1
|
Cosgrove D, Dupree P, Gomez ED, Haigler CH, Kubicki JD, Zimmer J. How Many Glucan Chains Form Plant Cellulose Microfibrils? A Mini Review. Biomacromolecules 2024; 25:6357-6366. [PMID: 39207939 PMCID: PMC11480985 DOI: 10.1021/acs.biomac.4c00995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Assessing the number of glucan chains in cellulose microfibrils (CMFs) is crucial for understanding their structure-property relationships and interactions within plant cell walls. This Review examines the conclusions and limitations of the major experimental techniques that have provided insights into this question. Small-angle X-ray and neutron scattering data predominantly support an 18-chain model, although analysis is complicated by factors such as fibril coalescence and matrix polysaccharide associations. Solid-state nuclear magnetic resonance (NMR) spectroscopy allows the estimation of the CMF width from the ratio of interior to surface glucose residues. However, there is uncertainty in the assignment of NMR spectral peaks to surface or interior chains. Freeze-fracture transmission electron microscopy images show cellulose synthase complexes to be "rosettes" of six lobes each consistent with a trimer of cellulose synthase enzymes, consistent with the synthesis of 18 parallel glucan chains in the CMF. Nevertheless, the number of chains in CMFs remains to be conclusively demonstrated.
Collapse
Affiliation(s)
- Daniel
J. Cosgrove
- Pennsylvania
State University, University
Park, Pennsylvania 16802, United States
| | - Paul Dupree
- Department
of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Enrique D. Gomez
- Pennsylvania
State University, University
Park, Pennsylvania 16802, United States
| | - Candace H. Haigler
- Crop
Sciences and Department of Botany, North
Carolina State University, Raleigh, North Carolina 27695, United States
| | - James D. Kubicki
- Department
of Geological Sciences, UTEP University
of Texas El Paso, El Paso, Texas 79968, United States
| | - Jochen Zimmer
- Molecular
Physiology and Biological Physics, University
of Virginia, Charlottesville, Virginia 22903-1738, United States
| |
Collapse
|
2
|
Zhu Y, McFarlane HE. Regulation of cellulose synthesis via exocytosis and endocytosis. CURRENT OPINION IN PLANT BIOLOGY 2022; 69:102273. [PMID: 35987011 DOI: 10.1016/j.pbi.2022.102273] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/22/2022] [Accepted: 07/04/2022] [Indexed: 05/27/2023]
Abstract
Cellulose is a critical component of plant cell walls. Cellulose is made at the plasma membrane by cellulose synthase (CESA) enzymes organized into large, multi-subunit cellulose synthase complexes (CSCs). Although CESAs are only active at the plasma membrane, fluorescently-tagged CESAs also substantially label the Golgi apparatus and other intracellular compartments, even when cellulose synthesis rates are high. These data imply that CESA activity is regulated by trafficking to the plasma membrane (exocytosis) and removal from the plasma membrane (endocytosis), as well as recycling of endocytosed CESAs back to the plasma membrane. Key molecular components and events of CESA exocytosis and endocytosis have recently been defined, primarily using mutant analysis and live-cell imaging in Arabidopsis thaliana. Here, we integrate these data into a working model of CESA regulation by exocytosis and endocytosis and highlight key outstanding questions. We present the hypothesis that cycling of CESAs between the plasma membrane and the endomembrane system is important for regulating cellulose synthesis and for maintaining a robust population of active CSCs in the plasma membrane.
Collapse
Affiliation(s)
- Yu Zhu
- Department of Cell & Systems Biology, University of Toronto, 25 Harbord St. Toronto, ON, M5S 3G5, Canada
| | - Heather E McFarlane
- Department of Cell & Systems Biology, University of Toronto, 25 Harbord St. Toronto, ON, M5S 3G5, Canada.
| |
Collapse
|
3
|
Allen H, Wei D, Gu Y, Li S. A historical perspective on the regulation of cellulose biosynthesis. Carbohydr Polym 2021; 252:117022. [DOI: 10.1016/j.carbpol.2020.117022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/25/2020] [Accepted: 08/25/2020] [Indexed: 01/19/2023]
|
4
|
Pinzhenina EA. Trichomes of mericarpian species of the genus Galium (Rubiaceae) in Asian Russia. BIO WEB OF CONFERENCES 2021. [DOI: 10.1051/bioconf/20213800099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The surface structure of mericarp of 16 species from 9 sections of the genus Galium, growing in Asian Russia, has been studied by scanning electron microscopy. Clothing trichomes were found on the surface of the fruit. It was noted that the clothing trichomes are distributed over the mericarp or concentrated in separate parts of it. Based on the results obtained, two morphological types and six subtypes of clothing trichomes were identified, which have taxonomic significance.
Collapse
|
5
|
Meents MJ, Watanabe Y, Samuels AL. The cell biology of secondary cell wall biosynthesis. ANNALS OF BOTANY 2018; 121:1107-1125. [PMID: 29415210 PMCID: PMC5946954 DOI: 10.1093/aob/mcy005] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 01/16/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND Secondary cell walls (SCWs) form the architecture of terrestrial plant biomass. They reinforce tracheary elements and strengthen fibres to permit upright growth and the formation of forest canopies. The cells that synthesize a strong, thick SCW around their protoplast must undergo a dramatic commitment to cellulose, hemicellulose and lignin production. SCOPE This review puts SCW biosynthesis in a cellular context, with the aim of integrating molecular biology and biochemistry with plant cell biology. While SCWs are deposited in diverse tissue and cellular contexts including in sclerenchyma (fibres and sclereids), phloem (fibres) and xylem (tracheids, fibres and vessels), the focus of this review reflects the fact that protoxylem tracheary elements have proven to be the most amenable experimental system in which to study the cell biology of SCWs. CONCLUSIONS SCW biosynthesis requires the co-ordination of plasma membrane cellulose synthases, hemicellulose production in the Golgi and lignin polymer deposition in the apoplast. At the plasma membrane where the SCW is deposited under the guidance of cortical microtubules, there is a high density of SCW cellulose synthase complexes producing cellulose microfibrils consisting of 18-24 glucan chains. These microfibrils are extruded into a cell wall matrix rich in SCW-specific hemicelluloses, typically xylan and mannan. The biosynthesis of eudicot SCW glucuronoxylan is taken as an example to illustrate the emerging importance of protein-protein complexes in the Golgi. From the trans-Golgi, trafficking of vesicles carrying hemicelluloses, cellulose synthases and oxidative enzymes is crucial for exocytosis of SCW components at the microtubule-rich cell membrane domains, producing characteristic SCW patterns. The final step of SCW biosynthesis is lignification, with monolignols secreted by the lignifying cell and, in some cases, by neighbouring cells as well. Oxidative enzymes such as laccases and peroxidases, embedded in the polysaccharide cell wall matrix, determine where lignin is deposited.
Collapse
Affiliation(s)
- Miranda J Meents
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Yoichiro Watanabe
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
6
|
Nixon BT, Mansouri K, Singh A, Du J, Davis JK, Lee JG, Slabaugh E, Vandavasi VG, O’Neill H, Roberts EM, Roberts AW, Yingling YG, Haigler CH. Comparative Structural and Computational Analysis Supports Eighteen Cellulose Synthases in the Plant Cellulose Synthesis Complex. Sci Rep 2016; 6:28696. [PMID: 27345599 PMCID: PMC4921827 DOI: 10.1038/srep28696] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 06/08/2016] [Indexed: 12/21/2022] Open
Abstract
A six-lobed membrane spanning cellulose synthesis complex (CSC) containing multiple cellulose synthase (CESA) glycosyltransferases mediates cellulose microfibril formation. The number of CESAs in the CSC has been debated for decades in light of changing estimates of the diameter of the smallest microfibril formed from the β-1,4 glucan chains synthesized by one CSC. We obtained more direct evidence through generating improved transmission electron microscopy (TEM) images and image averages of the rosette-type CSC, revealing the frequent triangularity and average cross-sectional area in the plasma membrane of its individual lobes. Trimeric oligomers of two alternative CESA computational models corresponded well with individual lobe geometry. A six-fold assembly of the trimeric computational oligomer had the lowest potential energy per monomer and was consistent with rosette CSC morphology. Negative stain TEM and image averaging showed the triangularity of a recombinant CESA cytosolic domain, consistent with previous modeling of its trimeric nature from small angle scattering (SAXS) data. Six trimeric SAXS models nearly filled the space below an average FF-TEM image of the rosette CSC. In summary, the multifaceted data support a rosette CSC with 18 CESAs that mediates the synthesis of a fundamental microfibril composed of 18 glucan chains.
Collapse
Affiliation(s)
- B. Tracy Nixon
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, State College, PA 16802, USA
| | - Katayoun Mansouri
- Department of Crop Science and Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Abhishek Singh
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Juan Du
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, State College, PA 16802, USA
| | - Jonathan K. Davis
- Department of Crop Science and Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Jung-Goo Lee
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Erin Slabaugh
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | | | - Hugh O’Neill
- Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Eric M. Roberts
- Department of Biology, Rhode Island College, Providence, RI 02908, USA
| | - Alison W. Roberts
- Department of Biological Sciences, University of Rhode Island, Kingston, RI 02881, USA
| | - Yaroslava G. Yingling
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Candace H. Haigler
- Department of Crop Science and Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
7
|
Stein O, Damari-Weissler H, Secchi F, Rachmilevitch S, German MA, Yeselson Y, Amir R, Schaffer A, Holbrook NM, Aloni R, Zwieniecki MA, Granot D. The tomato plastidic fructokinase SlFRK3 plays a role in xylem development. THE NEW PHYTOLOGIST 2016; 209:1484-95. [PMID: 26467542 DOI: 10.1111/nph.13705] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 09/08/2015] [Indexed: 05/20/2023]
Abstract
Plants have two kinds of fructokinases (FRKs) that catalyze the key step of fructose phosphorylation, cytosolic and plastidic. The major cytosolic tomato FRK, SlFRK2, is essential for the development of xylem vessels. In order to study the role of SlFRK3, which encodes the only plastidic FRK, we generated transgenic tomato (Solanum lycopersicon) plants with RNAi suppression of SlFRK3 as well as plants expressing beta-glucoronidase (GUS) under the SlFRK3 promoter. GUS staining indicated SlFRK3 expression in vascular tissues of the leaves and stems, including cambium, differentiating xylem, young xylem fibers and phloem companion cells. Suppression of SlFRK3 reduced the stem xylem area, stem and root water conductance, and whole-plant transpiration, with minor effects on plant development. However, suppression of SlFRK3 accompanied by partial suppression of SlFRK2 induced significant growth-inhibition effects, including the wilting of mature leaves. Grafting experiments revealed that these growth effects are imposed primarily by the leaves, whose petioles had unlignified, thin-walled xylem fibers with collapsed parenchyma cells around the vessels. A cross between the SlFRK2-antisense and SlFRK3-RNAi lines exhibited similar wilting and anatomical effects, confirming that these effects are the result of the combined suppression of SlFRK3 and SlFRK2. These results demonstrate a role of the plastidic SlFRK3 in xylem development and hydraulic conductance.
Collapse
Affiliation(s)
- Ofer Stein
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan, 50250, Israel
- The Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Hila Damari-Weissler
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan, 50250, Israel
| | - Francesca Secchi
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Shimon Rachmilevitch
- Albert Katz Department of Dryland Biotechnologies, Blaustein Institutes for Desert Research, Ben Gurion University, Sede Boqer Campus, 84990, Israel
| | - Marcelo A German
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan, 50250, Israel
| | - Yelena Yeselson
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan, 50250, Israel
| | - Rachel Amir
- Laboratory of Plant Science, Migal Galilee Research Center, PO Box 831, Kiryat Shmona, 12100, Israel
| | - Arthur Schaffer
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan, 50250, Israel
| | - N Michele Holbrook
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Ave., Cambridge, MA, 02138, USA
| | - Roni Aloni
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Maciej A Zwieniecki
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - David Granot
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan, 50250, Israel
| |
Collapse
|
8
|
Jones DM, Murray CM, Ketelaar KJ, Thomas JJ, Villalobos JA, Wallace IS. The Emerging Role of Protein Phosphorylation as a Critical Regulatory Mechanism Controlling Cellulose Biosynthesis. FRONTIERS IN PLANT SCIENCE 2016; 7:684. [PMID: 27252710 PMCID: PMC4877384 DOI: 10.3389/fpls.2016.00684] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 05/04/2016] [Indexed: 05/02/2023]
Abstract
Plant cell walls are extracellular matrices that surround plant cells and critically influence basic cellular processes, such as cell division and expansion. Cellulose is a major constituent of plant cell walls, and this paracrystalline polysaccharide is synthesized at the plasma membrane by a large protein complex known as the cellulose synthase complex (CSC). Recent efforts have identified numerous protein components of the CSC, but relatively little is known about regulation of cellulose biosynthesis. Numerous phosphoproteomic surveys have identified phosphorylation events in CSC associated proteins, suggesting that protein phosphorylation may represent an important regulatory control of CSC activity. In this review, we discuss the composition and dynamics of the CSC in vivo, the catalog of CSC phosphorylation sites that have been identified, the function of experimentally examined phosphorylation events, and potential kinases responsible for these phosphorylation events. Additionally, we discuss future directions in cellulose synthase kinase identification and functional analyses of CSC phosphorylation sites.
Collapse
Affiliation(s)
- Danielle M. Jones
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, RenoNV, USA
| | - Christian M. Murray
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, RenoNV, USA
| | - KassaDee J. Ketelaar
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, RenoNV, USA
| | - Joseph J. Thomas
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, RenoNV, USA
| | - Jose A. Villalobos
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, RenoNV, USA
| | - Ian S. Wallace
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, RenoNV, USA
- Department of Chemistry, University of Nevada, Reno, RenoNV, USA
- *Correspondence: Ian S. Wallace,
| |
Collapse
|
9
|
Guerriero G, Hausman J, Strauss J, Ertan H, Siddiqui KS. Lignocellulosic bioma
ss
: Biosynthesis, degradation, and industrial utilization. Eng Life Sci 2015. [DOI: 10.1002/elsc.201400196] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Gea Guerriero
- Environmental Research and Innovation (ERIN) Luxembourg Institute of Science and Technology (LIST) Esch/Alzette Luxembourg
| | - Jean‐Francois Hausman
- Environmental Research and Innovation (ERIN) Luxembourg Institute of Science and Technology (LIST) Esch/Alzette Luxembourg
| | - Joseph Strauss
- Department of Applied Genetics and Cell Biology Fungal Genetics and Genomics Unit University of Natural Resources and Life Sciences Vienna (BOKU) University and Research Center Campus Tulln‐Technopol Tulln/Donau Austria
- Health and Environment Department Austrian Institute of Technology GmbH ‐ AIT University and Research Center Campus Tulln‐Technopol Tulln/Donau Austria
| | - Haluk Ertan
- School of Biotechnology and Biomolecular Sciences The University of New South Wales Sydney Australia
- Department of Molecular Biology and Genetics Istanbul University Istanbul Turkey
| | - Khawar Sohail Siddiqui
- Life Sciences Department King Fahd University of Petroleum and Minerals (KFUPM) Dhahran Kingdom of Saudi Arabia
| |
Collapse
|
10
|
In vitro synthesis of cellulose microfibrils by a membrane protein from protoplasts of the non-vascular plant Physcomitrella patens. Biochem J 2015; 470:195-205. [PMID: 26348908 DOI: 10.1042/bj20141391] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 06/30/2015] [Indexed: 12/29/2022]
Abstract
Plant cellulose synthases (CesAs) form a family of membrane proteins that are associated with hexagonal structures in the plasma membrane called CesA complexes (CSCs). It has been difficult to purify plant CesA proteins for biochemical and structural studies. We describe CesA activity in a membrane protein preparation isolated from protoplasts of Physcomitrella patens overexpressing haemagglutinin (HA)-tagged PpCesA5. Incubating the membrane preparation with UDP-glucose predominantly produced cellulose. Negative-stain EM revealed microfibrils. Cellulase bound to and degraded these microfibrils. Vibrational sum frequency generation (SFG) spectroscopic analysis detected the presence of crystalline cellulose in the microfibrils. Putative CesA proteins were frequently observed attached to the microfibril ends. Combined cross-linking and gradient centrifugation showed bundles of cellulose microfibrils with larger particle aggregates, possibly CSCs. These results suggest that P. patens is a useful model system for biochemical and structural characterization of plant CSCs and their components.
Collapse
|
11
|
|
12
|
Bashline L, Li S, Gu Y. The trafficking of the cellulose synthase complex in higher plants. ANNALS OF BOTANY 2014; 114:1059-67. [PMID: 24651373 PMCID: PMC4195546 DOI: 10.1093/aob/mcu040] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 02/14/2014] [Indexed: 05/17/2023]
Abstract
BACKGROUND Cellulose is an important constituent of plant cell walls in a biological context, and is also a material commonly utilized by mankind in the pulp and paper, timber, textile and biofuel industries. The biosynthesis of cellulose in higher plants is a function of the cellulose synthase complex (CSC). The CSC, a large transmembrane complex containing multiple cellulose synthase proteins, is believed to be assembled in the Golgi apparatus, but is thought only to synthesize cellulose when it is localized at the plasma membrane, where CSCs synthesize and extrude cellulose directly into the plant cell wall. Therefore, the delivery and endocytosis of CSCs to and from the plasma membrane are important aspects for the regulation of cellulose biosynthesis. SCOPE Recent progress in the visualization of CSC dynamics in living plant cells has begun to reveal some of the routes and factors involved in CSC trafficking. This review highlights the most recent major findings related to CSC trafficking, provides novel perspectives on how CSC trafficking can influence the cell wall, and proposes potential avenues for future exploration.
Collapse
Affiliation(s)
- Logan Bashline
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Shundai Li
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Ying Gu
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
13
|
Haigler CH, Grimson MJ, Gervais J, Le Moigne N, Höfte H, Monasse B, Navard P. Molecular modeling and imaging of initial stages of cellulose fibril assembly: evidence for a disordered intermediate stage. PLoS One 2014; 9:e93981. [PMID: 24722535 PMCID: PMC3983097 DOI: 10.1371/journal.pone.0093981] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 03/11/2014] [Indexed: 12/13/2022] Open
Abstract
The remarkable mechanical strength of cellulose reflects the arrangement of multiple β-1,4-linked glucan chains in a para-crystalline fibril. During plant cellulose biosynthesis, a multimeric cellulose synthesis complex (CSC) moves within the plane of the plasma membrane as many glucan chains are synthesized from the same end and in close proximity. Many questions remain about the mechanism of cellulose fibril assembly, for example must multiple catalytic subunits within one CSC polymerize cellulose at the same rate? How does the cellulose fibril bend to align horizontally with the cell wall? Here we used mathematical modeling to investigate the interactions between glucan chains immediately after extrusion on the plasma membrane surface. Molecular dynamics simulations on groups of six glucans, each originating from a position approximating its extrusion site, revealed initial formation of an uncrystallized aggregate of chains from which a protofibril arose spontaneously through a ratchet mechanism involving hydrogen bonds and van der Waals interactions between glucose monomers. Consistent with the predictions from the model, freeze-fracture transmission electron microscopy using improved methods revealed a hemispherical accumulation of material at points of origination of apparent cellulose fibrils on the external surface of the plasma membrane where rosette-type CSCs were also observed. Together the data support the possibility that a zone of uncrystallized chains on the plasma membrane surface buffers the predicted variable rates of cellulose polymerization from multiple catalytic subunits within the CSC and acts as a flexible hinge allowing the horizontal alignment of the crystalline cellulose fibrils relative to the cell wall.
Collapse
Affiliation(s)
- Candace H. Haigler
- Department of Crop Science and Dept. of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, United States of America
- * E-mail: (CHH); (PN)
| | - Mark J. Grimson
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
| | - Julien Gervais
- Centre de Mise en Forme des Matériaux, Mines ParisTech/Centre National de la Recherche Scientifique, Sophia Antipolis, France
| | - Nicolas Le Moigne
- Centre de Mise en Forme des Matériaux, Mines ParisTech/Centre National de la Recherche Scientifique, Sophia Antipolis, France
| | - Herman Höfte
- Institut Jean-Pierre Bourgin, AgroParisTech/Unité Mixte de Recherche The French National Institute for Agricultural Research/Saclay Plant Science, Versailles, France
| | - Bernard Monasse
- Centre de Mise en Forme des Matériaux, Mines ParisTech/Centre National de la Recherche Scientifique, Sophia Antipolis, France
| | - Patrick Navard
- Centre de Mise en Forme des Matériaux, Mines ParisTech/Centre National de la Recherche Scientifique, Sophia Antipolis, France
- * E-mail: (CHH); (PN)
| |
Collapse
|
14
|
Li S, Bashline L, Lei L, Gu Y. Cellulose synthesis and its regulation. THE ARABIDOPSIS BOOK 2014; 12:e0169. [PMID: 24465174 PMCID: PMC3894906 DOI: 10.1199/tab.0169] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Cellulose, the most abundant biopolymer synthesized on land, is made of linear chains of ß (1-4) linked D-glucose. As a major structural component of the cell wall, cellulose is important not only for industrial use but also for plant growth and development. Cellulose microfibrils are tethered by other cell wall polysaccharides such as hemicellulose, pectin, and lignin. In higher plants, cellulose is synthesized by plasma membrane-localized rosette cellulose synthase complexes. Despite the recent advances using a combination of molecular genetics, live cell imaging, and spectroscopic tools, many aspects of the cellulose synthesis remain a mystery. In this chapter, we highlight recent research progress towards understanding the mechanism of cellulose synthesis in Arabidopsis.
Collapse
Affiliation(s)
- Shundai Li
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
| | - Logan Bashline
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
| | - Lei Lei
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
| | - Ying Gu
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
- Address correspondence to
| |
Collapse
|
15
|
Plant Cell Wall Polysaccharides: Structure and Biosynthesis. POLYSACCHARIDES 2014. [DOI: 10.1007/978-3-319-03751-6_73-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
16
|
Abstract
Plant stature and development are governed by cell proliferation and directed cell growth. These parameters are determined largely by cell wall characteristics. Cellulose microfibrils, composed of hydrogen-bonded β-1,4 glucans, are key components for anisotropic growth in plants. Cellulose is synthesized by plasma membrane-localized cellulose synthase complexes. In higher plants, these complexes are assembled into hexameric rosettes in intracellular compartments and secreted to the plasma membrane. Here, the complexes typically track along cortical microtubules, which may guide cellulose synthesis, until the complexes are inactivated and/or internalized. Determining the regulatory aspects that control the behavior of cellulose synthase complexes is vital to understanding directed cell and plant growth and to tailoring cell wall content for industrial products, including paper, textiles, and fuel. In this review, we summarize and discuss cellulose synthesis and regulatory aspects of the cellulose synthase complex, focusing on Arabidopsis thaliana.
Collapse
Affiliation(s)
- Heather E McFarlane
- Department of Botany, University of British Columbia, Vancouver V6T 1Z4, Canada;
| | | | | |
Collapse
|
17
|
The trafficking and behavior of cellulose synthase and a glimpse of potential cellulose synthesis regulators. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/s11515-011-1161-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Fujita M, Himmelspach R, Hocart CH, Williamson RE, Mansfield SD, Wasteneys GO. Cortical microtubules optimize cell-wall crystallinity to drive unidirectional growth in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 66:915-28. [PMID: 21535258 DOI: 10.1111/j.1365-313x.2011.04552.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The shape of plants depends on cellulose, a biopolymer that self-assembles into crystalline, inextensible microfibrils (CMFs) upon synthesis at the plasma membrane by multi-enzyme cellulose synthase complexes (CSCs). CSCs are displaced in directions predicted by underlying parallel arrays of cortical microtubules, but CMFs remain transverse in cells that have lost the ability to expand unidirectionally as a result of disrupted microtubules. These conflicting findings suggest that microtubules are important for some physico-chemical property of cellulose that maintains wall integrity. Using X-ray diffraction, we demonstrate that abundant microtubules enable a decrease in the degree of wall crystallinity during rapid growth at high temperatures. Reduced microtubule polymer mass in the mor1-1 mutant at high temperatures is associated with failure of crystallinity to decrease and a loss of unidirectional expansion. Promotion of microtubule bundling by over-expressing the RIC1 microtubule-associated protein reduced the degree of crystallinity. Using live-cell imaging, we detected an increase in the proportion of CSCs that track in microtubule-free domains in mor1-1, and an increase in the CSC velocity. These results suggest that microtubule domains affect glucan chain crystallization during unidirectional cell expansion. Microtubule disruption had no obvious effect on the orientation of CMFs in dark-grown hypocotyl cells. CMFs at the outer face of the hypocotyl epidermal cells had highly variable orientation, in contrast to the transverse CMFs on the radial and inner periclinal walls. This suggests that the outer epidermal mechanical properties are relatively isotropic, and that axial expansion is largely dependent on the inner tissue layers.
Collapse
Affiliation(s)
- Miki Fujita
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, V6T 1Z4, Canada
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
Plant cell walls are complex structures composed of high-molecular-weight polysaccharides, proteins, and lignins. Among the wall polysaccharides, cellulose, a hydrogen-bonded β-1,4-linked glucan microfibril, is the main load-bearing wall component and a key precursor for industrial applications. Cellulose is synthesized by large multi-meric cellulose synthase (CesA) complexes, tracking along cortical microtubules at the plasma membrane. The only known components of these complexes are the cellulose synthase proteins. Recent studies have identified tentative interaction partners for the CesAs and shown that the migratory patterns of the CesA complexes depend on phosphorylation status. These advances may become good platforms for expanding our knowledge about cellulose synthesis in the near future. In addition, our current understanding of cellulose chain polymerization in the context of the CesA complex is discussed.
Collapse
Affiliation(s)
- Anne Endler
- Max-Planck-Institute for Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | | |
Collapse
|
20
|
|
21
|
Carroll A, Specht CD. Understanding Plant Cellulose Synthases through a Comprehensive Investigation of the Cellulose Synthase Family Sequences. FRONTIERS IN PLANT SCIENCE 2011; 2:5. [PMID: 22629257 PMCID: PMC3355508 DOI: 10.3389/fpls.2011.00005] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2011] [Accepted: 03/17/2011] [Indexed: 05/18/2023]
Abstract
The development of cellulose as an organizing structure in the plant cell wall was a key event in both the initial colonization and the subsequent domination of the terrestrial ecosystem by vascular plants. A wealth of experimental data has demonstrated the complicated genetic interactions required to form the large synthetic complex that synthesizes cellulose. However, these results are lacking an extensive analysis of the evolution, specialization, and regulation of the proteins that compose this complex. Here we perform an in-depth analysis of the sequences in the cellulose synthase (CesA) family. We investigate the phylogeny of the CesA family, with emphasis on evolutionary specialization. We define specialized clades and identify the class-specific regions within the CesA sequence that may explain this specialization. We investigate changes in regulation of CesAs by looking at the conservation of proposed phosphorylation sites. We investigate the conservation of sites where mutations have been documented that impair CesA function, and compare these sites to those observed in the closest cellulose synthase-like (Csl) families to better understand what regions may separate the CesAs from other Csls. Finally we identify two positions with strong conservation of the aromatic trait, but lacking conservation of amino acid identity, which may represent residues important for positioning the sugar substrate for catalysis. These analyses provide useful tools for understanding characterized mutations and post-translational modifications, and for informing further experiments to probe CesA assembly, regulation, and function through site-directed mutagenesis or domain swapping experiments.
Collapse
Affiliation(s)
- Andrew Carroll
- Department of Biology, Stanford UniversityStanford, CA, USA
- Energy Biosciences Institute, University of CaliforniaBerkeley, CA, USA
- *Correspondence: Andrew Carroll, Energy Biosciences Institute, University of California Berkeley, Calvin Hall, Berkeley, CA 94720, USA. e-mail:
| | - Chelsea D. Specht
- Department of Plant and Microbial Biology, University of CaliforniaBerkeley, CA, USA
| |
Collapse
|
22
|
Carpita NC. Update on mechanisms of plant cell wall biosynthesis: how plants make cellulose and other (1->4)-β-D-glycans. PLANT PHYSIOLOGY 2011; 155:171-84. [PMID: 21051553 PMCID: PMC3075763 DOI: 10.1104/pp.110.163360] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2010] [Accepted: 11/02/2010] [Indexed: 05/18/2023]
Affiliation(s)
- Nicholas C Carpita
- Department of Botany and Plant Pathology, and Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907-2054, USA.
| |
Collapse
|
23
|
Crowell EF, Gonneau M, Stierhof YD, Höfte H, Vernhettes S. Regulated trafficking of cellulose synthases. CURRENT OPINION IN PLANT BIOLOGY 2010; 13:700-5. [PMID: 20822948 DOI: 10.1016/j.pbi.2010.07.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 07/27/2010] [Accepted: 07/30/2010] [Indexed: 05/20/2023]
Abstract
New findings reveal that proteins involved in cellulose biosynthesis undergo regulated trafficking between intracellular compartments and the plasma membrane. The coordinated secretion and internalization of these proteins involve both the actin and cortical microtubule cytoskeletons. This regulated trafficking allows the dynamic remodeling of cellulose synthase complex (CSC) secretion during cell expansion and differentiation. Several new actors of the cellulose synthesis machinery have been recently identified.
Collapse
Affiliation(s)
- E F Crowell
- Membrane Traffic and Cell Division Research Group, Institut Pasteur, 28 rue du Dr. Roux, 75015 Paris, France
| | | | | | | | | |
Collapse
|
24
|
Wightman R, Turner S. Trafficking of the plant cellulose synthase complex. PLANT PHYSIOLOGY 2010; 153:427-32. [PMID: 20200066 PMCID: PMC2879793 DOI: 10.1104/pp.110.154666] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 02/27/2010] [Indexed: 05/19/2023]
|
25
|
Abstract
The potential for using cellulosic biomass as a source of fuel has renewed interest into how the large cellulose synthase complex deposits cellulose within the woody secondary walls of plants. This complex sits within the plasma membrane where it synthesizes numerous glucan chains which bond together to form the strong cellulose microfibril. The maintenance and guidance of the complex at the plasma membrane and its delivery to sites of secondary wall formation require the involvement of the cytoskeleton. In the present paper, we discuss the dynamics of the complex at the cell cortex and what is known about its assembly and trafficking.
Collapse
|
26
|
Harris D, DeBolt S. Synthesis, regulation and utilization of lignocellulosic biomass. PLANT BIOTECHNOLOGY JOURNAL 2010; 8:244-62. [PMID: 20070874 DOI: 10.1111/j.1467-7652.2009.00481.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Increasing the range of fuels and bioproducts that are derived from lignocellulosic biomass and the efficiency at which they are produced hinges on a detailed understanding of the cell wall biosynthetic process. Herein, we review the structure and biosynthesis of lignocellulosic biomass and also highlight recent breakthroughs that demonstrate a complex regulatory system of transcription factors, small interfering RNAs and phosphorylation that ultimately dictate the development of the polyalaminate cell wall. Finally, we provide an update on cases where plant biotechnology has been used to improve lignocellulosic biomass utilization as a second-generation biofuel source.
Collapse
Affiliation(s)
- Darby Harris
- Department of Horticulture, Plant Physiology/Biochemistry and Molecular Biology Program, University of Kentucky, N-318 Agricultural Science Center, North Lexington, KY, USA
| | | |
Collapse
|
27
|
Guerriero G, Fugelstad J, Bulone V. What do we really know about cellulose biosynthesis in higher plants? JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2010; 52:161-75. [PMID: 20377678 DOI: 10.1111/j.1744-7909.2010.00935.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Cellulose biosynthesis is one of the most important biochemical processes in plant biology. Despite the considerable progress made during the last decade, numerous fundamental questions related to this key process in plant development are outstanding. Numerous models have been proposed through the years to explain the detailed molecular events of cellulose biosynthesis. Almost all models integrate solid experimental data with hypotheses on several of the steps involved in the process. Speculative models are most useful to stimulate further research investigations and bring new exciting ideas to the field. However, it is important to keep their hypothetical nature in mind and be aware of the risk that some undemonstrated hypotheses may progressively become admitted. In this review, we discuss the different steps required for cellulose formation and crystallization, and highlight the most important specific aspects that are supported by solid experimental data.
Collapse
Affiliation(s)
- Gea Guerriero
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology, AlbaNova University Center, Stockholm, Sweden
| | | | | |
Collapse
|
28
|
Fujii S, Hayashi T, Mizuno K. Sucrose synthase is an integral component of the cellulose synthesis machinery. PLANT & CELL PHYSIOLOGY 2010; 51:294-301. [PMID: 20056592 DOI: 10.1093/pcp/pcp190] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Cellulose synthesis in plants is believed to be carried out by the plasma membrane-associated rosette structure which can be observed by electron microscopy. Despite decade-long speculation, it had not been demonstrated whether the rosette is the site of catalytic activity of cellulose synthesis. To determine the relationship between this structure and cellulose synthesis, we successfully isolated detergent-insoluble rosettes from the plasma membrane of bean epicotyls. However, the purified rosettes did not possess cellulose synthesis activity in vitro. Conversely, detergent-soluble granular particles of approximately 9.5-10 nm diameter were also isolated and exhibited UDP-glucose binding activity and possessed beta-1,4-glucan (cellulose) synthesis activity in vitro. The particle, referred to as the catalytic unit of cellulose synthesis, was enriched with a 78 kDa polypeptide which was verified as sucrose synthase like by mass spectrometry and immunoblotting. The catalytic units were able to bind to the rosettes and retained the cellulose synthesis activity in the presence of UDP-glucose or sucrose plus UDP when supplemented with magnesium. The incorporation of the catalytic unit into the rosette structure was confirmed by immunogold labeling with anti-sucrose synthase antibodies under an electron microscope. Our results suggest that the plasma membrane-associated rosette anchors the catalytic unit of cellulose synthesis to form the functional cellulose synthesis machinery.
Collapse
Affiliation(s)
- Satoshi Fujii
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, 560-0043 Japan. f
| | | | | |
Collapse
|
29
|
Crowell EF, Bischoff V, Desprez T, Rolland A, Stierhof YD, Schumacher K, Gonneau M, Höfte H, Vernhettes S. Pausing of Golgi bodies on microtubules regulates secretion of cellulose synthase complexes in Arabidopsis. THE PLANT CELL 2009; 21:1141-54. [PMID: 19376932 PMCID: PMC2685615 DOI: 10.1105/tpc.108.065334] [Citation(s) in RCA: 366] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Plant growth and organ formation depend on the oriented deposition of load-bearing cellulose microfibrils in the cell wall. Cellulose is synthesized by plasma membrane-bound complexes containing cellulose synthase proteins (CESAs). Here, we establish a role for the cytoskeleton in intracellular trafficking of cellulose synthase complexes (CSCs) through the in vivo study of the green fluorescent protein (GFP)-CESA3 fusion protein in Arabidopsis thaliana hypocotyls. GFP-CESA3 localizes to the plasma membrane, Golgi apparatus, a compartment identified by the VHA-a1 marker, and, surprisingly, a novel microtubule-associated cellulose synthase compartment (MASC) whose formation and movement depend on the dynamic cortical microtubule array. Osmotic stress or treatment with the cellulose synthesis inhibitor CGA 325'615 induces internalization of CSCs in MASCs, mimicking the intracellular distribution of CSCs in nongrowing cells. Our results indicate that cellulose synthesis is coordinated with growth status and regulated in part through CSC internalization. We find that CSC insertion in the plasma membrane is regulated by pauses of the Golgi apparatus along cortical microtubules. Our data support a model in which cortical microtubules not only guide the trajectories of CSCs in the plasma membrane, but also regulate the insertion and internalization of CSCs, thus allowing dynamic remodeling of CSC secretion during cell expansion and differentiation.
Collapse
Affiliation(s)
- Elizabeth Faris Crowell
- Laboratoire de Biologie Cellulaire, Institut National de la Recherche Agronomique, 78026 Versailles cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|