1
|
Real N, Garcia-Molina A, Stolze SC, Harzen A, Nakagami H, Martín-Hernández AM. Comprehensive proteomic profiling of Cucumber mosaic virus infection: identifying key proteins and pathways involved in resistance and susceptibility in melon. BMC PLANT BIOLOGY 2025; 25:434. [PMID: 40186108 PMCID: PMC11971850 DOI: 10.1186/s12870-025-06464-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 03/25/2025] [Indexed: 04/07/2025]
Abstract
BACKGROUND Melon (Cucumis melo L.) is the model species of the Cucurbitaceae family and an important crop. However, its yield is primarily affected by viruses. Cucumber mosaic virus (CMV) is particularly significant due to its broad host range, capable of infecting over 100 plant families. Resistance to CMV in the melon accession Songwhan Charmi (SC) is controlled by the recessive gene cmv1, which encodes the Vacuolar Protein Sorting 41, involved in vesicle transport to the vacuole. cmv1 restricts the virus to the bundle sheath cells and impedes viral access to the phloem, preventing a systemic infection. This phenotype depends on the viral movement protein (MP). However, little is known about the broader cellular changes that CMV triggers in melon or the specific biological responses that facilitate or restrict the virus entry into the phloem in susceptible and resistant varieties. RESULT We profiled the proteomes of CMV-resistant or susceptible melon genotypes inoculated with CMV-LS or FNY strains. Analysis of co-abundance networks revealed the rewiring of central biological pathways during different stages of CMV infection. Upon inoculation, resistant varieties do not trigger any signalling event to the new leaves. Local infection triggers a general depletion in proteins related to translation, photosynthesis and intracellular transport, whereas only in resistant varieties CMV triggers an increase in lipid modification and phloem proteins. During the systemic infection of susceptible melon plants, there is a strong increase in proteins associated with stress responses, such as those involved in the ER-associated degradation (ERAD) and phenylpropanoid pathways, along with a decrease in translation and photosynthesis. Key hub proteins have been identified in these processes. CONCLUSIONS This study is the first comprehensive high-throughput proteomic analysis of CMV-infected melon plants, providing a novel and detailed understanding of the proteomic changes associated with CMV infection, highlighting the differential responses between resistant and susceptible genotypes and identifying key proteins that could be potential targets for future research and CMV management strategies.
Collapse
Affiliation(s)
- Núria Real
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, C/Vall Moronta, Edifici CRAG, Bellaterra (Cerdanyola del Vallés), Barcelona, Spain
| | - Antoni Garcia-Molina
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, C/Vall Moronta, Edifici CRAG, Bellaterra (Cerdanyola del Vallés), Barcelona, Spain
| | - Sara Christina Stolze
- Max Planck Institute for Plant Breeding Research, Carl-Von-Linné-Weg 10, Cologne, 50829, Germany
| | - Anne Harzen
- Max Planck Institute for Plant Breeding Research, Carl-Von-Linné-Weg 10, Cologne, 50829, Germany
| | - Hirofumi Nakagami
- Max Planck Institute for Plant Breeding Research, Carl-Von-Linné-Weg 10, Cologne, 50829, Germany
| | - Ana Montserrat Martín-Hernández
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, C/Vall Moronta, Edifici CRAG, Bellaterra (Cerdanyola del Vallés), Barcelona, Spain.
- Institut de Recerca I Tecnologia Agroalimentàries (IRTA), Campus UAB, Bellaterra, Barcelona, Spain.
| |
Collapse
|
2
|
Ibrahim A, Sasaki N, Schoelz JE, Nelson RS. Tobacco Mosaic Virus Movement: From Capsid Disassembly to Transport Through Plasmodesmata. Viruses 2025; 17:214. [PMID: 40006969 PMCID: PMC11861069 DOI: 10.3390/v17020214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/22/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
Determining mechanisms to establish an initial infection and form intracellular complexes for accumulation and movement of RNA plant viruses are important areas of study in plant virology. The impact of these findings on the basic understanding of plant molecular virology and its application in agriculture is significant. Studies with tobacco mosaic virus (TMV) and related tobamoviruses often provide important foundational knowledge for studies involving other viruses. Topics discussed here include capsid disassembly, establishment of a virus replication complex (VRC), and transport of the VRCs or virus components within the cell to locations at the plasmodesmata for intercellular virus RNA (vRNA) movement. Seminal findings with TMV and related tobamoviruses include detecting co-translational disassembly of the vRNA from the virus rod, full sequencing of genomic vRNA and production of infectious transcript for genetic studies determining virus components necessary for intercellular movement, and biochemical and cell biological studies determining the host factors, protein and membrane, needed for replication and movement. This review highlights many of the studies through the years on TMV and selected tobamoviruses that have impacted not only our understanding of tobamovirus accumulation and movement but also that of other plant viruses.
Collapse
Affiliation(s)
- Amr Ibrahim
- Department of Nucleic Acid and Protein Structure, Agricultural Genetic Engineering Research Institute, Agricultural Research Center, Giza 12619, Egypt
| | - Nobumitsu Sasaki
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology (TUAT), Fuchu 183-8509, Japan;
| | - James E. Schoelz
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, USA;
| | | |
Collapse
|
3
|
Wang Y, Wang G, Bai J, Zhang Y, Wang Y, Wen S, Li L, Yang Z, Hong N. A novel Actinidia cytorhabdovirus characterized using genomic and viral protein interaction features. MOLECULAR PLANT PATHOLOGY 2021; 22:1271-1287. [PMID: 34288324 PMCID: PMC8435229 DOI: 10.1111/mpp.13110] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
A novel cytorhabdovirus, tentatively named Actinidia virus D (AcVD), was identified from kiwifruit (Actinidia chinensis) in China using high-throughput sequencing technology. The genome of AcVD consists of 13,589 nucleotides and is organized into seven open reading frames (ORFs) in its antisense strand, coding for proteins in the order N-P-P3-M-G-P6-L. The ORFs were flanked by a 3' leader sequence and a 5' trailer sequence and are separated by conserved intergenic junctions. The genome sequence of AcVD was 44.6%-51.5% identical to those of reported cytorhabdoviruses. The proteins encoded by AcVD shared the highest sequence identities, ranging from 27.3% (P6) to 44.5% (L), with the respective proteins encoded by reported cytorhabdoviruses. Phylogenetic analysis revealed that AcVD clustered together with the cytorhabdovirus Wuhan insect virus 4. The subcellular locations of the viral proteins N, P, P3, M, G, and P6 in epidermal cells of Nicotiana benthamiana leaves were determined. The M protein of AcVD uniquely formed filament structures and was associated with microtubules. Bimolecular fluorescence complementation assays showed that three proteins, N, P, and M, self-interact, protein N plays a role in the formation of cytoplasm viroplasm, and protein M recruits N, P, P3, and G to microtubules. In addition, numerous paired proteins interact in the nucleus. This study presents the first evidence of a cytorhabdovirus infecting kiwifruit plants and full location and interaction maps to gain insight into viral protein functions.
Collapse
Affiliation(s)
- Yanxiang Wang
- Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of AgricultureHuazhong Agricultural UniversityWuhanChina
| | - Guoping Wang
- Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of AgricultureHuazhong Agricultural UniversityWuhanChina
| | - Jianyu Bai
- Laboratory of Fruit Trees DiseaseInstitute of Economic ForestryXinjiang Academy of Forestry SciencesUrumqiChina
| | - Yongle Zhang
- Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Ying Wang
- Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Shaohua Wen
- Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Liu Li
- Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Zuokun Yang
- Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Ni Hong
- Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of AgricultureHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
4
|
Kumar G, Dasgupta I. Comprehensive molecular insights into the stress response dynamics of rice (Oryza sativa L.) during rice tungro disease by RNA-seq-based comparative whole transcriptome analysis. J Biosci 2020. [DOI: 10.1007/s12038-020-9996-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
5
|
Mann KS, Bejerman N, Johnson KN, Dietzgen RG. Cytorhabdovirus P3 genes encode 30K-like cell-to-cell movement proteins. Virology 2016; 489:20-33. [PMID: 26700068 DOI: 10.1016/j.virol.2015.11.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 11/25/2015] [Accepted: 11/26/2015] [Indexed: 12/13/2022]
Abstract
Plant viruses encode movement proteins (MP) to facilitate cell-to-cell transport through plasmodesmata. In this study, using trans-complementation of a movement-defective turnip vein-clearing tobamovirus (TVCV) replicon, we show for the first time for cytorhabdoviruses (lettuce necrotic yellows virus (LNYV) and alfalfa dwarf virus (ADV)) that their P3 proteins function as MP similar to the TVCV P30 protein. All three MP localized to plasmodesmata when ectopically expressed. In addition, we show that these MP belong to the 30K superfamily since movement was inhibited by mutation of an aspartic acid residue in the critical 30K-specific LxD/N50-70G motif. We also report that Nicotiana benthamiana microtubule-associated VOZ1-like transcriptional activator interacts with LNYV P3 and TVCV P30 but not with ADV P3 or any of the MP point mutants. This host protein, which is known to interact with P3 of sonchus yellow net nucleorhabdovirus, may be involved in aiding the cell-to-cell movement of LNYV and TVCV.
Collapse
Affiliation(s)
- Krin S Mann
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Nicolas Bejerman
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Karyn N Johnson
- School of Biological Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Ralf G Dietzgen
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
6
|
Perraki A, Binaghi M, Mecchia MA, Gronnier J, German-Retana S, Mongrand S, Bayer E, Zelada AM, Germain V. StRemorin1.3 hampers Potato virus X TGBp1 ability to increase plasmodesmata permeability, but does not interfere with its silencing suppressor activity. FEBS Lett 2014; 588:1699-705. [PMID: 24657438 DOI: 10.1016/j.febslet.2014.03.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 02/20/2014] [Accepted: 03/06/2014] [Indexed: 01/19/2023]
Abstract
The Triple Gene Block 1 (TGBp1) protein encoded by the Potato virus X is a multifunctional protein that acts as a suppressor of RNA silencing or facilitates the passage of virus from cell to cell by promoting the plasmodesmata opening. We previously showed that the membrane raft protein StRemorin1.3 is able to impair PVX infection. Here, we show that overexpressed StRemorin1.3 does not impair the silencing suppressor activity of TGBp1, but affects its ability to increase plasmodesmata permeability. A similar effect on plasmodesmata permeability was observed with other movement proteins, suggesting that REM is a general regulator of plasmodesmal size exclusion limit. These results add to our knowledge of the mechanisms underlying the StREM1.3 role in virus infection.
Collapse
Affiliation(s)
- Artemis Perraki
- CNRS, Laboratoire de Biogenèse Membranaire (LBM), UMR 5200, F-33000 Villenave d'Ornon, France; Univ. Bordeaux, Laboratoire de Biogenèse Membranaire (LBM), UMR 5200, F-33000 Villenave d'Ornon, France
| | - Maria Binaghi
- Laboratorio de Agrobiotecnología, DFBMC - Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IBBEA, CONICET-UBA, Buenos Aires, Argentina
| | - Martin A Mecchia
- Laboratorio de Agrobiotecnología, DFBMC - Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IBBEA, CONICET-UBA, Buenos Aires, Argentina
| | - Julien Gronnier
- CNRS, Laboratoire de Biogenèse Membranaire (LBM), UMR 5200, F-33000 Villenave d'Ornon, France; Univ. Bordeaux, Laboratoire de Biogenèse Membranaire (LBM), UMR 5200, F-33000 Villenave d'Ornon, France
| | - Sylvie German-Retana
- Equipe de Virologie, UMR BFP 1332 INRA, CS 20032, 33882 Villenave d'Ornon, France
| | - Sébastien Mongrand
- CNRS, Laboratoire de Biogenèse Membranaire (LBM), UMR 5200, F-33000 Villenave d'Ornon, France; Univ. Bordeaux, Laboratoire de Biogenèse Membranaire (LBM), UMR 5200, F-33000 Villenave d'Ornon, France.
| | - Emmanuelle Bayer
- CNRS, Laboratoire de Biogenèse Membranaire (LBM), UMR 5200, F-33000 Villenave d'Ornon, France; Univ. Bordeaux, Laboratoire de Biogenèse Membranaire (LBM), UMR 5200, F-33000 Villenave d'Ornon, France
| | - Alicia M Zelada
- Laboratorio de Agrobiotecnología, DFBMC - Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IBBEA, CONICET-UBA, Buenos Aires, Argentina
| | - Véronique Germain
- CNRS, Laboratoire de Biogenèse Membranaire (LBM), UMR 5200, F-33000 Villenave d'Ornon, France; Univ. Bordeaux, Laboratoire de Biogenèse Membranaire (LBM), UMR 5200, F-33000 Villenave d'Ornon, France
| |
Collapse
|
7
|
Niehl A, Peña EJ, Amari K, Heinlein M. Microtubules in viral replication and transport. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:290-308. [PMID: 23379770 DOI: 10.1111/tpj.12134] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 01/29/2013] [Accepted: 01/31/2013] [Indexed: 05/05/2023]
Abstract
Viruses use and subvert host cell mechanisms to support their replication and spread between cells, tissues and organisms. Microtubules and associated motor proteins play important roles in these processes in animal systems, and may also play a role in plants. Although transport processes in plants are mostly actin based, studies, in particular with Tobacco mosaic virus (TMV) and its movement protein (MP), indicate direct or indirect roles of microtubules in the cell-to-cell spread of infection. Detailed observations suggest that microtubules participate in the cortical anchorage of viral replication complexes, in guiding their trafficking along the endoplasmic reticulum (ER)/actin network, and also in developing the complexes into virus factories. Microtubules also play a role in the plant-to-plant transmission of Cauliflower mosaic virus (CaMV) by assisting in the development of specific virus-induced inclusions that facilitate viral uptake by aphids. The involvement of microtubules in the formation of virus factories and of other virus-induced inclusions suggests the existence of aggresomal pathways by which plant cells recruit membranes and proteins into localized macromolecular assemblies. Although studies related to the involvement of microtubules in the interaction of viruses with plants focus on specific virus models, a number of observations with other virus species suggest that microtubules may have a widespread role in viral pathogenesis.
Collapse
Affiliation(s)
- Annette Niehl
- Zürich-Basel Plant Science Center, Botany, Department of Environmental Sciences, University of Basel, Hebelstrasse 1, CH-4056 Basel, Switzerland
| | | | | | | |
Collapse
|
8
|
Niehl A, Heinlein M. Cellular pathways for viral transport through plasmodesmata. PROTOPLASMA 2011; 248:75-99. [PMID: 21125301 DOI: 10.1007/s00709-010-0246-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 11/16/2010] [Indexed: 05/03/2023]
Abstract
Plant viruses use plasmodesmata (PD) to spread infection between cells and systemically. Dependent on viral species, movement through PD can occur in virion or non-virion form, and requires different mechanisms for targeting and modification of the pore. These mechanisms are supported by viral movement proteins and by other virus-encoded factors that interact among themselves and with plant cellular components to facilitate virus movement in a coordinated and regulated fashion.
Collapse
Affiliation(s)
- Annette Niehl
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084, Strasbourg, France
| | | |
Collapse
|