microscopy detected abnormally interrupted actin dynamics, resulting in enlarged, unbudded cells. RT-qPCR confirmed the effects of SH1009 in differentially expressed cell cycle, actin polymerization, and signal transduction genes. These findings indicate the target of SH1009 as a cell cycle-dependent organization of the actin cytoskeleton, suggesting a novel mode of action of the aurone compound as an antifungal inhibitor.
Collapse
Affiliation(s)
- Fatmah M. Alqahtani
- Department of Biology, Middle Tennessee State University, Murfreesboro, Tennessee, United States of America
| | - Brock A. Arivett
- Department of Biology, Middle Tennessee State University, Murfreesboro, Tennessee, United States of America
| | - Zachary E. Taylor
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, Tennessee, United States of America
| | - Scott T. Handy
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, Tennessee, United States of America
| | - Anthony L. Farone
- Department of Biology, Middle Tennessee State University, Murfreesboro, Tennessee, United States of America
| | - Mary B. Farone
- Department of Biology, Middle Tennessee State University, Murfreesboro, Tennessee, United States of America
| |
Collapse
|
2
|
Tay YD, Leda M, Spanos C, Rappsilber J, Goryachev AB, Sawin KE. Fission Yeast NDR/LATS Kinase Orb6 Regulates Exocytosis via Phosphorylation of the Exocyst Complex. Cell Rep 2019; 26:1654-1667.e7. [PMID: 30726745 PMCID: PMC6367570 DOI: 10.1016/j.celrep.2019.01.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 11/03/2018] [Accepted: 01/08/2019] [Indexed: 11/22/2022] Open
Abstract
NDR/LATS kinases regulate multiple aspects of cell polarity and morphogenesis from yeast to mammals. Fission yeast NDR/LATS kinase Orb6 has been proposed to control cell polarity by regulating the Cdc42 guanine nucleotide exchange factor Gef1. Here, we show that Orb6 regulates polarity largely independently of Gef1 and that Orb6 positively regulates exocytosis. Through Orb6 inhibition in vivo and quantitative global phosphoproteomics, we identify Orb6 targets, including proteins involved in membrane trafficking. We confirm Sec3 and Sec5, conserved components of the exocyst complex, as substrates of Orb6 both in vivo and in vitro, and we show that Orb6 kinase activity is important for exocyst localization to cell tips and for exocyst activity during septum dissolution after cytokinesis. We further find that Orb6 phosphorylation of Sec3 contributes to exocyst function in concert with exocyst protein Exo70. We propose that Orb6 contributes to polarized growth by regulating membrane trafficking at multiple levels.
Collapse
Affiliation(s)
- Ye Dee Tay
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Marcin Leda
- SynthSys-Centre for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, CH Waddington Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Christos Spanos
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Juri Rappsilber
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK; Chair of Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Berlin, 13355, Germany
| | - Andrew B Goryachev
- SynthSys-Centre for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, CH Waddington Building, Max Born Crescent, Edinburgh EH9 3BF, UK.
| | - Kenneth E Sawin
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK.
| |
Collapse
|
3
|
Riquelme M, Aguirre J, Bartnicki-García S, Braus GH, Feldbrügge M, Fleig U, Hansberg W, Herrera-Estrella A, Kämper J, Kück U, Mouriño-Pérez RR, Takeshita N, Fischer R. Fungal Morphogenesis, from the Polarized Growth of Hyphae to Complex Reproduction and Infection Structures. Microbiol Mol Biol Rev 2018; 82:e00068-17. [PMID: 29643171 PMCID: PMC5968459 DOI: 10.1128/mmbr.00068-17] [Citation(s) in RCA: 216] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Filamentous fungi constitute a large group of eukaryotic microorganisms that grow by forming simple tube-like hyphae that are capable of differentiating into more-complex morphological structures and distinct cell types. Hyphae form filamentous networks by extending at their tips while branching in subapical regions. Rapid tip elongation requires massive membrane insertion and extension of the rigid chitin-containing cell wall. This process is sustained by a continuous flow of secretory vesicles that depends on the coordinated action of the microtubule and actin cytoskeletons and the corresponding motors and associated proteins. Vesicles transport cell wall-synthesizing enzymes and accumulate in a special structure, the Spitzenkörper, before traveling further and fusing with the tip membrane. The place of vesicle fusion and growth direction are enabled and defined by the position of the Spitzenkörper, the so-called cell end markers, and other proteins involved in the exocytic process. Also important for tip extension is membrane recycling by endocytosis via early endosomes, which function as multipurpose transport vehicles for mRNA, septins, ribosomes, and peroxisomes. Cell integrity, hyphal branching, and morphogenesis are all processes that are largely dependent on vesicle and cytoskeleton dynamics. When hyphae differentiate structures for asexual or sexual reproduction or to mediate interspecies interactions, the hyphal basic cellular machinery may be reprogrammed through the synthesis of new proteins and/or the modification of protein activity. Although some transcriptional networks involved in such reprogramming of hyphae are well studied in several model filamentous fungi, clear connections between these networks and known determinants of hyphal morphogenesis are yet to be established.
Collapse
Affiliation(s)
- Meritxell Riquelme
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| | - Jesús Aguirre
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Salomon Bartnicki-García
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| | - Gerhard H Braus
- Department of Molecular Microbiology and Genetics and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
| | - Michael Feldbrügge
- Institute for Microbiology, Heinrich Heine University Düsseldorf, Cluster of Excellence on Plant Sciences, Düsseldorf, Germany
| | - Ursula Fleig
- Institute for Functional Genomics of Microorganisms, Heinrich Heine University Düsseldorf, Cluster of Excellence on Plant Sciences, Düsseldorf, Germany
| | - Wilhelm Hansberg
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Alfredo Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Mexico
| | - Jörg Kämper
- Karlsruhe Institute of Technology-South Campus, Institute for Applied Biosciences, Karlsruhe, Germany
| | - Ulrich Kück
- Ruhr University Bochum, Lehrstuhl für Allgemeine und Molekulare Botanik, Bochum, Germany
| | - Rosa R Mouriño-Pérez
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| | - Norio Takeshita
- University of Tsukuba, Faculty of Life and Environmental Sciences, Tsukuba, Japan
| | - Reinhard Fischer
- Karlsruhe Institute of Technology-South Campus, Institute for Applied Biosciences, Karlsruhe, Germany
| |
Collapse
|
4
|
TOR Complex 2-Regulated Protein Kinase Fpk1 Stimulates Endocytosis via Inhibition of Ark1/Prk1-Related Protein Kinase Akl1 in Saccharomyces cerevisiae. Mol Cell Biol 2017; 37:MCB.00627-16. [PMID: 28069741 PMCID: PMC5359421 DOI: 10.1128/mcb.00627-16] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 01/03/2017] [Indexed: 12/23/2022] Open
Abstract
Depending on the stress, plasma membrane alterations activate or inhibit yeast target of rapamycin (TOR) complex 2, which, in turn, upregulates or downregulates the activity of its essential downstream effector, protein kinase Ypk1. Through phosphorylation of multiple substrates, Ypk1 controls many processes that restore homeostasis. One such substrate is protein kinase Fpk1, which is negatively regulated by Ypk1. Fpk1 phosphorylates and stimulates flippases that translocate aminoglycerophospholipids from the outer to the inner leaflet of the plasma membrane. Fpk1 has additional roles, but other substrates were uncharacterized. We show that Fpk1 phosphorylates and inhibits protein kinase Akl1, related to protein kinases Ark1 and Prk1, which modulate the dynamics of actin patch-mediated endocytosis. Akl1 has two Fpk1 phosphorylation sites (Ark1 and Prk1 have none) and is hypophosphorylated when Fpk1 is absent. Conversely, under conditions that inactivate TORC2-Ypk1 signaling, which alleviates Fpk1 inhibition, Akl1 is hyperphosphorylated. Monitoring phosphorylation of known Akl1 substrates (Sla1 and Ent2) confirmed that Akl1 is hyperactive when not phosphorylated by Fpk1. Fpk1-mediated negative regulation of Akl1 enhances endocytosis, because an Akl1 mutant immune to Fpk1 phosphorylation causes faster dissociation of Sla1 from actin patches, confers elevated resistance to doxorubicin (a toxic compound whose entry requires endocytosis), and impedes Lucifer yellow uptake (a marker of fluid phase endocytosis). Thus, TORC2-Ypk1, by regulating Fpk1-mediated phosphorylation of Akl1, adjusts the rate of endocytosis.
Collapse
|
5
|
Dewerchin HL, Desmarets LM, Noppe Y, Nauwynck HJ. Myosins 1 and 6, myosin light chain kinase, actin and microtubules cooperate during antibody-mediated internalisation and trafficking of membrane-expressed viral antigens in feline infectious peritonitis virus infected monocytes. Vet Res 2014; 45:17. [PMID: 24517254 PMCID: PMC3937040 DOI: 10.1186/1297-9716-45-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 01/29/2014] [Indexed: 12/20/2022] Open
Abstract
Monocytes infected with feline infectious peritonitis virus, a coronavirus, express viral proteins in their plasma membranes. Upon binding of antibodies, these proteins are quickly internalised through a new clathrin- and caveolae-independent internalisation pathway. By doing so, the infected monocytes can escape antibody-dependent cell lysis. In the present study, we investigated which kinases and cytoskeletal proteins are of importance during internalisation and subsequent intracellular transport. The experiments showed that myosin light chain kinase (MLCK) and myosin 1 are crucial for the initiation of the internalisation. With co-localisation stainings, it was found that MLCK and myosin 1 co-localise with antigens even before internalisation started. Myosin 6 co-localised with the internalising complexes during passage through the cortical actin, were it might play a role in moving or disintegrating actin filaments, to overcome the actin barrier. One minute after internalisation started, vesicles had passed the cortical actin, co-localised with microtubules and association with myosin 6 was lost. The vesicles were further transported over the microtubules and accumulated at the microtubule organising centre after 10 to 30 min. Intracellular trafficking over microtubules was mediated by MLCK, myosin 1 and a small actin tail. Since inhibiting MLCK with ML-7 was so efficient in blocking the internalisation pathway, this target can be used for the development of a new treatment for FIPV.
Collapse
Affiliation(s)
| | | | | | - Hans J Nauwynck
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| |
Collapse
|
6
|
Grolig F, Moch J, Schneider A, Galland P. Actin cytoskeleton and organelle movement in the sporangiophore of the zygomycete Phycomyces blakesleeanus. PLANT BIOLOGY (STUTTGART, GERMANY) 2014; 16 Suppl 1:167-178. [PMID: 23927723 DOI: 10.1111/plb.12065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 05/17/2013] [Indexed: 06/02/2023]
Abstract
Growth, photo- and gravitropism of sporangiophores of the zygomycete Phycomyces blakesleeanus occur within the apical growing zone, a cylindrical structure (diameter about 100 μm) that reaches about 1.5-2.5 mm below the tip and has growth rates up to 50 μm·min(-1) . To better understand morphogenesis and growth of the giant aerial hypha, we investigated with confocal microscopy and inhibitors the actin cytoskeleton and by in-vivo particle tracking the associated organelle movement. We found stage-1 sporangiophores (without sporangium) possess an actin cytoskeleton with polar zonation. (i) In the apex, abundant microfilaments without preferential orientation entangled numerous nuclei as well as a conspicious complex of some 200 lipid globules. Microfilament patches (≈ 1.6-μm diameter) are clustered in the tip and were found in the apical cortex, whereas short, curved microfilament bundles (≈ 2.3-μm long) prevailed in the subapex. (ii) In a transition zone downwards to the shaft, the microfilaments rearranged into a dense mat of longitudinal microfilaments that was parallel close to the periphery but more random towards the cell centre. Numerous microfilament patches were found near the cortex (≈ 10/100 μm(2) ); their number decreased rapidly in the subcortex. In contrast, the short, curved microfilament bundles were found only in the subcortex. (iii) The basal shaft segment of the sporangiophore (with central vacuole) exhibited bidirectional particle movement over long distances (velocity ≈ 2 μm·s(-1) ) along massive longitudinal, subcortical microfilament cables. The zonation of the cytoskeleton density correlated well with the local growth rates at the tip of the sporangiophore, and appears thus as a structural prerequisite for growth and bending.
Collapse
Affiliation(s)
- F Grolig
- Fachbereich Biologie, Philipps-Universität Marburg, Marburg, Germany
| | | | | | | |
Collapse
|
7
|
Klima A, Foissner I. Actin-dependent deposition of putative endosomes and endoplasmic reticulum during early stages of wound healing in characean internodal cells. PLANT BIOLOGY (STUTTGART, GERMANY) 2011; 13:590-601. [PMID: 21668600 PMCID: PMC3284245 DOI: 10.1111/j.1438-8677.2010.00413.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
We investigated the behaviour of organelles stained with FM1-43 (putative endosomes) and/or LysoTracker Red (LTred; acidic compartments) and of the endoplasmic reticulum (ER) during healing of puncture and UV-induced wounds in internodal cells of Nitella flexilis and Chara corallina. Immediately after puncture, wounds were passively sealed with a plug of solid vacuolar inclusions, onto which a bipartite wound wall was actively deposited. The outer, callose-containing amorphous layer consisted of remnants of FM1-43- and LTred-labelled organelles, ER cisternae and polysaccharide-containing secretory vesicles, which became deposited in the absence of membrane retrieval (compound exocytosis). During formation of the inner cellulosic layer, exocytosis of secretory vesicles with the newly formed plasma membrane is coupled to endocytosis via coated vesicles. Migration of FM1-43- and LTred-stained organelles, ER and secretory vesicles towards the cell cortex and deposition of a bipartite wound wall could also be induced by spot-like irradiation with ultraviolet light. Cytochalasin D reversibly inhibited the accumulation and deposition of organelles. Our study indicates that active actin-dependent deposition of putative recycling endosomes is required for wound healing (plasma membrane repair) and supports the hypothesis that deposition of ER cisternae helps to restore wounding-disturbed Ca(2+) metabolism.
Collapse
Affiliation(s)
- A Klima
- Division of Plant Physiology, Department of Cell Biology, University of Salzburg, Hellbrunnerstrasse 34, Salzburg, Austria
| | | |
Collapse
|
8
|
Abstract
The vacuolar proton-translocating ATPase (V-ATPase) plays a major role in organelle acidification and works together with other ion transporters to maintain pH homeostasis in eukaryotic cells. We analyzed a requirement for V-ATPase activity in protein trafficking in the yeast secretory pathway. Deficiency of V-ATPase activity caused by subunit deletion or glucose deprivation results in missorting of newly synthesized plasma membrane proteins Pma1 and Can1 directly from the Golgi to the vacuole. Vacuolar mislocalization of Pma1 is dependent on Gga adaptors although no Pma1 ubiquitination was detected. Proper cell surface targeting of Pma1 was rescued in V-ATPase-deficient cells by increasing the pH of the medium, suggesting that missorting is the result of aberrant cytosolic pH. In addition to mislocalization of the plasma membrane proteins, Golgi membrane proteins Kex2 and Vrg4 are also missorted to the vacuole upon loss of V-ATPase activity. Because the missorted cargos have distinct trafficking routes, we suggest a pH dependence for multiple cargo sorting events at the Golgi.
Collapse
Affiliation(s)
- Chunjuan Huang
- Department of Molecular, Cellular & Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|
9
|
Zakrzewska A, Boorsma A, Beek AT, Hageman JA, Westerhuis JA, Hellingwerf KJ, Brul S, Klis FM, Smits GJ. Comparative analysis of transcriptome and fitness profiles reveals general and condition-specific cellular functions involved in adaptation to environmental change in Saccharomyces cerevisiae. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2010; 14:603-14. [PMID: 20695823 DOI: 10.1089/omi.2010.0049] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The transcriptional responses of yeast cells to a wide variety of stress conditions have been studied extensively. In addition, deletion mutant collections have been widely used to measure the combined effect of gene loss and stress on growth (fitness). Here we present a comparative analysis of 1,095 publicly available transcription and genome-wide fitness profiles in yeast, from different laboratories and experimental platforms. We analyzed these data, using T-profiler, to describe the correlation in behavior of a priori defined functional groups. Two-mode clustering analysis of the fitness T-profiles revealed that functional groups involved in regulating ribosome biogenesis and translation offer general stress resistance. These groups are closely related to growth rate and nutrient availability. General stress sensitivity was found in deletion mutant groups functioning in intracellular vesicular transport, actin cytoskeleton organization, and cell polarity, indicating that they play an key role in maintaining yeast adaptability. Analysis of the phenotypic and transcriptional variability of our a priori defined functional groups showed that the quantitative effect on fitness of both resistant and sensitive groups is highly condition-dependent. Finally, we discuss the implications of our results for combinatorial drug design.
Collapse
Affiliation(s)
- Anna Zakrzewska
- Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, Netherlands Institute for Systems Biology, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Bellocci M, Sala GL, Callegari F, Rossini GP. Azaspiracid-1 Inhibits Endocytosis of Plasma Membrane Proteins in Epithelial Cells. Toxicol Sci 2010; 117:109-21. [DOI: 10.1093/toxsci/kfq172] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
11
|
Visualization of F-actin localization and dynamics with live cell markers in Neurospora crassa. Fungal Genet Biol 2010; 47:573-86. [PMID: 20302965 DOI: 10.1016/j.fgb.2010.03.004] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 03/09/2010] [Accepted: 03/10/2010] [Indexed: 01/14/2023]
Abstract
Filamentous actin (F-actin) plays essential roles in filamentous fungi, as in all other eukaryotes, in a wide variety of cellular processes including cell growth, intracellular motility, and cytokinesis. We visualized F-actin organization and dynamics in living Neurospora crassa cells via confocal microscopy of growing hyphae expressing GFP fusions with homologues of the actin-binding proteins fimbrin (FIM) and tropomyosin (TPM-1), a subunit of the Arp2/3 complex (ARP-3) and a recently developed live cell F-actin marker, Lifeact (ABP140 of Saccharomyces cerevisiae). FIM-GFP, ARP-3-GFP, and Lifeact-GFP associated with small patches in the cortical cytoplasm that were concentrated in a subapical ring, which appeared similar for all three markers but was broadest in hyphae expressing Lifeact-GFP. These cortical patches were short-lived, and a subset was mobile throughout the hypha, exhibiting both anterograde and retrograde motility. TPM-1-GFP and Lifeact-GFP co-localized within the Spitzenkörper (Spk) core at the hyphal apex, and were also observed in actin cables throughout the hypha. All GFP fusion proteins studied were also transiently localized at septa: Lifeact-GFP first appeared as a broad ring during early stages of contractile ring formation and later coalesced into a sharper ring, TPM-1-GFP was observed in maturing septa, and FIM-GFP/ARP3-GFP-labeled cortical patches formed a double ring flanking the septa. Our observations suggest that each of the N. crassa F-actin-binding proteins analyzed associates with a different subset of F-actin structures, presumably reflecting distinct roles in F-actin organization and dynamics. Moreover, Lifeact-GFP marked the broadest spectrum of F-actin structures; it may serve as a global live cell marker for F-actin in filamentous fungi.
Collapse
|
12
|
Galletta BJ, Cooper JA. Actin and endocytosis: mechanisms and phylogeny. Curr Opin Cell Biol 2009; 21:20-7. [PMID: 19186047 PMCID: PMC2670849 DOI: 10.1016/j.ceb.2009.01.006] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 01/05/2009] [Accepted: 01/06/2009] [Indexed: 11/29/2022]
Abstract
The regulated assembly of actin filament networks is a crucial part of endocytosis, with crucial temporal and spatial relationships between proteins of the endocytic and actin assembly machinery. Of particular importance has been a wealth of studies in budding and fission yeast. Cell biology approaches, combined with molecular genetics, have begun to uncover the complexity of the regulation of actin dynamics during the endocytic process. In a wide range of organisms, clathrin-mediated endocytosis appears to be linked to Arp2/3-mediated actin assembly. The conservation of the components, across a wide range eukaryotic species, suggests that the partnership between endocytosis and actin may be evolutionarily ancient.
Collapse
Affiliation(s)
- Brian J Galletta
- Department of Cell Biology, Washington University Medical School, St Louis, MO, USA
| | | |
Collapse
|
13
|
Turzanski J, Daniels I, Haynes AP. Internalisation of uncross-linked rituximab is not essential for the induction of caspase-independent killing in Burkitt lymphoma cell lines. Leuk Lymphoma 2008; 49:1578-91. [PMID: 18766972 DOI: 10.1080/10428190802163313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Characterising the mechanisms underpinning caspase-independent programmed cell death (CI-PCD) induction by uncross-linked rituximab in B-cells may positively impact upon the treatment of disease states in which the classical apoptotic pathway is disabled. The necessity of rituximab internalisation for CI-PCD induction was investigated by flow cytometry and confocal microscopy in human BL cell lines with (e.g. Mutu I) and without (Mutu III) susceptibility to rituximab-induced killing. Flow cytometry demonstrated small, significant and similar amounts of rituximab internalisation by Mutu I cells after 1, 2, 4 and 24 h (p < 0.03, n = 5) and Mutu III cells after 0.5, 2, 4 and 24 h (p < 0.05, n = 4). Confocal microscopy confirmed this. Cytochalasin B and latrunculin A significantly inhibited rituximab-induced CI-PCD (p < or = 0.04, n = 6 and p = 0.01, n = 6, respectively) and internalisation (p = 0.02, n = 5 and p = 0.0002, n = 6, respectively) in Mutu I cells, but confocal microscopy showed no correlation between internalised rituximab and phosphatidylserine exposure. We conclude that rituximab internalisation is not essential for CI-PCD induction in BL cell lines.
Collapse
Affiliation(s)
- Julie Turzanski
- The David Evans Medical Research Centre, Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham, UK.
| | | | | |
Collapse
|
14
|
Klima A, Foissner I. FM dyes label sterol-rich plasma membrane domains and are internalized independently of the cytoskeleton in characean internodal cells. PLANT & CELL PHYSIOLOGY 2008; 49:1508-21. [PMID: 18757863 DOI: 10.1093/pcp/pcn122] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
We applied the endocytic markers FM1-43, FM4-64 and filipin to internodal cells of the green alga Chara corallina. Both FM dyes stained stable, long-living plasma membrane patches with a diameter of up to 1 microm. After 5 min, FM dyes labeled cortical, trembling structures up to 500 nm in size. After 15 min, FM dyes localized to endoplasmic organelles up to 1 microm in diameter, which migrated actively along actin bundles or participated in cytoplasmic mass streaming. After 30-60 min, FM fluorescence appeared in the membrane of small, endoplasmic vacuoles but not in that of the central vacuole. Some of the FM-labeled organelles were also stained by neutral red and lysotracker yellow, indicative of acidic compartments. Filipin, a sterol-specific marker, likewise labeled plasma membrane domains which co-localized with the FM patches. However, internalization of filipin could not be observed. KCN, cytochalasin D, latrunculin B and oryzalin had no effect on size, shape and distribution of FM- and filipin-labeled plasma membrane domains. Internalization of FM dyes was inhibited by KCN but not by drugs which interfere with the actin or microtubule cytoskeleton. Our data indicate that the plasma membrane of characean internodal cells contains discrete domains which are enriched in sterols and probably correspond to clusters of lipid rafts. The inhibitor experiments suggest that FM uptake is active but independent of actin filaments, actin polymerization and microtubules. The possible function of the sterol-rich, FM labeled plasma membrane areas and the significance of actin-independent FM internalization (via endocytosis or energy-dependent flippases) are discussed.
Collapse
Affiliation(s)
- Andreas Klima
- Department of Cell Biology, Division of Plant Physiology, University of Salzburg, Hellbrunnerstrasse 34, A-5020 Salzburg, Austria
| | | |
Collapse
|
15
|
Auxin transport inhibitors impair vesicle motility and actin cytoskeleton dynamics in diverse eukaryotes. Proc Natl Acad Sci U S A 2008; 105:4489-94. [PMID: 18337510 DOI: 10.1073/pnas.0711414105] [Citation(s) in RCA: 176] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Many aspects of plant development, including patterning and tropisms, are largely dependent on the asymmetric distribution of the plant signaling molecule auxin. Auxin transport inhibitors (ATIs), which interfere with directional auxin transport, have been essential tools in formulating this concept. However, despite the use of ATIs in plant research for many decades, the mechanism of ATI action has remained largely elusive. Using real-time live-cell microscopy, we show here that prominent ATIs such as 2,3,5-triiodobenzoic acid (TIBA) and 2-(1-pyrenoyl) benzoic acid (PBA) inhibit vesicle trafficking in plant, yeast, and mammalian cells. Effects on micropinocytosis, rab5-labeled endosomal motility at the periphery of HeLa cells and on fibroblast mobility indicate that ATIs influence actin cytoskeleton. Visualization of actin cytoskeleton dynamics in plants, yeast, and mammalian cells show that ATIs stabilize actin. Conversely, stabilizing actin by chemical or genetic means interferes with endocytosis, vesicle motility, auxin transport, and plant development, including auxin transport-dependent processes. Our results show that a class of ATIs act as actin stabilizers and advocate that actin-dependent trafficking of auxin transport components participates in the mechanism of auxin transport. These studies also provide an example of how the common eukaryotic process of actin-based vesicle motility can fulfill a plant-specific physiological role.
Collapse
|
16
|
Upadhyay S, Shaw BD. The role of actin, fimbrin and endocytosis in growth of hyphae in Aspergillus nidulans. Mol Microbiol 2008; 68:690-705. [PMID: 18331474 DOI: 10.1111/j.1365-2958.2008.06178.x] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Filamentous fungi are ideal systems to study the process of polarized growth, as their life cycle is dominated by hyphal growth exclusively at the cell apex. The actin cytoskeleton plays an important role in this growth. Until now, there have been no tools to visualize actin or the actin-binding protein fimbrin in live cells of a filamentous fungus. We investigated the roles of actin (ActA) and fimbrin (FimA) in hyphal growth in Aspergillus nidulans. We examined the localization of ActA::GFP and FimA::GFP in live cells, and each displayed a similar localization pattern. In actively growing hyphae, cortical ActA::GFP and FimA::GFP patches were highly mobile throughout the hypha and were concentrated near hyphal apices. A patch-depleted zone occupied the apical 0.5 microm of growing hypha. Both FimA::GFP and Act::GFP also localize transiently to septa. Movement and later localization of both was compromised after cytochalasin treatment. Disruption of fimA resulted in delayed polarity establishment during conidium germination, abnormal hyphal growth and endocytosis defects in apolar cells. Endocytosis was severely impaired in apolar fimA disruption cells. Our data support a novel apical recycling model which indicates a critical role for actin patch-mediated endocytosis to maintain polarized growth at the apex.
Collapse
Affiliation(s)
- Srijana Upadhyay
- Program for the Biology of Filamentous Fungi, Department of Plant Pathology and Microbiology, Texas A&M University, 2132 TAMU, College Station, TX 77843, USA
| | | |
Collapse
|
17
|
Monastyrska I, He C, Geng J, Hoppe AD, Li Z, Klionsky DJ. Arp2 links autophagic machinery with the actin cytoskeleton. Mol Biol Cell 2008; 19:1962-75. [PMID: 18287533 DOI: 10.1091/mbc.e07-09-0892] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Macroautophagy involves lysosomal/vacuolar elimination of long-lived proteins and entire organelles from the cytosol. The process begins with formation of a double-membrane vesicle that sequesters bulk cytoplasm, or a specific cargo destined for lysosomal/vacuolar delivery. The completed vesicle fuses with the lysosome/vacuole limiting membrane, releasing its content into the organelle lumen for subsequent degradation and recycling of the resulting macromolecules. A majority of the autophagy-related (Atg) proteins are required at the step of vesicle formation. The integral membrane protein Atg9 cycles between certain intracellular compartments and the vesicle nucleation site, presumably to supply membranes necessary for macroautophagic vesicle formation. In this study we have tracked the movement of Atg9 over time in living cells by using real-time fluorescence microscopy. Our results reveal that an actin-related protein, Arp2, briefly colocalizes with Atg9 and directly regulates the dynamics of Atg9 movement. We propose that proteins of the Arp2/3 complex regulate Atg9 transport for specific types of autophagy.
Collapse
Affiliation(s)
- Iryna Monastyrska
- Life Sciences Institute and Departments of Molecular, Cellular, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | |
Collapse
|
18
|
Smythe WA, Joiner KA, Hoppe HC. Actin is required for endocytic trafficking in the malaria parasite Plasmodium falciparum. Cell Microbiol 2007; 10:452-64. [PMID: 17944961 DOI: 10.1111/j.1462-5822.2007.01058.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The intra-erythrocytic stages of the malaria parasite endocytose large quantities of the surrounding erythrocyte cytoplasm and deliver it to a digestive food vacuole via endocytic vesicles. Digestion provides amino acids for parasite protein synthesis and is required to maintain the osmotic integrity of the host cell. The parasite endocytic pathway has been described morphologically by electron microscopy, but the molecular mechanisms that mediate and regulate it remain elusive. Given the involvement of actin in endocytosis in other eukaryotes, we have used actin inhibitors to assess the requirement for this protein in the endocytic pathway of the human malaria parasite, Plasmodium falciparum. Treatment of cultures with cytochalasin D did not affect haemoglobin levels in the parasites when co-administered with protease inhibitors, and neither did it affect the uptake of the endocytic tracer horseradish peroxidase, suggesting the absence of actin in the mechanism of endocytosis. However, in the absence of protease inhibitors, treated parasites contained increased levels of haemoglobin due to an accumulation of enlarged endocytic vesicles, as determined by immunofluorescence and electron microscopy, suggesting a role for actin in vesicle trafficking, possibly by mediating vesicle maturation and/or fusion to the digestive vacuole. In contrast to cytochalasin D, treatment with jasplakinolide led to an inhibition of endocytosis, an accumulation of vesicles closer to the plasma membrane and a marked concentration of actin in the parasite cortex. We propose that the stabilization of cortical actin filaments by jasplakinolide interferes with normal endocytic vesicle formation and migration from the cell periphery.
Collapse
Affiliation(s)
- Wynand A Smythe
- Division of Pharmacology and Institute of Infectious Diseases and Molecular Medicine, University of Cape Town Medical School, Cape Town, 7925, South Africa
| | | | | |
Collapse
|
19
|
He Y, Hicke L, Radhakrishnan I. Structural basis for ubiquitin recognition by SH3 domains. J Mol Biol 2007; 373:190-6. [PMID: 17765920 PMCID: PMC2034316 DOI: 10.1016/j.jmb.2007.07.074] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 07/19/2007] [Accepted: 07/30/2007] [Indexed: 02/02/2023]
Abstract
The SH3 domain is a protein-protein interaction module commonly found in intracellular signaling and adaptor proteins. The SH3 domains of multiple endocytic proteins have been recently implicated in binding ubiquitin, which serves as a signal for diverse cellular processes including gene regulation, endosomal sorting, and protein destruction. Here we describe the solution NMR structure of ubiquitin in complex with an SH3 domain belonging to the yeast endocytic protein Sla1. The ubiquitin binding surface of the Sla1 SH3 domain overlaps substantially with the canonical binding surface for proline-rich ligands. Like many other ubiquitin-binding motifs, the SH3 domain engages the Ile44 hydrophobic patch of ubiquitin. A phenylalanine residue located at the heart of the ubiquitin-binding surface of the SH3 domain serves as a key specificity determinant. The structure of the SH3-ubiquitin complex explains how a subset of SH3 domains has acquired this non-traditional function.
Collapse
Affiliation(s)
- Yuan He
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, IL 60208-3500, USA
| | | | | |
Collapse
|
20
|
Dada LA, Novoa E, Lecuona E, Sun H, Sznajder JI. Role of the small GTPase RhoA in the hypoxia-induced decrease of plasma membrane Na,K-ATPase in A549 cells. J Cell Sci 2007; 120:2214-22. [PMID: 17550967 DOI: 10.1242/jcs.003038] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Hypoxia impairs alveolar fluid reabsorption by promoting Na,K-ATPase endocytosis, from the plasma membrane of alveolar epithelial cells. The present study was designed to determine whether hypoxia induces Na,K-ATPase endocytosis via reactive oxygen species (ROS)-mediated RhoA activation. In A549 cells, RhoA activation occurred within 15 minutes of cells exposure to hypoxia. This activation was inhibited in cells infected with adenovirus coding for gluthatione peroxidase (an H2O2 scavenger), in mitochondria depleted (rho0) cells or cells expressing decreased levels of the Rieske iron-sulfur protein (inhibitor of mitochondrial complex III), which suggests a role for mitochondrial ROS. Moreover, exogenous H2O2 treatment during normoxia mimicked the effects of hypoxia on RhoA, further supporting a role for ROS. Cells expressing dominant negative RhoA failed to endocytose the Na,K-ATPase during hypoxia or after H2O2 treatment. Na,K-ATPase endocytosis was also prevented in cells treated with Y-27632, a Rho-associated kinase (ROCK) inhibitor, and in cells expressing dominant negative ROCK. In summary, we provide evidence that in human alveolar epithelial cells exposed to hypoxia, RhoA/ROCK activation is necessary for Na,K-ATPase endocytosis via a mechanism that requires mitochondrial ROS.
Collapse
Affiliation(s)
- Laura A Dada
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | | | | | | | | |
Collapse
|
21
|
Abstract
Increasing evidence from a variety of cell types has highlighted the importance of the actin cytoskeleton during endocytosis. No longer is actin viewed as a passive barrier that must be removed to allow endocytosis to proceed. Rather, actin structures are dynamically organised to assist the remodelling of the cell surface to allow inward movement of vesicles. The majority of our mechanistic insight into the role of actin in endocytosis has come from studies in budding yeast. Although endocytosis in mammalian cells is clearly more complex and subject to a greater array of regulatory signals, recent advances have revealed actin, and actin-regulatory proteins, to be present at endocytic sites. Furthermore, live cell imaging indicates that spatiotemporal aspects of actin recruitment and vesicle formation are likely to be conserved across eukaryotic evolution.
Collapse
Affiliation(s)
- Elizabeth Smythe
- Department of Biomedical Science, Firth Court, Western Bank, University of Sheffield, Sheffield, UK
| | | |
Collapse
|
22
|
Abstract
The story of rapamycin is a pharmaceutical fairytale. Discovered as an antifungal activity in a soil sample collected on Easter Island, this macrocyclic lactone and its derivatives are now billion dollar drugs, used in, and being evaluated for, a number of clinical applications. Taking advantage of its antifungal property, the molecular Target Of Rapamycin, TOR, was first described in the budding yeast Saccharomyces cerevisiae. TORs encode large, Ser/Thr protein kinases that reside in two distinct, structurally and functionally conserved, multi-protein complexes. In yeast, these complexes coordinate many different aspects of cell growth. TOR complex 1, TORC1, promotes protein synthesis and other anabolic processes, while inhibiting macroautophagy and other catabolic and stress-response processes. TORC2 primarily regulates cell polarity, although additional readouts of this complex are beginning to be characterized. TORC1 appears to be activated by nutrient cues and inhibited by stresses and rapamycin; however, detailed mechanisms are not known. In contrast, TORC2 is insensitive to rapamycin and physiological regulators of this complex have yet to be defined. Given the unsurpassed resources available to yeast researchers, this simple eukaryote continues to contribute to our understanding of eukaryotic cell growth in general and TOR function in particular.
Collapse
Affiliation(s)
- C De Virgilio
- Département de Microbiologie et Médecine Moléculaire, Université de Genève, CMU, Geneva, Switzerland.
| | | |
Collapse
|
23
|
John Wiley & Sons, Ltd.. Current awareness on yeast. Yeast 2006. [DOI: 10.1002/yea.1314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
24
|
Fuchs U, Steinberg G. Endocytosis in the plant-pathogenic fungus Ustilago maydis. PROTOPLASMA 2005; 226:75-80. [PMID: 16231103 DOI: 10.1007/s00709-005-0109-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2005] [Accepted: 03/30/2005] [Indexed: 05/04/2023]
Abstract
Filamentous fungi are an important group of tip-growing organisms, which include numerous plant pathogens such as Magnaporthe grisea and Ustilago maydis. Despite their ecological and economical relevance, we are just beginning to unravel the importance of endocytosis in filamentous fungi. Most evidence for endocytosis in filamentous fungi is based on the use of endocytic tracer dyes that are taken up into the cell and delivered to the vacuole. Moreover, genomewide screening for candidate genes in Neurospora crassa and U. maydis confirmed the presence of most components of the endocytic machinery, indicating that endocytosis participates in filamentous growth. Indeed, it was shown that in U. maydis early endosomes cluster at sites of growth, where they support morphogenesis and polar growth, most likely via endosome-based membrane recycling. In humans, such recycling processes to the plasma membrane involve small GTPases such as Rab4. A homologue of this protein is encoded in the genome of U. maydis but is absent from the yeast Saccharomyces cerevisiae, suggesting that Rab4-mediated recycling is important for filamentous growth. Furthermore, human Rab4 regulates traffic of early endosomes along microtubules, and a similar microtubule-based transport is described for U. maydis. These observations suggest that Rab4-like GTPases might regulate endosome- and microtubule-based recycling during tip growth of filamentous fungi.
Collapse
Affiliation(s)
- U Fuchs
- Max-Planck-Institut für terrestrische Mikrobiologie, Marburg, Federal Republic of Germany
| | | |
Collapse
|