1
|
Steensma AK, Kaste JAM, Heo J, Orr DJ, Sung CL, Shachar-Hill Y, Walker BJ. Modeling with uncertainty quantification reveals the essentials of a non-canonical algal carbon-concentrating mechanism. PLANT PHYSIOLOGY 2025; 197:kiae629. [PMID: 39656810 PMCID: PMC11836721 DOI: 10.1093/plphys/kiae629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/17/2024] [Accepted: 10/31/2024] [Indexed: 12/17/2024]
Abstract
The thermoacidophilic red alga Cyanidioschyzon merolae survives its challenging environment likely in part by operating a carbon-concentrating mechanism (CCM). Here, we demonstrated that C. merolae's cellular affinity for CO2 is stronger than the affinity of its rubisco for CO2. This finding provided additional evidence that C. merolae operates a CCM while lacking the structures and functions characteristic of CCMs in other organisms. To test how such a CCM could function, we created a mathematical compartmental model of a simple CCM, distinct from those we have seen previously described in detail. The results of our modeling supported the feasibility of this proposed minimal and non-canonical CCM in C. merolae. To facilitate the robust modeling of this process, we measured and incorporated physiological and enzymatic parameters into the model. Additionally, we trained a surrogate machine-learning model to emulate the mechanistic model and characterized the effects of model parameters on key outputs. This parameter exploration enabled us to identify model features that influenced whether the model met the experimentally derived criteria for functional carbon concentration and efficient energy usage. Such parameters included cytosolic pH, bicarbonate pumping cost and kinetics, cell radius, carboxylation velocity, number of thylakoid membranes, and CO2 membrane permeability. Our exploration thus suggested that a non-canonical CCM could exist in C. merolae and illuminated the essential features generally necessary for CCMs to function.
Collapse
Affiliation(s)
- Anne K Steensma
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
- Michigan State University—Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Joshua A M Kaste
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Junoh Heo
- Department of Statistics and Probability, Michigan State University, East Lansing, MI 48824, USA
| | - Douglas J Orr
- Lancaster Environment Center, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Chih-Li Sung
- Department of Statistics and Probability, Michigan State University, East Lansing, MI 48824, USA
| | - Yair Shachar-Hill
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Berkley J Walker
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
- Michigan State University—Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
2
|
Imoto Y, Itoh K, Fujiki Y. Molecular Basis of Mitochondrial and Peroxisomal Division Machineries. Int J Mol Sci 2020; 21:E5452. [PMID: 32751702 PMCID: PMC7432047 DOI: 10.3390/ijms21155452] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 12/20/2022] Open
Abstract
Mitochondria and peroxisomes are ubiquitous subcellular organelles that are highly dynamic and possess a high degree of plasticity. These organelles proliferate through division of pre-existing organelles. Studies on yeast, mammalian cells, and unicellular algae have led to a surprising finding that mitochondria and peroxisomes share the components of their division machineries. At the heart of the mitochondrial and peroxisomal division machineries is a GTPase dynamin-like protein, Dnm1/Drp1, which forms a contractile ring around the neck of the dividing organelles. During division, Dnm1/Drp1 functions as a motor protein and constricts the membrane. This mechanochemical work is achieved by utilizing energy from GTP hydrolysis. Over the last two decades, studies have focused on the structure and assembly of Dnm1/Drp1 molecules around the neck. However, the regulation of GTP during the division of mitochondrion and peroxisome is not well understood. Here, we review the current understanding of Dnm1/Drp1-mediated divisions of mitochondria and peroxisomes, exploring the mechanisms of GTP regulation during the Dnm1/Drp1 function, and provide new perspectives on their potential contribution to mitochondrial and peroxisomal biogenesis.
Collapse
Grants
- 14J04556 Japan Society for the Promotion of Science Fellowships
- P24247038, JP25112518, JP25116717, JP26116007, JP15K14511, JP15K21743, JP17H03675 Ministry of Education, Culture, Sports, Science, and Technology of Japan, Grants-in-Aid for Scientific Research
Collapse
Affiliation(s)
- Yuuta Imoto
- Department of Cell Biology, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA;
| | - Kie Itoh
- Department of Cell Biology, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA;
| | - Yukio Fujiki
- Division of Organelle Homeostasis, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- Institute of Rheological Functions of Food, Hisayama-cho, Fukuoka 811-2501, Japan
| |
Collapse
|
3
|
Accelerated triacylglycerol production without growth inhibition by overexpression of a glycerol-3-phosphate acyltransferase in the unicellular red alga Cyanidioschyzon merolae. Sci Rep 2018; 8:12410. [PMID: 30120352 PMCID: PMC6098107 DOI: 10.1038/s41598-018-30809-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 08/04/2018] [Indexed: 12/14/2022] Open
Abstract
Microalgae accumulate triacylglycerols (TAGs), a promising feedstock for biodiesel production, under unfavorable environmental or stress conditions for their growth. Our previous analyses revealed that only transcripts of CmGPAT1 and CmGPAT2, both encoding glycerol-3-phosphate acyltransferase, were increased among fatty acid and TAG synthesis genes under TAG accumulation conditions in the red alga Cyanidioschyzon merolae. In this study, to investigate the role of these proteins in TAG accumulation in C. merolae, we constructed FLAG-fused CmGPAT1 and CmGPAT2 overexpression strains. We found that CmGPAT1 overexpression resulted in marked accumulation of TAG even under normal growth conditions, with the maximum TAG productivity increased 56.1-fold compared with the control strain, without a negative impact on algal growth. The relative fatty acid composition of 18:2 in the TAGs and the sn-1/sn-3 positions were significantly increased compared with the control strain, suggesting that CmGPAT1 had a substrate preference for 18:2. Immunoblot analysis after cell fractionation and immunostaining analysis demonstrated that CmGPAT1 localizes in the endoplasmic reticulum (ER). These results indicate that the reaction catalyzed by the ER-localized CmGPAT1 is a rate-limiting step for TAG synthesis in C. merolae, and would be a potential target for improvement of TAG productivity in microalgae.
Collapse
|
4
|
Fujiwara T, Ohnuma M, Kuroiwa T, Ohbayashi R, Hirooka S, Miyagishima SY. Development of a Double Nuclear Gene-Targeting Method by Two-Step Transformation Based on a Newly Established Chloramphenicol-Selection System in the Red Alga Cyanidioschyzon merolae. FRONTIERS IN PLANT SCIENCE 2017; 8:343. [PMID: 28352279 PMCID: PMC5348525 DOI: 10.3389/fpls.2017.00343] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 02/27/2017] [Indexed: 05/24/2023]
Abstract
The unicellular red alga Cyanidioschyzon merolae possesses a simple cellular architecture that consists of one mitochondrion, one chloroplast, one peroxisome, one Golgi apparatus, and several lysosomes. The nuclear genome content is also simple, with very little genetic redundancy (16.5 Mbp, 4,775 genes). In addition, molecular genetic tools such as gene targeting and inducible gene expression systems have been recently developed. These cytological features and genetic tractability have facilitated various omics analyses. However, only a single transformation selection marker URA has been made available and thus the application of genetic modification has been limited. Here, we report the development of a nuclear targeting method by using chloramphenicol and the chloramphenicol acetyltransferase (CAT) gene. In addition, we found that at least 200-bp homologous arms are required and 500-bp arms are sufficient for a targeted single-copy insertion of the CAT selection marker into the nuclear genome. By means of a combination of the URA and CAT transformation systems, we succeeded in producing a C. merolae strain that expresses HA-cyclin 1 and FLAG-CDKA from the chromosomal CYC1 and CDKA loci, respectively. These methods of multiple nuclear targeting will facilitate genetic manipulation of C. merolae.
Collapse
Affiliation(s)
- Takayuki Fujiwara
- Department of Cell Genetics, National Institute of GeneticsShizuoka, Japan
- Japan Science and Technology Agency, Core Research for Evolutional Science and TechnologySaitama, Japan
- Department of Genetics, Graduate University for Advanced StudiesShizuoka, Japan
| | - Mio Ohnuma
- Japan Science and Technology Agency, Core Research for Evolutional Science and TechnologySaitama, Japan
- National Institute of Technology, Hiroshima CollegeHiroshima, Japan
| | - Tsuneyoshi Kuroiwa
- Japan Science and Technology Agency, Core Research for Evolutional Science and TechnologySaitama, Japan
- Department of Chemical and Biological Science, Faculty of Science, Japan Women’s UniversityTokyo, Japan
| | - Ryudo Ohbayashi
- Department of Cell Genetics, National Institute of GeneticsShizuoka, Japan
- Japan Science and Technology Agency, Core Research for Evolutional Science and TechnologySaitama, Japan
| | - Shunsuke Hirooka
- Department of Cell Genetics, National Institute of GeneticsShizuoka, Japan
- Japan Science and Technology Agency, Core Research for Evolutional Science and TechnologySaitama, Japan
| | - Shin-Ya Miyagishima
- Department of Cell Genetics, National Institute of GeneticsShizuoka, Japan
- Japan Science and Technology Agency, Core Research for Evolutional Science and TechnologySaitama, Japan
- Department of Genetics, Graduate University for Advanced StudiesShizuoka, Japan
| |
Collapse
|
5
|
Imoto Y, Abe Y, Okumoto K, Honsho M, Kuroiwa H, Kuroiwa T, Fujiki Y. Defining the dynamin-based ring organizing center on the peroxisome-dividing machinery isolated from Cyanidioschyzon merolae. J Cell Sci 2017; 130:853-867. [PMID: 28115534 DOI: 10.1242/jcs.199182] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/05/2017] [Indexed: 11/20/2022] Open
Abstract
Organelle division is executed through contraction of a ring-shaped supramolecular dividing machinery. A core component of the machinery is the dynamin-based ring conserved during the division of mitochondrion, plastid and peroxisome. Here, using isolated peroxisome-dividing (POD) machinery from a unicellular red algae, Cyanidioschyzon merolae, we identified a dynamin-based ring organizing center (DOC) that acts as an initiation point for formation of the dynamin-based ring. C. merolae contains a single peroxisome, the division of which can be highly synchronized by light-dark stimulation; thus, intact POD machinery can be isolated in bulk. Dynamin-based ring homeostasis is maintained by the turnover of the GTP-bound form of the dynamin-related protein Dnm1 between the cytosol and division machinery via the DOC. A single DOC is formed on the POD machinery with a diameter of 500-700 nm, and the dynamin-based ring is unidirectionally elongated from the DOC in a manner that is dependent on GTP concentration. During the later step of membrane fission, the second DOC is formed and constructs the double dynamin-based ring to make the machinery thicker. These findings provide new insights to define fundamental mechanisms underlying the dynamin-based membrane fission in eukaryotic cells.
Collapse
Affiliation(s)
- Yuuta Imoto
- Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yuichi Abe
- Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kanji Okumoto
- Department of Biology, Faculty of Sciences, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
| | - Masanori Honsho
- Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Haruko Kuroiwa
- Department of Chemical and Biological Science, Faculty of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo 112-8681, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan
| | - Tsuneyoshi Kuroiwa
- Department of Chemical and Biological Science, Faculty of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo 112-8681, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan
| | - Yukio Fujiki
- Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
6
|
Kobayashi Y, Ando H, Hanaoka M, Tanaka K. Abscisic Acid Participates in the Control of Cell Cycle Initiation Through Heme Homeostasis in the Unicellular Red Alga Cyanidioschyzon merolae. PLANT & CELL PHYSIOLOGY 2016; 57:953-60. [PMID: 27044672 DOI: 10.1093/pcp/pcw054] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 03/09/2016] [Indexed: 05/08/2023]
Abstract
ABA is a phytohormone that is synthesized in response to abiotic stresses and other environmental changes, inducing various physiological responses. While ABA has been found in unicellular photosynthetic organisms, such as cyanobacteria and eukaryotic algae, its function in these organisms is poorly understood. Here, we found that ABA accumulated in the unicellular red alga Cyanidioschyzon merolae under conditions of salt stress and that the cell cycle G1/S transition was inhibited when ABA was added to the culture medium. A gene encoding heme-scavenging tryptophan-rich sensory protein-related protein (CmTSPO; CMS231C) was positively regulated by ABA, as in Arabidopsis, and CmTSPO bound heme in vitro. The intracellular content of total heme was increased by addition of ABA, but unfettered heme decreased, presumably due to scavenging by CmTSPO. The inhibition of DNA replication by ABA was negated by addition of heme to the culture medium. Thus, we propose a regulatory role for ABA and heme in algal cell cycle initiation. Finally, we found that a C. merolae mutant that is defective in ABA production was more susceptible to salt stress, indicating the importance of ABA to stress resistance in red algae.
Collapse
Affiliation(s)
- Yuki Kobayashi
- Chemical Resources Laboratory, Tokyo Institute of Technology, 4259-R1-29 Nagatsuta, Midori-ku, Yokohama, 226-8503 Japan
| | - Hiroyuki Ando
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo, Chiba, 271-8510 Japan
| | - Mitsumasa Hanaoka
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo, Chiba, 271-8510 Japan
| | - Kan Tanaka
- Chemical Resources Laboratory, Tokyo Institute of Technology, 4259-R1-29 Nagatsuta, Midori-ku, Yokohama, 226-8503 Japan Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Saitama, 332-0012 Japan
| |
Collapse
|
7
|
Yagisawa F, Kuroiwa H, Fujiwara T, Kuroiwa T. Intracellular Structure of the Unicellular Red Alga Cyanidioschyzon merolae in Response to Phosphate Depletion and Resupplementation. CYTOLOGIA 2016. [DOI: 10.1508/cytologia.81.341] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Fumi Yagisawa
- Instrumental Research Center, University of the Ryukyus
| | - Haruko Kuroiwa
- Department of Chemical and Biological Science, Faculty of Science, Japan Women’s University
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency
| | | | - Tsuneyoshi Kuroiwa
- Department of Chemical and Biological Science, Faculty of Science, Japan Women’s University
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency
| |
Collapse
|
8
|
Mori N, Moriyama T, Toyoshima M, Sato N. Construction of Global Acyl Lipid Metabolic Map by Comparative Genomics and Subcellular Localization Analysis in the Red Alga Cyanidioschyzon merolae. FRONTIERS IN PLANT SCIENCE 2016; 7:958. [PMID: 28066454 PMCID: PMC4928187 DOI: 10.3389/fpls.2016.00958] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 06/15/2016] [Indexed: 05/03/2023]
Abstract
Pathways of lipid metabolism have been established in land plants, such as Arabidopsis thaliana, but the information on exact pathways is still under study in microalgae. In contrast with Chlamydomonas reinhardtii, which is currently studied extensively, the pathway information in red algae is still in the state in which enzymes and pathways are estimated by analogy with the knowledge in plants. Here we attempt to construct the entire acyl lipid metabolic pathways in a model red alga, Cyanidioschyzon merolae, as an initial basis for future genetic and biochemical studies, by exploiting comparative genomics and localization analysis. First, the data of whole genome clustering by Gclust were used to identify 121 acyl lipid-related enzymes. Then, the localization of 113 of these enzymes was analyzed by GFP-based techniques. We found that most of the predictions on the subcellular localization by existing tools gave erroneous results, probably because these tools had been tuned for plants or green algae. The experimental data in the present study as well as the data reported before in our laboratory will constitute a good training set for tuning these tools. The lipid metabolic map thus constructed show that the lipid metabolic pathways in the red alga are essentially similar to those in A. thaliana, except that the number of enzymes catalyzing individual reactions is quite limited. The absence of fatty acid desaturation to produce oleic and linoleic acids within the plastid, however, highlights the central importance of desaturation and acyl editing in the endoplasmic reticulum, for the synthesis of plastid lipids as well as other cellular lipids. Additionally, some notable characteristics of lipid metabolism in C. merolae were found. For example, phosphatidylcholine is synthesized by the methylation of phosphatidylethanolamine as in yeasts. It is possible that a single 3-ketoacyl-acyl carrier protein synthase is involved in the condensation reactions of fatty acid synthesis in the plastid. We will also discuss on the redundant β-oxidation enzymes, which are characteristic to red algae.
Collapse
Affiliation(s)
- Natsumi Mori
- Department of Life Sciences, Graduate School of Arts and Sciences, University of TokyoTokyo, Japan
- Japan Science and Technology Agency, Core Research for Evolutional Science and TechnologyTokyo, Japan
| | - Takashi Moriyama
- Department of Life Sciences, Graduate School of Arts and Sciences, University of TokyoTokyo, Japan
- Japan Science and Technology Agency, Core Research for Evolutional Science and TechnologyTokyo, Japan
| | - Masakazu Toyoshima
- Department of Life Sciences, Graduate School of Arts and Sciences, University of TokyoTokyo, Japan
- Japan Science and Technology Agency, Core Research for Evolutional Science and TechnologyTokyo, Japan
| | - Naoki Sato
- Department of Life Sciences, Graduate School of Arts and Sciences, University of TokyoTokyo, Japan
- Japan Science and Technology Agency, Core Research for Evolutional Science and TechnologyTokyo, Japan
- *Correspondence: Naoki Sato
| |
Collapse
|
9
|
Fujiwara T, Kanesaki Y, Hirooka S, Era A, Sumiya N, Yoshikawa H, Tanaka K, Miyagishima SY. A nitrogen source-dependent inducible and repressible gene expression system in the red alga Cyanidioschyzon merolae. FRONTIERS IN PLANT SCIENCE 2015; 6:657. [PMID: 26379685 PMCID: PMC4549557 DOI: 10.3389/fpls.2015.00657] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 08/10/2015] [Indexed: 05/19/2023]
Abstract
The unicellular red alga Cyanidioschyzon merolae is a model organism for studying the basic biology of photosynthetic organisms. The C. merolae cell is composed of an extremely simple set of organelles. The genome is completely sequenced. Gene targeting and a heat-shock inducible gene expression system has been recently established. However, a conditional gene knockdown system has not been established, which is required for the examination of function of genes that are essential to cell viability and primary mutant defects. In the current study, we first evaluated the expression of a transgene from two chromosomal neutral loci located in the intergenic region between CMD184C and CMD185C, and a region upstream of the URA5.3 gene. There was no significant difference in expression between them and this result suggests that both may be used as neutral loci. We then designed an inducible and repressible gene expression by using promoters of nitrate-assimilation genes. The expression of nitrate-assimilation genes such as NR (nitrate reductase), NIR (nitrite reductase), and NRT (the nitrate/nitrite transporter) are reversibly regulated by their dependence on nitrogen sources. We constructed stable strains in which a cassette containing the NR, NIR, or NRT promoter and sfGFP gene was inserted in a region upstream of URA5.3 and examined the efficacy of the promoters. The NR, NIR, and NRT promoters were constitutively activated in the nitrate medium, whereas their activities were extremely low in presence of ammonium. The activation of each promoter was immediately inhibited within a period of 1 h by the addition of ammonium. Thus, a conditional knockdown system in C. merolae was successfully established. The activity varies among the promoters, and each is selectable according to the expression level of a target gene estimated by RNA-sequencing. This method is applicable to defects in genes of interest in photosynthetic organism.
Collapse
Affiliation(s)
- Takayuki Fujiwara
- Department of Cell Genetics, National Institute of GeneticsMishima, Japan
- *Correspondence: Takayuki Fujiwara and Shin-Ya Miyagishima, Department of Cell Genetics, National Institute of Genetics, 1111 Yata, Mishima 411-8540, Shizuoka, Japan, ;
| | - Yu Kanesaki
- NODAI Genome Research Center, Tokyo University of AgricultureTokyo, Japan
| | - Shunsuke Hirooka
- Department of Cell Genetics, National Institute of GeneticsMishima, Japan
- Japan Science and Technology Agency, Core Research for Evolutional Science and TechnologyKawaguchi, Japan
| | - Atsuko Era
- Department of Cell Genetics, National Institute of GeneticsMishima, Japan
- Japan Science and Technology Agency, Core Research for Evolutional Science and TechnologyKawaguchi, Japan
| | - Nobuko Sumiya
- Department of Cell Genetics, National Institute of GeneticsMishima, Japan
- Japan Science and Technology Agency, Core Research for Evolutional Science and TechnologyKawaguchi, Japan
| | - Hirofumi Yoshikawa
- Japan Science and Technology Agency, Core Research for Evolutional Science and TechnologyKawaguchi, Japan
- Department of Bioscience, Tokyo University of AgricultureTokyo, Japan
| | - Kan Tanaka
- Japan Science and Technology Agency, Core Research for Evolutional Science and TechnologyKawaguchi, Japan
- Chemical Resources Laboratory, Tokyo Institute of TechnologyYokohama, Japan
| | - Shin-Ya Miyagishima
- Department of Cell Genetics, National Institute of GeneticsMishima, Japan
- Japan Science and Technology Agency, Core Research for Evolutional Science and TechnologyKawaguchi, Japan
- Department of Genetics, Graduate University for Advanced StudiesMishima, Japan
- *Correspondence: Takayuki Fujiwara and Shin-Ya Miyagishima, Department of Cell Genetics, National Institute of Genetics, 1111 Yata, Mishima 411-8540, Shizuoka, Japan, ;
| |
Collapse
|
10
|
Sazer S, Lynch M, Needleman D. Deciphering the evolutionary history of open and closed mitosis. Curr Biol 2014; 24:R1099-103. [PMID: 25458223 DOI: 10.1016/j.cub.2014.10.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The origin of the nucleus at the prokaryote-to-eukaryote transition represents one of the most important events in the evolution of cellular organization. The nuclear envelope encircles the chromosomes in interphase and is a selectively permeable barrier between the nucleoplasm and cytoplasm and an organizational scaffold for the nucleus. It remains intact in the 'closed' mitosis of some yeasts, but loses its integrity in the 'open' mitosis of mammals. Instances of both types of mitosis within two evolutionary clades indicate multiple evolutionary transitions between open and closed mitosis, although the underlying genetic changes that influenced these transitions remain unknown. A survey of the diversity of mitotic nuclei that fall between these extremes is the starting point from which to determine the physiologically relevant characteristics distinguishing open from closed mitosis and to understand how they evolved and why they are retained in present-day organisms. The field is now poised to begin addressing these issues by defining and documenting patterns of mitotic nuclear variation within and among species and mapping them onto a phylogenic tree. Deciphering the evolutionary history of open and closed mitosis will complement cell biological and genetic approaches aimed at deciphering the fundamental organizational principles of the nucleus.
Collapse
Affiliation(s)
- Shelley Sazer
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Michael Lynch
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Daniel Needleman
- School of Engineering and Applied Sciences, and Department of Molecular and Cellular Biology, and FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
11
|
Development of a heat-shock inducible gene expression system in the red alga Cyanidioschyzon merolae. PLoS One 2014; 9:e111261. [PMID: 25337786 PMCID: PMC4206486 DOI: 10.1371/journal.pone.0111261] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 09/26/2014] [Indexed: 11/19/2022] Open
Abstract
The cell of the unicellular red alga Cyanidioschyzon merolae contains a single chloroplast and mitochondrion, the division of which is tightly synchronized by a light/dark cycle. The genome content is extremely simple, with a low level of genetic redundancy, in photosynthetic eukaryotes. In addition, transient transformation and stable transformation by homologous recombination have been reported. However, for molecular genetic analyses of phenomena that are essential for cellular growth and survival, inducible gene expression/suppression systems are needed. Here, we report the development of a heat-shock inducible gene expression system in C. merolae. CMJ101C, encoding a small heat shock protein, is transcribed only when cells are exposed to an elevated temperature. Using a superfolder GFP as a reporter protein, the 200-bp upstream region of CMJ101C orf was determined to be the optimal promoter for heat-shock induction. The optimal temperature to induce expression is 50°C, at which C. merolae cells are able to proliferate. At least a 30-min heat shock is required for the expression of a protein of interest and a 60-min heat shock yields the maximum level of protein expression. After the heat shock, the mRNA level decreases rapidly. As an example of the system, the expression of a dominant negative form of chloroplast division DRP5B protein, which has a mutation in the GTPase domain, was induced. Expression of the dominant negative DRP5B resulted in the appearance of aberrant-shaped cells in which two daughter chloroplasts and the cells are still connected by a small DRP5B positive tube-like structure. This result suggests that the dominant negative DRP5B inhibited the final scission of the chloroplast division site, but not the earlier stages of division site constriction. It is also suggested that cell cycle progression is not arrested by the impairment of chloroplast division at the final stage.
Collapse
|
12
|
Nick P. You need to see what you want to understand--ultrastructure helps to uncover the mysteries of early life. PROTOPLASMA 2013; 250:797-798. [PMID: 23900778 DOI: 10.1007/s00709-013-0523-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
|
13
|
Yagisawa F, Fujiwara T, Ohnuma M, Kuroiwa H, Nishida K, Imoto Y, Yoshida Y, Kuroiwa T. Golgi inheritance in the primitive red alga, Cyanidioschyzon merolae. PROTOPLASMA 2013. [PMID: 23197134 DOI: 10.1007/s00709-012-0467-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The Golgi body has important roles in modifying, sorting, and transport of proteins and lipids. Eukaryotic cells have evolved in various ways to inherit the Golgi body from mother to daughter cells, which allows the cells to function properly immediately after mitosis. Here we used Cyanidioschyzon merolae, one of the most suitable systems for studies of organelle dynamics, to investigate the inheritance of the Golgi. Two proteins, Sed5 and Got1, were used as Golgi markers. Using immunofluorescence microscopy, we demonstrated that C. merolae contains one to two Golgi bodies per cell. The Golgi body was localized to the perinuclear region during the G1 and S phases and next to the spindle poles in a microtubule-dependent manner during M phase. It was inherited together with spindle poles upon cytokinesis. These observations suggested that Golgi inheritance is dependent on microtubules in C. merolae.
Collapse
Affiliation(s)
- Fumi Yagisawa
- Research Information Center for Extremophiles, Rikkyo (St. Paul's) University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Fujiwara T, Tanaka K, Kuroiwa T, Hirano T. Spatiotemporal dynamics of condensins I and II: evolutionary insights from the primitive red alga Cyanidioschyzon merolae. Mol Biol Cell 2013; 24:2515-27. [PMID: 23783031 PMCID: PMC3744952 DOI: 10.1091/mbc.e13-04-0208] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Spatiotemporal dynamics of condensins I and II in the primitive red alga Cyanidioschyzon merolae is surprisingly similar to that observed in mammalian cells. Condensin II is not essential for mitosis under laboratory growth conditions but is required for sister centromere resolution in the presence of a microtubule drug. Condensins are multisubunit complexes that play central roles in chromosome organization and segregation in eukaryotes. Many eukaryotic species have two different condensin complexes (condensins I and II), although some species, such as fungi, have condensin I only. Here we use the red alga Cyanidioschyzon merolae as a model organism because it represents the smallest and simplest organism that is predicted to possess both condensins I and II. We demonstrate that, despite the great evolutionary distance, spatiotemporal dynamics of condensins in C. merolae is strikingly similar to that observed in mammalian cells: condensin II is nuclear throughout the cell cycle, whereas condensin I appears on chromosomes only after the nuclear envelope partially dissolves at prometaphase. Unlike in mammalian cells, however, condensin II is confined to centromeres in metaphase, whereas condensin I distributes more broadly along arms. We firmly establish a targeted gene disruption technique in this organism and find, to our surprise, that condensin II is not essential for mitosis under laboratory growth conditions, although it plays a crucial role in facilitating sister centromere resolution in the presence of a microtubule drug. The results provide fundamental insights into the evolution of condensin-based chromosome architecture and dynamics.
Collapse
Affiliation(s)
- Takayuki Fujiwara
- Chromosome Dynamics Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
| | | | | | | |
Collapse
|
15
|
Yoshida Y, Fujiwara T, Imoto Y, Yoshida M, Ohnuma M, Hirooka S, Misumi O, Kuroiwa H, Kato S, Matsunaga S, Kuroiwa T. The kinesin-like protein TOP promotes Aurora localisation and induces mitochondrial, chloroplast and nuclear division. J Cell Sci 2013; 126:2392-400. [DOI: 10.1242/jcs.116798] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The cell cycle usually refers to the mitotic cycle, but the cell-division cycle in the plant kingdom consists of not only nuclear but also mitochondrial and chloroplast division cycle. However an integrated control system that initiates division of the three organelles has not been found. We first report that a novel C-terminal kinesin-like protein, three-organelle divisions inducing protein (TOP), controls nuclear, mitochondrial and chloroplast divisions in red alga Cyanidioschyzon merolae. A proteomics revealed that TOP was contained in the complex of mitochondrial-dividing (MD) and plastid-dividing (PD) machineries (MD/PD machinery complex) just prior to constriction. After TOP localized on the MD/PD machinery complex, mitochondrial and chloroplast divisions were performed and the components of the MD/PD machinery complexes were phosphorylated. Furthermore, TOP down-regulation impaired both mitochondrial and chloroplast divisions. MD/PD machinery complexes were formed normally at each division site but they were neither phosphorylated nor constricted in these cells. Immunofluorescence signals of Aurora kinase (AUR) were localized around the MD machinery before constriction whereas AUR was dispersed in cytosol by TOP down-regulation, suggesting that AUR is presumably required for the constriction. Taken together, TOP is likely to induce protein phosphorylation of MD/PD machinery components to accomplish mitochondrial and chloroplast divisions prior to nuclear division by transferring of AUR. Concurrently, the involvement of TOP in mitochondrial and chloroplast division, given the presence of TOP homologs throughout eukaryotes, may illuminate the original function of C-terminal kinesin-like proteins.
Collapse
|
16
|
Imoto Y, Kuroiwa H, Ohnuma M, Kawano S, Kuroiwa T. Identification of Peroxisome-Dividing Ring in Cyanidioschyzon merolae Based on Organelle Partner Hypothesis. CYTOLOGIA 2012. [DOI: 10.1508/cytologia.77.515] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Yuuta Imoto
- Faculty of Science, Rikkyo University
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo
| | - Haruko Kuroiwa
- Faculty of Science, Rikkyo University
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency
| | - Mio Ohnuma
- Faculty of Science, Rikkyo University
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency
| | - Shigeyuki Kawano
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo
| | - Tsuneyoshi Kuroiwa
- Faculty of Science, Rikkyo University
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency
| |
Collapse
|
17
|
Kuroiwa T, Ohnuma M, Imoto Y, Misumi O, Fujiwara T, Miyagishima SY, Sumiya N, Kuroiwa H. Lipid Droplets of Bacteria, Algae and Fungi and a Relationship between their Contents and Genome Sizes as Revealed by BODIPY and DAPI Staining. CYTOLOGIA 2012. [DOI: 10.1508/cytologia.77.289] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Tsuneyoshi Kuroiwa
- Faculty of Science, Rikkyo University
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency
| | - Mio Ohnuma
- Faculty of Science, Rikkyo University
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency
| | - Yuuta Imoto
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency
| | - Osami Misumi
- Department of Biological Science and Chemistry, Faculty of Science, Yamaguchi University
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency
| | | | - Shin-ya Miyagishima
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency
- Symbiosis and Cell Evolution Laboratory Center for Frontier Research, National Institute of Genetics
| | - Nobuko Sumiya
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency
- Symbiosis and Cell Evolution Laboratory Center for Frontier Research, National Institute of Genetics
| | - Haruko Kuroiwa
- Faculty of Science, Rikkyo University
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency
| |
Collapse
|