1
|
Singh M, Saini VP, Meena LL. Heat stress induces oxidative stress and weakens the immune system in catfish Clarias magur: Evidence from physiological, histological, and transcriptomic analyses. FISH & SHELLFISH IMMUNOLOGY 2025; 161:110294. [PMID: 40154646 DOI: 10.1016/j.fsi.2025.110294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/23/2025] [Accepted: 03/21/2025] [Indexed: 04/01/2025]
Abstract
Climate change is unequivocal, causing a rise in the Earth's temperature, which ultimately impacts all ecosystems. However, aquatic ecosystems are most severely affected by rising temperatures resulting in huge losses to aquaculture industry. The present study investigated the oxidative stress, histopathological changes, and transcriptomic responses in a freshwater catfish Clarias magur subjected to acute heat stress. Fish were exposed to four different temperatures, i.e., 28, 30, 32, and 34 °C, for 96 h to assess their heat tolerance and adaptation behavior. Fish kept at 26 °C were considered the control group. Elevated levels of key antioxidative enzymes such as catalase, glutathione reductase, and superoxide dismutase, were recorded in vital organs (gills, kidney, liver, and rosette). High rates of lipid peroxidation were also observed in the gills, kidney, liver, and rosette. An analysis of the top 25 differentially expressed genes of the gill transcriptome revealed that 72 percent of the transcripts were represented by innate and adaptive immune response genes. Downregulation of BOLA class I and MHC class I molecules indicated impaired immunity whereas, upregulation of MHC class II beta chain and GTPase IMAP8 suggested a compensatory immune response. These findings were also supported by the observed histoarchitectural alterations, such as disintegration of the skin barrier, hepatic and nephrotic apoptosis, tissue hyperplasia, macrophage infiltration, and development of splenic granulomas. This study provides important insights into physiological and molecular mechanisms underlying acute heat stress responses. Understanding these mechanisms is important for developing mitigation strategies to improve the sustainability and resilience of commercially important catfish under continuously changing climatic conditions.
Collapse
Affiliation(s)
- Mamta Singh
- College of Fisheries, Bihar Animal Sciences University, DKAC Campus, Kishanganj, Patna, Bihar, 855107, India.
| | - Ved Prakash Saini
- College of Fisheries, Bihar Animal Sciences University, DKAC Campus, Kishanganj, Patna, Bihar, 855107, India
| | - Lakan Lal Meena
- College of Fisheries, Bihar Animal Sciences University, DKAC Campus, Kishanganj, Patna, Bihar, 855107, India
| |
Collapse
|
2
|
Samal K, Biswas P, Singh SK, Das P, Debbarma R, Deb S, Meena DK, Borah S. Dietary Melatonin Boosts Reproduction and Growth Performance of Ornamental Fish Giant Danio ( Devario aequipinnatus): A Transformative Approach for Scrapping Wild-Caught Fish Business. AQUACULTURE NUTRITION 2025; 2025:5540109. [PMID: 39981019 PMCID: PMC11842141 DOI: 10.1155/anu/5540109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 01/12/2025] [Accepted: 01/16/2025] [Indexed: 02/22/2025]
Abstract
The present global trade of endemic ornamental fishes is heavily relied wild-caught species that concerns long-term sustainability. This study examined the effects of dietary melatonin on the reproductive performance and health of Devario aequipinnatus (giant danio). A basal diet of 35% protein (basal diet as control) was supplemented with four different doses of melatonin (2 mg [M1], 10 mg [M2], 50 mg [M3] and 100 mg [M4] per 100 g of feed) given to experimental groups in triplicate. Fish (average weight: 1.13 ± 0.15 g) was stocked in tanks (n = 10) and fed 5% of body weight twice daily. After 60-day feeding, key reproductive metrics such as the gonadosomatic index (GSI), fecundity, egg diameter and histological changes were analysed along with growth and physiological status. The GSI was observed to be better with the increase in dosage and was higher in M3 (3.05 ± 0.03%) (p < 0.05). Histological examination revealed the presence of advanced oocyte stages IV and V in M3, while higher (>50 mg) melatonin levels suppressed the GSI. Egg diameter increased with the dosage of melatonin up to 50 mg/100 g (1.18 ± 0.6 mm). Testicular development was most advanced in 50 mg (M3) dose of melatonin with significant higher appearance of stage II spermatids or spermatozoa. In addition, M3 exhibited markedly elevated levels of vitellogenin (VG) (3.38 ± 0.22 nmol/L) in female fish and testosterone (16.4 ± 1.11 nmol/L) in male fish compared to the control. Broken-line regression analysis indicates that the optimal dose for improved growth performance was identified at 63 mg/100 g of diet. Melatonin supplementation significantly increased (p < 0.05) haematological indices such as haematocrit value, leucocyte count, haemoglobin (Hb) and packed cell volume (PCV) compared to the control, except for the 100 mg group (M4). Although stress markers such as glucose and cortisol were similar to the control, there was a plausible rise in the amount of antioxidant enzyme (p < 0.05) in the melatonin groups. Overall findings of the study demonstrate the potential of melatonin improving the reproductive and physiological status of endemic ornamental fish for accelerating the captive breeding programme for sustainable trade.
Collapse
Affiliation(s)
- Khusbu Samal
- Department of Aquaculture, College of Fisheries, Central Agricultural University, Lembucherra 799210, Tripura West, India
| | - Pradyut Biswas
- Department of Aquaculture, College of Fisheries, Central Agricultural University, Lembucherra 799210, Tripura West, India
| | - Soibam Khogen Singh
- Department of Aquaculture, College of Fisheries, Central Agricultural University, Lembucherra 799210, Tripura West, India
- Krishi Vigyan Kendra, ICAR Research Complex NEH Region, Manipur Centre, Ukhrul 795142, India
| | - Pronob Das
- ICAR-Central Inland Fisheries Research Institute, Regional Centre, Guwahati 781006, Assam, India
| | - Reshmi Debbarma
- Department of Aquaculture, College of Fisheries, Central Agricultural University, Lembucherra 799210, Tripura West, India
| | - Suparna Deb
- Department of Aquaculture, College of Fisheries, Central Agricultural University, Lembucherra 799210, Tripura West, India
| | - Dharmendra Kumar Meena
- Open Water Aquaculture Production and Management Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore 700120, West Bengal, India
| | - Simanku Borah
- ICAR-Central Inland Fisheries Research Institute, Regional Centre, Guwahati 781006, Assam, India
| |
Collapse
|
3
|
Modareszadeh M, Bahmani R, Kim D, Hwang S. Tobacco NtUBC1 and NtUBQ2 enhance salt tolerance by reducing sodium accumulation and oxidative stress through proteasome activation in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108414. [PMID: 38324954 DOI: 10.1016/j.plaphy.2024.108414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/17/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
The ubiquitin/proteasome system plays a crucial role in the regulation of plant responses to environmental stress. Here, we studied the involvement of the UBC1 and UBQ2 genes encoding a ubiquitin conjugating enzyme (E2) and ubiquitin extension protein, respectively, in the response to salt stress. Our results showed that the constitutive expression of tobacco NtUBC1 and NtUBQ2 in Arabidopsis thaliana improved salt tolerance, along with the lower Na+ level and higher K+/Na+ ratio compared to control plants. Moreover, the expression levels of sodium transporters, including AtHKT1 (High-Affinity K+ Transporter1) and AtSOS1 (Salt Overly Sensitive 1), were higher in NtUBC1- and NtUBQ2-Arabidopsis. However, the transcript level of AtNHX1 (Na+/H+ Exchanger 1) was similar between control and transgenic plants. After salt exposure, the activity of the 26S proteasome markedly increased in NtUBC1- and NtUBQ2-expressing plants; however, ubiquitinated protein levels decreased compared to control plants. Furthermore, higher activity of antioxidant enzymes and lower ROS production were observed in UBC1- and UBQ2-expressing plants. We further challenged atubc1, atubc2, and atubq2 single mutants and atubc1ubc2 double mutant lines with salt stress; interestingly, the salt sensitivity and sodium levels of the studied mutants were enhanced, while the potassium levels were reduced. However, the atubc1ubc2 double mutant illustrated a more severe phenotype than the single mutants, probably due to the redundant function of UBC1 and UBC2 in Arabidopsis. Taken together, NtUBC1 and NtUBQ2 enhance salt tolerance by enhancing 26S proteasome activity and reducing Na+ accumulation, ROS, and ubiquitinated/salt-denatured proteins.
Collapse
Affiliation(s)
- Mahsa Modareszadeh
- Department of Molecular Biology, Sejong University, Seoul, 143-747, Republic of Korea; Department of Bioindustry and Bioresource Engineering, Sejong University, Seoul, 143-747, Republic of Korea; Plant Engineering Research Institute, Sejong University, Seoul, 143-747, Republic of Korea
| | - Ramin Bahmani
- Department of Molecular Biology, Sejong University, Seoul, 143-747, Republic of Korea; Department of Bioindustry and Bioresource Engineering, Sejong University, Seoul, 143-747, Republic of Korea; Plant Engineering Research Institute, Sejong University, Seoul, 143-747, Republic of Korea
| | - DongGwan Kim
- Department of Molecular Biology, Sejong University, Seoul, 143-747, Republic of Korea; Department of Bioindustry and Bioresource Engineering, Sejong University, Seoul, 143-747, Republic of Korea; Plant Engineering Research Institute, Sejong University, Seoul, 143-747, Republic of Korea
| | - Seongbin Hwang
- Department of Molecular Biology, Sejong University, Seoul, 143-747, Republic of Korea; Department of Bioindustry and Bioresource Engineering, Sejong University, Seoul, 143-747, Republic of Korea; Plant Engineering Research Institute, Sejong University, Seoul, 143-747, Republic of Korea.
| |
Collapse
|
4
|
Biswas P, Singh SK, Debbarma R, Dey A, Waikhom G, Deb S, Patel AB. Effects of carotenoid supplementation on colour, growth and physiological function of the endemic dwarf chameleon fish (Badis badis). J Anim Physiol Anim Nutr (Berl) 2024; 108:126-138. [PMID: 37610038 DOI: 10.1111/jpn.13873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 08/03/2023] [Accepted: 08/05/2023] [Indexed: 08/24/2023]
Abstract
The global ornamental fish trade is expanding in response to increased demand for indigenous fish on the global market, while exogenous carotenoids can improve colouration. The 60-day trial investigated the effect of carotenoid supplementation, via Artemia, on colouration, growth and immunophysiology of Badis badis (dwarf chameleon fish). Carotenoid was enriched at 40 ppm (T1), 80 ppm (T2) and 120 ppm (T3) and compared with controls, C1 (unenriched) and C2 (oil-enriched). Fish larvae (average weight 0.12 g) were fed enriched-unenriched Artemia in triplicates (5 × 3) in aquarium tanks (15 L). C1 and T2 had better skin colour (lightness and whiteness) in the posterolateral and caudal fins respectively. The value of redness (a*) in the anterolateral region was higher in T2 and T3 (p < 0.05). The anterolateral red index was higher (p < 0.05) in T2 and T3, whereas in the posterolateral and caudal fins, T1 and T2 were higher (p < 0.05). Compared to C1 and C2, the hue angle in carotenoid groups was found to be low (p < 0.05). No significant change in the growth performance was noticed (p > 0.05). Immune scores such as lysozyme and alkaline protease were highest in T3 (p < 0.05), whereas protease activity was highest in T2 (80 ppm). Stress biomarkers, viz., superoxide dismutase, catalase and malondialdehyde were low in groups fed enriched Artemia (p < 0.05). The integrated biomarker response means and star plot area were lower in the enriched groups (T1-T3), while T2 was the lowest. Overall findings reveal that dietary carotenoid improves the colouration and immune status, but fail to promote growth. Furthermore, 80 ppm enrichment dose improves the overall performance. The findings can help fish keepers improve fish colour and health status through carotenoid supplementation.
Collapse
Affiliation(s)
- Pradyut Biswas
- Department of Aquaculture, College of Fisheries, Central Agricultural University, Imphal, Tripura West, India
| | - Soibam Khogen Singh
- Department of Aquaculture, College of Fisheries, Central Agricultural University, Imphal, Tripura West, India
| | - Reshmi Debbarma
- Department of Aquaculture, College of Fisheries, Central Agricultural University, Imphal, Tripura West, India
| | - Abhipsha Dey
- Department of Aquaculture, College of Fisheries, Central Agricultural University, Imphal, Tripura West, India
| | - Gusheinzed Waikhom
- Department of Aquaculture, College of Fisheries, Central Agricultural University, Imphal, Tripura West, India
| | - Suparna Deb
- Department of Aquaculture, College of Fisheries, Central Agricultural University, Imphal, Tripura West, India
| | - Arun Bhai Patel
- Department of Aquaculture, College of Fisheries, Central Agricultural University, Imphal, Tripura West, India
| |
Collapse
|
5
|
Khan S, Sehar Z, Fatma M, Mir IR, Iqbal N, Tarighat MA, Abdi G, Khan NA. Involvement of ethylene in melatonin-modified photosynthetic-N use efficiency and antioxidant activity to improve photosynthesis of salt grown wheat. PHYSIOLOGIA PLANTARUM 2022; 174:e13832. [PMID: 36437590 DOI: 10.1111/ppl.13832] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/24/2022] [Accepted: 11/21/2022] [Indexed: 05/25/2023]
Abstract
The involvement of melatonin in the regulation of salt stress acclimation has been shown in plants in this present work. We found that the GOAL cultivar of wheat (Triticum aestivum L.) was the most salt-tolerant among the investigated cultivars, GOAL, HD-2967, PBW-17, PBW-343, PBW-550, and WH-1105 when screened for tolerance to 100 mM NaCl. The application of 100 μM melatonin maximally reduced oxidative stress and improved photosynthesis in the cv. GOAL. Melatonin supplementation reduced salt stress-induced oxidative stress by upregulating the activity of antioxidant enzymes, such as superoxide dismutase (SOD), ascorbate peroxidase (APX), and glutathione reductase (GR), and reduced the glutathione (GSH) production. This resulted in increased membrane stability, photosynthetic-N use efficiency and photosynthesis in plants. The application of 50 μM of the ethylene biosynthesis inhibitor aminoethoxyvinylglycine (AVG) in the presence of melatonin and salt stress increased H2 O2 content but reduced GR activity and GSH, photosynthesis, and plant dry mass. This signifies that melatonin-mediated salt stress tolerance was related to ethylene synthesis as it improved antioxidant activity and photosynthesis of plants under salt stress. Thus, the interaction of melatonin and ethylene bears a prominent role in salt stress tolerance in wheat and can be used to develop salt tolerance in other crops.
Collapse
Affiliation(s)
- Sheen Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, India
| | - Zebus Sehar
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, India
| | - Mehar Fatma
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, India
| | - Iqbal R Mir
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, India
| | | | | | - Gholamareza Abdi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, Bushehr, Iran
| | - Nafees A Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
6
|
Roy UK, Bhattacharjee S. Exploring the parameters of central redox hub for screening salinity tolerant rice landraces of coastal Bangladesh. Sci Rep 2022; 12:12989. [PMID: 35906294 PMCID: PMC9338030 DOI: 10.1038/s41598-022-17078-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/20/2022] [Indexed: 11/30/2022] Open
Abstract
Regulation of oxidative stress towards origin of favorable internal redox cue plays a decisive role in salinity stress acclimation and least studied in rice and hence is the subject of present investigation. Redox landscaping of seedlings of ten experimental land races of rice of coastal Bangladesh grown under post imbibitional salinity stress (PISS) has been done through characterization of ROS-antioxidant interaction dynamics at metabolic interface, transcriptional reprogramming of redox-regulatory genes along with the assessment of biomarkers of oxidative threat for standardizing redox strategies and quality parameters for screening. The results exhibited a strong correlation between salinity induced redox status (pro-oxidant/antioxidant ratio, efficacy of H2O2 turnover through integrated RboH-Ascorbate–Glutathione/Catalase pathway and estimation of sensitive redox biomarkers of oxidative deterioration) and germination phenotypes of all landraces of rice. Transcript abundance of the marker genes of the enzymes associated with central antioxidant hub for H2O2 processing (CatA, OsAPx2, SodCc2, GRase and RboH) of all experimental landraces of the rice advocate the central role of H2O2 turnover dynamics in regulating redox status and salinity tolerance. Landraces suffering greater loss of abilities of decisive regulation of H2O2 turnover dynamics exhibited threat on the oxidative windows of the germinating seeds under salinity.
Collapse
Affiliation(s)
- Uthpal Krishna Roy
- Plant Physiology and Biochemistry Research Laboratory, Department of Botany, UGC Centre for Advanced Study, The University of Burdwan, Burdwan, West Bengal, 713104, India.,Department of Botany, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Soumen Bhattacharjee
- Plant Physiology and Biochemistry Research Laboratory, Department of Botany, UGC Centre for Advanced Study, The University of Burdwan, Burdwan, West Bengal, 713104, India.
| |
Collapse
|
7
|
Muthuramalingam P, Jeyasri R, Rakkammal K, Satish L, Shamili S, Karthikeyan A, Valliammai A, Priya A, Selvaraj A, Gowri P, Wu QS, Karutha Pandian S, Shin H, Chen JT, Baskar V, Thiruvengadam M, Akilan M, Ramesh M. Multi-Omics and Integrative Approach towards Understanding Salinity Tolerance in Rice: A Review. BIOLOGY 2022; 11:biology11071022. [PMID: 36101403 PMCID: PMC9312129 DOI: 10.3390/biology11071022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022]
Abstract
Rice (Oryza sativa L.) plants are simultaneously encountered by environmental stressors, most importantly salinity stress. Salinity is the major hurdle that can negatively impact growth and crop yield. Understanding the salt stress and its associated complex trait mechanisms for enhancing salt tolerance in rice plants would ensure future food security. The main aim of this review is to provide insights and impacts of molecular-physiological responses, biochemical alterations, and plant hormonal signal transduction pathways in rice under saline stress. Furthermore, the review highlights the emerging breakthrough in multi-omics and computational biology in identifying the saline stress-responsive candidate genes and transcription factors (TFs). In addition, the review also summarizes the biotechnological tools, genetic engineering, breeding, and agricultural practicing factors that can be implemented to realize the bottlenecks and opportunities to enhance salt tolerance and develop salinity tolerant rice varieties. Future studies pinpointed the augmentation of powerful tools to dissect the salinity stress-related novel players, reveal in-depth mechanisms and ways to incorporate the available literature, and recent advancements to throw more light on salinity responsive transduction pathways in plants. Particularly, this review unravels the whole picture of salinity stress tolerance in rice by expanding knowledge that focuses on molecular aspects.
Collapse
Affiliation(s)
- Pandiyan Muthuramalingam
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630 003, India; (P.M.); (R.J.); (K.R.); (A.V.); (A.P.); (A.S.); (S.K.P.)
- Department of Horticultural Science, Gyeongsang National University, Jinju 52725, Korea
- Department of GreenBio Science, Gyeongsang National University, Jinju 52725, Korea
| | - Rajendran Jeyasri
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630 003, India; (P.M.); (R.J.); (K.R.); (A.V.); (A.P.); (A.S.); (S.K.P.)
| | - Kasinathan Rakkammal
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630 003, India; (P.M.); (R.J.); (K.R.); (A.V.); (A.P.); (A.S.); (S.K.P.)
| | - Lakkakula Satish
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel;
- The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel;
| | - Sasanala Shamili
- The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel;
| | - Adhimoolam Karthikeyan
- Subtropical Horticulture Research Institute, Jeju National University, Jeju 63243, Korea;
| | - Alaguvel Valliammai
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630 003, India; (P.M.); (R.J.); (K.R.); (A.V.); (A.P.); (A.S.); (S.K.P.)
| | - Arumugam Priya
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630 003, India; (P.M.); (R.J.); (K.R.); (A.V.); (A.P.); (A.S.); (S.K.P.)
| | - Anthonymuthu Selvaraj
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630 003, India; (P.M.); (R.J.); (K.R.); (A.V.); (A.P.); (A.S.); (S.K.P.)
| | - Pandiyan Gowri
- Department of Botany, Science Campus, Alagappa University, Karaikudi 630 003, India;
| | - Qiang-Sheng Wu
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China;
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic
| | - Shunmugiah Karutha Pandian
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630 003, India; (P.M.); (R.J.); (K.R.); (A.V.); (A.P.); (A.S.); (S.K.P.)
| | - Hyunsuk Shin
- Department of Horticultural Science, Gyeongsang National University, Jinju 52725, Korea
- Department of GreenBio Science, Gyeongsang National University, Jinju 52725, Korea
- Correspondence: (H.S.); (M.T.); (M.R.)
| | - Jen-Tsung Chen
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung 811, Taiwan;
| | - Venkidasamy Baskar
- Department of Oral and Maxillofaciel Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai 602 105, India;
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Korea
- Correspondence: (H.S.); (M.T.); (M.R.)
| | - Manoharan Akilan
- Department of Plant Breeding and Genetics, Anbil Dharmalingam Agricultural College and Research Institute, Tamil Nadu Agricultural University, Trichy 620 027, India;
| | - Manikandan Ramesh
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630 003, India; (P.M.); (R.J.); (K.R.); (A.V.); (A.P.); (A.S.); (S.K.P.)
- Correspondence: (H.S.); (M.T.); (M.R.)
| |
Collapse
|
8
|
Ghosh A, Mustafiz A, Pareek A, Sopory SK, Singla-Pareek SL. Glyoxalase III enhances salinity tolerance through reactive oxygen species scavenging and reduced glycation. PHYSIOLOGIA PLANTARUM 2022; 174:e13693. [PMID: 35483971 DOI: 10.1111/ppl.13693] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 06/14/2023]
Abstract
Methylglyoxal (MG) is a metabolically generated highly cytotoxic compound that accumulates in all living organisms, from Escherichia coli to humans, under stress conditions. To detoxify MG, nature has evolved reduced glutathione (GSH)-dependent glyoxalase and NADPH-dependent aldo-keto reductase systems. But both GSH and NADPH have been reported to be limiting in plants under stress conditions, and thus detoxification might not be performed efficiently. Recently, glyoxalase III (GLY III)-like enzyme activity has been reported from various species, which can detoxify MG without any cofactor. In the present study, we have tested whether an E. coli gene, hchA, encoding a functional GLY III, could provide abiotic stress tolerance to living systems. Overexpression of this gene showed improved tolerance in E. coli and Saccharomyces cerevisiae cells against salinity, dicarbonyl, and oxidative stresses. Ectopic expression of the E. coli GLY III gene (EcGLY-III) in transgenic tobacco plants confers tolerance against salinity at both seedling and reproductive stages as indicated by their height, weight, membrane stability index, and total yield potential. Transgenic plants showed significantly increased glyoxalase and antioxidant enzyme activity that resisted the accumulation of excess MG and reactive oxygen species (ROS) during stress. Moreover, transgenic plants showed more anti-glycation activity to inhibit the formation of advanced glycation end product (AGE) that might prevent transgenic plants from stress-induced senescence. Taken together, all these observations indicate that overexpression of EcGLYIII confers salinity stress tolerance in plants and should be explored further for the generation of stress-tolerant plants.
Collapse
Affiliation(s)
- Ajit Ghosh
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Ananda Mustafiz
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sudhir K Sopory
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Sneh L Singla-Pareek
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
9
|
Syed BA, Patel M, Patel A, Gami B, Patel B. Regulation of antioxidant enzymes and osmo-protectant molecules by salt and drought responsive genes in Bambusa balcooa. JOURNAL OF PLANT RESEARCH 2021; 134:165-175. [PMID: 33411148 DOI: 10.1007/s10265-020-01242-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
Bio-energy crops need to be grown on marginal salt and drought lands in India as per policy. Understanding environmental stress response in bio-energy crops might help in promoting cultivation of bio-energy feedstock on marginal salty and drought land. This is one of the first report for vegetative propagation of Bamboo (Bambusa balcooa) under salt and drought stress to understand antioxidant enzymes' gene regulations to combat stress through activation of antioxidant enzymes and osmo-protectant molecules to scavenge reactive oxygen species as measured by physiological changes. Morphological, physiological, and biochemical traits were noted as indicators of plant health upon different sodium chloride (NaCl) salt-stress while various drought conditions with correlation analysis. A significant up-regulation of genes related to most of the antioxidant enzymes was observed up to salinity of 14 mS cm- 1 electric conductivity (EC) at 150 mM NaCl experimental salt stress which declined with higher salt-stress. While in the case of drought-stress, all genes remained up-regulated while proline dehydrogenase (PDH) remained down-regulated up-to 100% drought-stress having 4% soil moisture. The gene expressions of antioxidant enzymes were significantly correlated with their corresponding gene-products namely super-oxide dismutase (SOD), catalase (CAT), glutathione reductase (GR) and ascorbate peroxidase (APX) activities. Biochemical parameters such as, soluble sugar, proline, malondialdehyde (MDA), total amino acids, hydrogen peroxide and electrolyte leakage ratio also showed positive correlation (p = 0.001) with salt condition. Genetic and biochemical test parameters were significantly correlated with physiological attributes of plant health at soil EC of 14 mS cm- 1 shown as 150 mM NaCl salt stress and 60% drought-stress having 17% soil moisture content, were the optimum stress tolerance limits observed. Application of these data would be useful to cultivate 0.63 million ha of salinity affected land and 10.05 million ha of drought affected land among wastelands in India to meet biofuel need.
Collapse
Affiliation(s)
- Bakhtiyar Alam Syed
- SN Gene Labs Private Limited, A-President Plaza, Nanpura, Surat, 395001, Gujarat, India
| | - Meghana Patel
- Gujarat Ecological Education and Research (GEER) Foundation, Indroda Nature Park, P.O. Sector -7, Gandhinagar, 382007, Gujarat, India
| | - Akash Patel
- Abellon Cleanenergy Limited, Sangeeta Complex, Nr. Parimal Crossing, Ellisbridge, Ahmedabad, Gujarat, 380006, India
| | - Bharat Gami
- Abellon Cleanenergy Limited, Sangeeta Complex, Nr. Parimal Crossing, Ellisbridge, Ahmedabad, Gujarat, 380006, India
| | - Beena Patel
- Abellon Cleanenergy Limited, Sangeeta Complex, Nr. Parimal Crossing, Ellisbridge, Ahmedabad, Gujarat, 380006, India.
| |
Collapse
|
10
|
Zhao B, Zhou H, Zhang S, Pan X, Li S, Zhu N, Wu Q, Wang S, Qiao X, Chen W. Changes of protein oxidation, lipid oxidation and lipolysis in Chinese dry sausage with different sodium chloride curing salt content. FOOD SCIENCE AND HUMAN WELLNESS 2020. [DOI: 10.1016/j.fshw.2020.04.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
11
|
Tyagi S, Shumayla, Verma PC, Singh K, Upadhyay SK. Molecular characterization of ascorbate peroxidase (APX) and APX-related (APX-R) genes in Triticum aestivum L. Genomics 2020; 112:4208-4223. [PMID: 32681868 DOI: 10.1016/j.ygeno.2020.07.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/14/2020] [Accepted: 07/10/2020] [Indexed: 12/22/2022]
Abstract
Ascorbate peroxidases (APXs) are heme-dependent H2O2 scavenging enzymes involved in myriad biological processes. Herein, a total of 21 TaAPX and six TaAPX-R genes were identified from the A, B and D sub-genomes of Triticum aestivum L. The occurrence of three paralogous gene pairs with unequal evolutionary rate suggested functional divergence. The phylogenetic analysis formed four distinct clades having conserved gene and protein architecture, and sub-cellular localization. The tertiary structure analysis revealed the presence of helices and coils and residues involved in ligand binding. Transcriptional profiling of each TaAPX and TaAPX-R gene suggested their specific role during development and stress response. Modulated transcript expression and APX enzyme activity during various stress conditions indicated their role in stress response. Interaction analyses suggested their association with other genes, miRNAs and various legends. The present study reported numerous features of these genes, and may provide a platform for their detailed functional characterization in future studies.
Collapse
Affiliation(s)
- Shivi Tyagi
- Department of Botany, Panjab University, Chandigarh 160014, India
| | - Shumayla
- Department of Botany, Panjab University, Chandigarh 160014, India
| | - Praveen Chandra Verma
- CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research, Rana Pratap Marg, Lucknow UP-226001, India
| | - Kashmir Singh
- Department of Biotechnology, Panjab University, Chandigarh 160014, India
| | | |
Collapse
|
12
|
Huang HE, Ho MH, Chang H, Chao HY, Ger MJ. Overexpression of plant ferredoxin-like protein promotes salinity tolerance in rice (Oryza sativa). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:136-146. [PMID: 32750653 DOI: 10.1016/j.plaphy.2020.07.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/18/2020] [Accepted: 07/13/2020] [Indexed: 05/02/2023]
Abstract
High-salinity stress is one of the major limiting factors on crop productivity. Physiological strategies against high-salinity stress include generation of reactive oxygen species (ROS), induction of stress-related genes expression, accumulation of abscisic acid (ABA) and up-regulation of antiporters. ROS are metabolism by-products and involved in signal transduction pathway. Constitutive expression of plant ferrodoxin-like protein (PFLP) gene enhances pathogen-resistance activities and root-hair growth through promoting ROS generation. However, the function of PFLP in abiotic stress responses is unclear. In this study, PFLP-1 and PFLP-2-transgenic rice plants were generated to elucidate the role of PFLP under salinity stress. PFLP overexpression significantly increased salt tolerance in PFLP-transgenic rice plants compared with non-transgenic plants (Oryza sativa japonica cv. Tainung 67, designated as TNG67). In high-salinity conditions, PFLP-transgenic plants exhibited earlier ROS production, higher antioxidant enzyme activities, higher ABA accumulation, up-regulated expression of stress-related genes (OsRBOHa, Cu/Zn SOD, OsAPX, OsNCED2, OsSOS1, OsCIPK24, OsCBL4, and OsNHX2), and leaf sodium ion content was lower compared with TNG67 plant. In addition, transgenic lines maintained electron transport rates and contained lower malondialdhyde (MDA) content than TNG67 plant did under salt-stress conditions. Overall results indicated salinity tolerance was improved by PFLP overexpression in transgenic rice plant. The PFLP gene is a potential candidate for improving salinity tolerance for valuable agricultural crops.
Collapse
Affiliation(s)
- Hsiang-En Huang
- Department of Life Sciences, National Taitung University, Taitung, 95002, Taiwan.
| | - Mei-Hsuan Ho
- Institute of Biotechnology, National University of Kaohsiung, Kaohsiung, 81148, Taiwan.
| | - Hsiang Chang
- Department of Biotechnology and Pharmaceutical Technology, Yuanpei University of Medical Technology, Hsinchu, 30015, Taiwan.
| | - Hsien-Yu Chao
- Institute of Biotechnology, National University of Kaohsiung, Kaohsiung, 81148, Taiwan.
| | - Mang-Jye Ger
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung, 81148, Taiwan.
| |
Collapse
|
13
|
Chitosan Modified Biochar Increases Soybean ( Glycine max L.) Resistance to Salt-Stress by Augmenting Root Morphology, Antioxidant Defense Mechanisms and the Expression of Stress-Responsive Genes. PLANTS 2020; 9:plants9091173. [PMID: 32927707 PMCID: PMC7569946 DOI: 10.3390/plants9091173] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 12/25/2022]
Abstract
Soybean is an important oilseed crop that provides high-quality protein and vegetable oil. Salinity constitutes a negative abiotic factor that reduces soybean plant growth, production, and quality. The adsorption of Na+ by chitosan-modified biochar (CMB) has a significant effect on salinity but the application of CMB is limited in soybean. In the current study, CMB was used for characterization of physiological, biochemical, and molecular responses of soybean under salt stress. Comparison of CMB and unmodified (as-is) biochar (BR) demonstrated a significant difference between them shown by using Fourier transform infrared spectroscopy (FTIR), scan electron microscopy (SEM), Brunauer-Emmett-Teller (BET), elemental analysis and z-potential measurement. Pseudo-first and second-order better suited for the analysis of Na+ adsorption kinetics. The salt-stress reduced the soybean plants growth, root architecture characteristics, biomass yield, nutrients acquisition, chlorophyll contents, soluble protein, and sugar contents, while CMB with salt-stress significantly increased the above parameters. Moreover, CMB also reduced the salinity-induced increase in the Na+, glycine betaine (GB), proline, hydrogen peroxide (H2O2), and malondialdehyde (MDA) levels in plants. The antioxidant activity and gene expression levels triggered by salinity but with the application of CMB significantly further boosted the expression profile of four genes (CAT, APX, POD and SOD) encoding antioxidant enzyme and two salt-tolerant conferring genes (GmSALT3 and CHS). Overall, these findings demonstrate the crucial role of CMB in minimizing the adverse effects of high salinity on soybean growth and efficiency of the mechanisms enabling plant protection from salinity through a shift of the architecture of the root system and enhancing the antioxidant defense systems and stress-responsive genes for achieving sustainable crop production.
Collapse
|
14
|
Li Y, Liu Y, Yang D, Jin Q, Wu C, Cui J. Multifunctional molybdenum disulfide-copper nanocomposite that enhances the antibacterial activity, promotes rice growth and induces rice resistance. JOURNAL OF HAZARDOUS MATERIALS 2020; 394:122551. [PMID: 32272326 DOI: 10.1016/j.jhazmat.2020.122551] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/11/2020] [Accepted: 03/15/2020] [Indexed: 06/11/2023]
Abstract
Molybdenum disulfide sheets loaded with copper nanoparticles (MoS2-CuNPs) was prepared and its antibacterial activity against phytopathogen Xanthomonas oryzae pv. oryzae (Xoo) was investigated in vitro and in vivo for the first time. In a 2 h co-incubation, MoS2-CuNPs exhibited 19.2 times higher antibacterial activity against Xoo cells than a commercial copper bactericide (Kocide 3000). In the detached leaf experiment, the disease severity decreased from 86.25 % to 7.5 % in the MoS2-CuNPs treated rice leaves. The results further demonstrated that foliar application of MoS2-CuNPs could form a protective film and increase the density of trichome on the surface of rice leaves, finally prevent the infection of Xoo cells. This was probably due to the synergistic effect of MoS2-CuNPs. Additionally, foliar application of MoS2-CuNPs (4-32 μg/mL) increased obviously the content of Mo and chlorophyll (up 30.85 %), and then improved the growth of rice seedlings. Furthermore, the obtained MoS2-CuNPs could activate the activities of the antioxidant enzymes in rice, indicating higher resistance of rice under abiotic/biotic stresses. The multifunctional MoS2-CuNPs with superior antibacterial activity provided a promising alternative to the traditional antibacterial agents and had great potential in plant protection.
Collapse
Affiliation(s)
- Yadong Li
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China; Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Yingliang Liu
- Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Desong Yang
- College of Agriculture, Shihezi University, Shihezi 832000, Xinjiang, China; Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Bintuan, Shihezi University, Shihezi 832000, Xinjiang, China.
| | - Qian Jin
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China
| | - Cailan Wu
- College of Agriculture, Shihezi University, Shihezi 832000, Xinjiang, China; Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Bintuan, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Jianghu Cui
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China.
| |
Collapse
|
15
|
Insights into the Physiological and Biochemical Impacts of Salt Stress on Plant Growth and Development. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10070938] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Climate change is causing soil salinization, resulting in crop losses throughout the world. The ability of plants to tolerate salt stress is determined by multiple biochemical and molecular pathways. Here we discuss physiological, biochemical, and cellular modulations in plants in response to salt stress. Knowledge of these modulations can assist in assessing salt tolerance potential and the mechanisms underlying salinity tolerance in plants. Salinity-induced cellular damage is highly correlated with generation of reactive oxygen species, ionic imbalance, osmotic damage, and reduced relative water content. Accelerated antioxidant activities and osmotic adjustment by the formation of organic and inorganic osmolytes are significant and effective salinity tolerance mechanisms for crop plants. In addition, polyamines improve salt tolerance by regulating various physiological mechanisms, including rhizogenesis, somatic embryogenesis, maintenance of cell pH, and ionic homeostasis. This research project focuses on three strategies to augment salinity tolerance capacity in agricultural crops: salinity-induced alterations in signaling pathways; signaling of phytohormones, ion channels, and biosensors; and expression of ion transporter genes in crop plants (especially in comparison to halophytes).
Collapse
|
16
|
Sen SK, Chouhan D, Das D, Ghosh R, Mandal P. Improvisation of salinity stress response in mung bean through solid matrix priming with normal and nano-sized chitosan. Int J Biol Macromol 2019; 145:108-123. [PMID: 31870871 DOI: 10.1016/j.ijbiomac.2019.12.170] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/16/2019] [Accepted: 12/19/2019] [Indexed: 12/30/2022]
Abstract
Nano particles open up a new avenue in crop science because of their unique physicochemical properties. Chitosan is preferred as priming agent in nano-form due to its biodegradability and non toxicity. Prepared nano-chitosan was characterized by Dynamic light scattering study, Fourier-transform infrared spectroscopy study and scanning electron microscopy. In present study the morphological, physiological and biochemical responses with an emphasis on several oxidative stress markers like proline, malondialdehyde (MDA), hydrogen peroxide (H2O2) contents of mung bean seedlings to 0, 4 and 8 dS/m salt stress conditions after Solid Matrix Priming (SMP) using the elicitors like nano-chitosan, chitosan and water were studied. The activities of different antioxidant enzymes like superoxide dismutase, catalase and oxidative stress markers like proline, H2O2 and MDA increased considerably over water control in accordance with salt stress gradient. However, SMP with nano-chitosan showed significant improvement showing reduction in H2O2 and MDA contents over control leading to the better growth, increased chlorophyll content and metabolism. Thus, our study shows that SMP with both normal and nano sized chitosan will be able to overcome the adverse effect of salt stress in mung bean seedlings allowing the activation of their defense mechanisms for better protection against salt stress.
Collapse
Affiliation(s)
- Sujoy Kumar Sen
- Department of Botany, Siliguri College, Darjeeling WB-734 001, India
| | - Divya Chouhan
- Nanobiology and Phytotherapy Laboratory, Department of Botany, University of North Bengal, Darjeeling WB-734 013, India
| | - Dipayan Das
- Nanobiology and Phytotherapy Laboratory, Department of Botany, University of North Bengal, Darjeeling WB-734 013, India
| | - Raja Ghosh
- Department of Chemistry, University of North Bengal, Darjeeling WB-734 013, India
| | - Palash Mandal
- Nanobiology and Phytotherapy Laboratory, Department of Botany, University of North Bengal, Darjeeling WB-734 013, India.
| |
Collapse
|
17
|
Rohman MM, Islam MR, Monsur MB, Amiruzzaman M, Fujita M, Hasanuzzaman M. Trehalose Protects Maize Plants from Salt Stress and Phosphorus Deficiency. PLANTS (BASEL, SWITZERLAND) 2019; 8:E568. [PMID: 31817132 PMCID: PMC6963808 DOI: 10.3390/plants8120568] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/24/2019] [Accepted: 12/02/2019] [Indexed: 12/15/2022]
Abstract
This study is undertaken to elucidate the role of trehalose (Tre) in mitigating oxidative stress under salinity and low P in maize. Eight-day-old maize seedlings of two maize varieties, BARI Hybrid Maize-7 and BARI Hybrid Maize-9, were subjected to salinity (150 mM NaCl), low P (5 µM KH2PO4) and their combined stress with or without 10 mM Tre for 15 d. Salinity and combined stress significantly inhibited the shoot length, root length, and root volume, whereas low P increased the root length and volume in both genotypes. Exogenous Tre in the stress treatments increased all of the growth parameters as well as decreased the salinity, low P, and combined stress-mediated Na+/K+, reactive oxygen species (ROS), malondialdehyde (MDA), lipoxygenase (LOX) activity, and methylglyoxal (MG) in both genotypes. Individually, salinity and low P increased superoxide dismutase (SOD) activity in both genotypes, but combined stress decreased the activity. Peroxidase (POD) activity increased in all stress treatments. Interestingly, Tre application enhanced the SOD activity in all the stress treatments but inhibited the POD activity. Both catalase (CAT) and glutathione peroxidase (GPX) activity were increased by saline and low P stress while the activities inhibited in combined stress. Similar results were found for ascorbate peroxidase (APX), glutathione peroxidase (GR), and dehydroascorbate reductase (DHAR) activities in both genotypes. However, monodehydroascorbate reductase (MDHAR) activity was inhibited in all the stresses. Interestingly, Tre enhanced CAT, APX, GPX, GR, MDHAR, and DHAR activities suggesting the amelioration of ROS scavenging in maize under all the stresses. Conversely, increased glyoxalase activities in saline and low P stress in BHM-9 suggested better MG detoxification system because of the down-regulation of glyoxalase-I (Gly-I) activity in BHM-7 in those stresses. Tre also increased the glyoxalase activities in both genotypes under all the stresses. Tre improved the growth in maize seedlings by decreasing Na+/K+, ROS, MDA, and MG through regulating antioxidant and glyoxalase systems.
Collapse
Affiliation(s)
- Md. Motiar Rohman
- Molecular Breeding Lab, Plant Breeding Division, Bangladesh Agricultural Research Institute, Gazipur 1701, Bangladesh; (M.R.I.); (M.B.M.); (M.A.)
| | - Md. Robyul Islam
- Molecular Breeding Lab, Plant Breeding Division, Bangladesh Agricultural Research Institute, Gazipur 1701, Bangladesh; (M.R.I.); (M.B.M.); (M.A.)
| | - Mahmuda Binte Monsur
- Molecular Breeding Lab, Plant Breeding Division, Bangladesh Agricultural Research Institute, Gazipur 1701, Bangladesh; (M.R.I.); (M.B.M.); (M.A.)
| | - Mohammad Amiruzzaman
- Molecular Breeding Lab, Plant Breeding Division, Bangladesh Agricultural Research Institute, Gazipur 1701, Bangladesh; (M.R.I.); (M.B.M.); (M.A.)
| | - Masayuki Fujita
- Laboratory of Plant Stress responses, Faculty of Agriculture, Kagawa University, Kagawa 7610795, Japan
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh
| |
Collapse
|
18
|
Meena M, Divyanshu K, Kumar S, Swapnil P, Zehra A, Shukla V, Yadav M, Upadhyay R. Regulation of L-proline biosynthesis, signal transduction, transport, accumulation and its vital role in plants during variable environmental conditions. Heliyon 2019; 5:e02952. [PMID: 31872123 PMCID: PMC6909094 DOI: 10.1016/j.heliyon.2019.e02952] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/28/2019] [Accepted: 11/25/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND In response to various environmental stresses, many plant species synthesize L-proline in the cytosol and accumulates in the chloroplasts. L-Proline accumulation in plants is a well-recognized physiological reaction to osmotic stress prompted by salinity, drought and other abiotic stresses. L-Proline plays several protective functions such as osmoprotectant, stabilizing cellular structures, enzymes, and scavenging reactive oxygen species (ROS), and keeps up redox balance in adverse situations. In addition, ample-studied osmoprotective capacity, L-proline has been also ensnared in the regulation of plant improvement, including flowering, pollen, embryo, and leaf enlargement. SCOPE AND CONCLUSIONS Albeit, ample is now well-known about L-proline metabolism, but certain characteristics of its biological roles are still indistinct. In the present review, we discuss the L-proline accumulation, metabolism, signaling, transport and regulation in the plants. We also discuss the effects of exogenous L-proline during different environmental conditions. L-Proline biosynthesis and catabolism are controlled by several cellular mechanisms, of which we identify only very fewer mechanisms. So, in the future, there is a requirement to identify such types of cellular mechanisms.
Collapse
Affiliation(s)
- Mukesh Meena
- Department of Botany, Mohanlal Sukhadia University, Udaipur, 313001, India
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Kumari Divyanshu
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Sunil Kumar
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Prashant Swapnil
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
- International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Andleeb Zehra
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Vaishali Shukla
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Mukesh Yadav
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - R.S. Upadhyay
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|
19
|
Bharti A, Garg N. SA and AM symbiosis modulate antioxidant defense mechanisms and asada pathway in chickpea genotypes under salt stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 178:66-78. [PMID: 30999182 DOI: 10.1016/j.ecoenv.2019.04.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 04/01/2019] [Accepted: 04/08/2019] [Indexed: 05/23/2023]
Abstract
Salt stress disturbs redox homeostasis by perturbing equilibrium between generation and removal of reactive oxygen species (ROS), which alters the normal metabolism of plants through membrane damage, lipid peroxidation and denaturation of proteins. Salicylic acid (SA) seed priming and arbuscular mycorrhizal (AM) fungi impart salt tolerance in legumes by maintaining redox balance. The present investigation focused on the relative and combined applications of SA and Rhizoglomus intraradices in scavenging ROS in Cicer arietinum L. (chickpea) genotypes (salt tolerant-PBG 5, relatively sensitive-BG 256) subjected to salt stress. Despite the enhanced antioxidant mechanisms under salt stress, ROS (superoxide, O2- and hydrogen peroxide, H2O2) accumulation increased significantly and induced lipid peroxidation and lipoxygenase (LOX) activities, which disrupted membrane stability, more in BG 256 than PBG 5. Salt stress also caused redox imbalance by lowering ascorbate/dehydroascorbate (ASA/DHA) and reduced glutathione/oxidized glutathione (GSH/GSSG) ratios, indicating that redox-homeostasis was crucial for salt-tolerance. Exogenous SA was more promising in reducing ROS-generation and lipid-peroxidation, which provided higher membrane stability as compared to AM inoculation. Although, the enzymatic antioxidants were more active in SA treated plants, yet, AM inoculation outperformed in increasing reformative enzyme activities of Foyer-Halliwell-Asada cycle, which resulted in higher plant biomass in a genotype-dependent manner. SA increased AM root colonization and provided functional complementarity to R. intraradices and thereby strengthening antioxidant defense mechanisms through their cumulative contribution. The study suggested the use of +SA+AM as an eco-friendly tool in imparting salt tolerance in chickpea genotypes subjected to long-term salinity.
Collapse
Affiliation(s)
- Amrit Bharti
- Department of Botany, Panjab University, Chandigarh, 160014, India.
| | - Neera Garg
- Department of Botany, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
20
|
Singh M, Barman AS, Devi AL, Devi AG, Pandey PK. Iron mediated hematological, oxidative and histological alterations in freshwater fish Labeo rohita. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 170:87-97. [PMID: 30529624 DOI: 10.1016/j.ecoenv.2018.11.129] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 11/28/2018] [Accepted: 11/28/2018] [Indexed: 06/09/2023]
Abstract
Iron is an essential element for many physiological functions of several organisms but in excess it causes toxicity. High iron content in water bodies of mountainous states is considered as one of the major factor, responsible for low productivity in aquaculture systems. But, till date comprehensive reports on the adverse effect of iron overload in aquatic organisms, especially cultured fishes are scanty. Therefore, the present study was undertaken to investigate the adverse effects of iron overload in economically important aquaculture fish species Labeo rohita. Three sub-lethal test concentration of iron (ferrous) viz., 1/16th, 1/8th and 1/4th of LC50 (post 96 h) i.e. 8.25, 16.51 and 33.01 mg L-1, respectively, were used for in vivo exposure. Blood cells and tissue samples of the control & exposed specimens were sampled at intervals of 24, 48, 72 and 96 h to assess alterations in hematological, oxidative stress and histological parameters. Significant changes in erythrocyte and leukocyte counts, hemoglobin, lipid peroxidation, antioxidant enzyme activity (super oxide dismutase and catalase) and tissue iron accumulation were observed in the exposed fish. Significant increase in lipid peroxidation, coupled with significant reduction in free radicals scavengers like super oxide dismutase and catalase revealed a compromised anti-oxidative defense mechanism in the fishes exposed to iron overload. Histological examination of gills and liver showed severe tissue injury and histological alternations. Severity was found to increase in time and concentration dependent manner. Perl's staining revealed accumulation of excess iron in liver of the exposed fish. The observed patho-physiological changes in the present study provide the most comprehensive insight of iron overload stress in L. rohita.
Collapse
Affiliation(s)
- Mamta Singh
- College of Fisheries (Central Agricultural University), Lembucherra, Tripura 799210, India.
| | - Anindya Sundar Barman
- College of Fisheries (Central Agricultural University), Lembucherra, Tripura 799210, India.
| | - Asem Lembika Devi
- College of Fisheries (Central Agricultural University), Lembucherra, Tripura 799210, India.
| | - Ayam Gangarani Devi
- ICAR Research Complex for NEH Region, Tripura Center, Lembucherra, Tripura 799210, India.
| | - Pramod Kumar Pandey
- College of Fisheries (Central Agricultural University), Lembucherra, Tripura 799210, India.
| |
Collapse
|
21
|
Comparative Physiological and Metabolic Analysis Reveals a Complex Mechanism Involved in Drought Tolerance in Chickpea (Cicer arietinum L.) Induced by PGPR and PGRs. Sci Rep 2019; 9:2097. [PMID: 30765803 PMCID: PMC6376124 DOI: 10.1038/s41598-019-38702-8] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 01/02/2019] [Indexed: 01/30/2023] Open
Abstract
The plant growth promoting rhizobacteria (PGPR) and plant growth regulators (PGRs) can be applied to improve the growth and productivity of plants, with potential to be used for genetic improvement of drought tolerance. However, for genetic improvement to be achieved, a solid understanding of the physiological and biochemical changes in plants induced by PGPR and PGR is required. The present study was carried out to investigate the role of PGPR and PGRs on the physiology and biochemical changes in chickpea grown under drought stress conditions and their association with drought tolerance. The PGPR, isolated from the rhizosphere of chickpea, were characterized on the basis of colony morphology and biochemical characters. They were also screened for the production of indole-3-acetic acid (IAA), hydrogen cyanide (HCN), ammonia (NH3), and exopolysaccharides (EPS) production. The isolated PGPR strains, named P1, P2, and P3, were identified by 16S-rRNA gene sequencing as Bacillus subtilis, Bacillus thuringiensis, and Bacillus megaterium, respectively. The seeds of two chickpea varieties, Punjab Noor-2009 (drought sensitive) and 93127 (drought tolerant) were soaked for 2-3 h prior to sowing in 24 h old cultures of isolates. The salicylic acid (SA) and putrescine (Put) were sprayed (150 mg/L) on 25 day old chickpea seedlings. The results showed that chickpea plants treated with a consortium of PGPR and PGRs significantly enhanced the chlorophyll, protein, and sugar contents compared to irrigated and drought conditions. Leaf proline content, lipid peroxidation, and activities of antioxidant enzymes (CAT, APOX, POD, and SOD) all increased in response to drought stress but decreased due to the PGPR and PGRs treatment. An ultrahigh performance liquid chromatography-high resolution mass spectrometry (UPLC-HRMS) analysis was carried out for metabolic profiling of chickpea leaves planted under controlled (well-irrigated), drought, and consortium (drought plus PGPR and PGRs) conditions. Proline, L-arginine, L-histidine, L-isoleucine, and tryptophan were accumulated in the leaves of chickpea exposed to drought stress. Consortium of PGPR and PGRs induced significant accumulation of riboflavin, L-asparagine, aspartate, glycerol, nicotinamide, and 3-hydroxy-3-methyglutarate in the leaves of chickpea. The drought sensitive chickpea variety showed significant accumulation of nicotinamide and 4-hydroxy-methylglycine in PGPR and PGR treated plants at both time points (44 and 60 days) as compared to non-inoculated drought plants. Additionally, arginine accumulation was also enhanced in the leaves of the sensitive variety under drought conditions. Metabolic changes as a result of drought and consortium conditions highlighted pools of metabolites that affect the metabolic and physiological adjustments in chickpea that reduce drought impacts.
Collapse
|
22
|
Kandoi D, Mohanty S, Tripathy BC. Overexpression of plastidic maize NADP-malate dehydrogenase (ZmNADP-MDH) in Arabidopsis thaliana confers tolerance to salt stress. PROTOPLASMA 2018; 255:547-563. [PMID: 28942523 DOI: 10.1007/s00709-017-1168-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/04/2017] [Indexed: 05/22/2023]
Abstract
The plastidic C4 Zea mays NADP-malate dehydrogenase (ZmNADP-MDH), responsible for catalysis of oxaloacetate to malate, was overexpressed in Arabidopsis thaliana to assess its impact on photosynthesis and tolerance to salinity stress. Different transgenic lines were produced having ~3-6-fold higher MDH protein abundance and NADP-MDH enzyme activity than vector control. The overexpressors had similar chlorophyll, carotenoid, and protein content as that of vector control. Their photosynthetic electron transport rates, carbon assimilation rate, and consequently fresh weight and dry weight were almost similar. However, these overexpressors were tolerant to salt stress (150 mM NaCl). In saline environment, the Fv/Fm ratio, yield of photosystem II, chlorophyll, and protein content were higher in ZmNADP-MDH overexpressor than vector control. Under identical conditions, the generation of reactive oxygen species (H2O2) and production of malondialdehyde, a membrane lipid peroxidation product, were lower in overexpressors. In stress environment, the structural distortion of granal organization and swelling of thylakoids were less pronounced in ZmNADP-MDH overexpressing plants as compared to the vector control. Chloroplastic NADP-MDH in consort with cytosolic and mitochondrial NAD-MDH plays an important role in exporting reducing power (NADPH) and exchange of metabolites between different cellular compartments that maintain the redox homeostasis of the cell via malate valve present in chloroplast envelope membrane. The tolerance of NADP-MDH overexpressors to salt stress could be due to operation of an efficient malate valve that plays a major role in maintaining the cellular redox environment.
Collapse
Affiliation(s)
- Deepika Kandoi
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024, India
| | - Sasmita Mohanty
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024, India
| | - Baishnab C Tripathy
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
23
|
Bhattacharjee S, Dey N. Redox metabolic and molecular parameters for screening drought tolerant indigenous aromatic rice cultivars. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2018; 24:7-23. [PMID: 29398835 PMCID: PMC5787115 DOI: 10.1007/s12298-017-0484-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 06/09/2017] [Accepted: 11/06/2017] [Indexed: 05/26/2023]
Abstract
The present work makes an effort to assess and standardize some redox metabolic and molecular parameters for screening drought tolerant indigenous aromatic rice cultivars of West Bengal, India. PEG-induced dehydration stress during early germination caused disruption of redox-homeostasis and oxidative damage in four IARVs (Jamainadu, Tulaipanji, Sitabhog and Badshabhog) by enhancing the accumulation of pro-oxidants [assessed in terms of oxidation of 2',7'-dichlorofluorescindiacetate (DCFDA), accumulation of [Formula: see text] and H2O2 and in situ staining of reactive oxygen species (ROS) in germinating tissue], significant reduction of antioxidative defence (total antioxidant and radical scavenging capacity, total thiol content and activities of antioxidative defence enzymes) and aggravating protein oxidation and lipid peroxidation (assessed in terms of free carbonyl content and accumulation of thiobarbituric acid reactive substances). When compared between the indigenous aromatic rice cultivars, a clear trend in differential redox regulatory properties in which ROS-antioxidant interaction acts at metabolic interface for redox homeostasis was observed in the order Badshabhog > Tulaipanji > Sitabhog > Jamainadu. Moreover, when the efficacy of ascorbate-glutathione cycle for scavenging H2O2 generated during dehydration stress was assessed and compared between the landraces exposed to PEG-induced dehydration stress in germinating tissue, it also exhibited almost the same trend with the landrace Tulaipanji and Badsabhog exhibiting maximum and Jamainadu the minimum efficiencies of the redox cycle. The indigenous aromatic rice cultivars Tulaipanji and Badsabhog resist dehydration stress better than the other two landraces due to its early preparedness to combat oxidative stress by up-regulating expression of genes of some enzymes of ascorbate-glutathione cycle along with some other antioxidative enzymes. A model of redox homeostasis in which ROS-antioxidant (ascorbate-glutathione system) acts at metabolic interface for up-regulation of antioxidative gene expression necessary for differential drought stress tolerance among the indigenous aromatic rice varieties is suggested.
Collapse
Affiliation(s)
- Soumen Bhattacharjee
- Centre for Advanced Study, Department of Botany, The University of Burdwan, Burdwan, West Bengal India
| | - Nivedita Dey
- Centre for Advanced Study, Department of Botany, The University of Burdwan, Burdwan, West Bengal India
| |
Collapse
|
24
|
Rossatto T, do Amaral MN, Benitez LC, Vighi IL, Braga EJB, de Magalhães Júnior AM, Maia MAC, da Silva Pinto L. Gene expression and activity of antioxidant enzymes in rice plants, cv. BRS AG, under saline stress. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2017; 23:865-875. [PMID: 29158635 PMCID: PMC5671449 DOI: 10.1007/s12298-017-0467-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/31/2017] [Indexed: 05/24/2023]
Abstract
The rice cultivar (Oryza sativa L.) BRS AG, developed by Embrapa Clima Temperado, is the first cultivar designed for purposes other than human consumption. It may be used in ethanol production and animal feed. Different abiotic stresses negatively affect plant growth. Soil salinity is responsible for a serious reduction in productivity. Therefore, the objective of this study was to evaluate the gene expression and the activity of antioxidant enzymes (SOD, CAT, APX and GR) and identify their functions in controlling ROS levels in rice plants, cultivar BRS AG, after a saline stress period. The plants were grown in vitro with two NaCl concentrations (0 and 136 mM), collected at 10, 15 and 20 days of cultivation. The results indicated that the activity of the enzymes evaluated promotes protection against oxidative stress. Although, there was an increase of reactive oxygen species, there was no increase in MDA levels. Regarding genes encoding isoforms of antioxidant enzymes, it was observed that OsSOD3-CU/Zn, OsSOD2-Cu/Zn, OsSOD-Cu/Zn, OsSOD4-Cu/Zn, OsSODCc1-Cu/Zn, OsSOD-Fe, OsAPX1, OsCATB and OsGR2 were the most responsive. The increase in the transcription of all genes among evaluated isoforms, except for OsAPX6, which remained stable, contributed to the increase or the maintenance of enzyme activity. Thus, it is possible to infer that the cv. BRS AG has defense mechanisms against salt stress.
Collapse
Affiliation(s)
- Tatiana Rossatto
- Instituto de Biologia, Departamento de Botânica, Universidade Federal de Pelotas, Campus Universitário, Capão do Leão, RS 96160-000 Brazil
| | - Marcelo Nogueira do Amaral
- Instituto de Biologia, Departamento de Botânica, Universidade Federal de Pelotas, Campus Universitário, Capão do Leão, RS 96160-000 Brazil
| | - Letícia Carvalho Benitez
- Instituto de Biologia, Departamento de Botânica, Universidade Federal de Pelotas, Campus Universitário, Capão do Leão, RS 96160-000 Brazil
| | - Isabel Lopes Vighi
- Instituto de Biologia, Departamento de Botânica, Universidade Federal de Pelotas, Campus Universitário, Capão do Leão, RS 96160-000 Brazil
| | - Eugenia Jacira Bolacel Braga
- Instituto de Biologia, Departamento de Botânica, Universidade Federal de Pelotas, Campus Universitário, Capão do Leão, RS 96160-000 Brazil
| | | | - Mara Andrade Colares Maia
- Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Laboratório de Bioinformática e Proteômica (BioPro_Lab), Universidade Federal de Pelotas, Campus Universitário, Capão do Leão, RS 96160-000 Brazil
| | - Luciano da Silva Pinto
- Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Laboratório de Bioinformática e Proteômica (BioPro_Lab), Universidade Federal de Pelotas, Campus Universitário, Capão do Leão, RS 96160-000 Brazil
| |
Collapse
|
25
|
M. B, M. MR, N. H, M. SU. Exogenous ascorbic acid improved tolerance in maize (Zea mays L.) by increasing antioxidant activity under salinity stress. ACTA ACUST UNITED AC 2017. [DOI: 10.5897/ajar2017.12295] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
26
|
Mahmud S, Sharmin S, Lal Das Ch B, Anowar Hos M. Effect of Salinity and Alleviating Role of Methyl Jasmonate in Some Rice Varieties. ACTA ACUST UNITED AC 2017. [DOI: 10.3923/ajps.2017.87.93] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
27
|
Bai J, Qin Y, Liu J, Wang Y, Sa R, Zhang N, Jia R. Proteomic response of oat leaves to long-term salinity stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:3387-3399. [PMID: 27866362 DOI: 10.1007/s11356-016-8092-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 11/11/2016] [Indexed: 05/23/2023]
Abstract
Salinity adversely affects plant growth and production. Oat is a moderately salt-tolerant crop and can contribute to improving saline soil. The physiological and molecular responses of the oat plant to long-term salinity were studied. After a 16-day salt treatment (150 mmol L-1NaCl in Hoagland's solution), photosynthetic rate, maximum photosystem II photochemical efficiency, and actual efficiency of photosystem II decreased. The activities of superoxide dismutase, peroxidase, and catalase significantly increased. We also investigated the protein profiles of oat leaves in response to salinity and detected 30 reproducible protein spots by two-dimensional gel electrophoresis that were differentially abundant. Specifically, one protein was up-regulated and 29 proteins were down-regulated compared with the control. These 29 proteins were identified using MALDI-TOF mass spectrometry, and 19 corresponding genes were further investigated by quantitative real-time PCR. These proteins were involved in four types of biological processes: photosynthesis, carbohydrate metabolism and energy, protein biosynthesis, and folding and detoxification. This study indicates that the lower levels of Calvin cycle-related proteins, 50S ribosomal protein L10 and adenosine-triphosphate regulation-related proteins, and the high levels of antioxidant enzymes play important roles in the response of oat to long-term salinity stress.
Collapse
Affiliation(s)
- Jianhui Bai
- Institute of Grassland Research of Chinese Academy of Agricultural Sciences, Hohhot, 010010, People's Republic of China
- Science Innovation Team of Oats, Inner Mongolia Agricultural University, Hohhot, 010019, People's Republic of China
| | - Yan Qin
- Institute of Grassland Research of Chinese Academy of Agricultural Sciences, Hohhot, 010010, People's Republic of China
| | - Jinghui Liu
- Science Innovation Team of Oats, Inner Mongolia Agricultural University, Hohhot, 010019, People's Republic of China.
| | - Yuqing Wang
- Institute of Grassland Research of Chinese Academy of Agricultural Sciences, Hohhot, 010010, People's Republic of China.
| | - Rula Sa
- Science Innovation Team of Oats, Inner Mongolia Agricultural University, Hohhot, 010019, People's Republic of China
| | - Na Zhang
- Science Innovation Team of Oats, Inner Mongolia Agricultural University, Hohhot, 010019, People's Republic of China
| | - Ruizong Jia
- Hawaii Agriculture Research Center, Kunia, HI, 96759, USA
| |
Collapse
|
28
|
Garg N, Bhandari P. Interactive effects of silicon and arbuscular mycorrhiza in modulating ascorbate-glutathione cycle and antioxidant scavenging capacity in differentially salt-tolerant Cicer arietinum L. genotypes subjected to long-term salinity. PROTOPLASMA 2016; 253:1325-45. [PMID: 26468060 DOI: 10.1007/s00709-015-0892-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 09/30/2015] [Indexed: 05/08/2023]
Abstract
Salinity is the major environmental constraint that affects legume productivity by inducing oxidative stress. Individually, both silicon (Si) nutrition and mycorrhization have been reported to alleviate salt stress. However, the mechanisms adopted by both in mediating stress responses are poorly understood. Thus, pot trials were undertaken to evaluate comparative as well as interactive effects of Si and/or arbuscular mycorrhiza (AM) in alleviating NaCl toxicity in modulating oxidative stress and antioxidant defence mechanisms in two Cicer arietinum L. (chickpea) genotypes-HC 3 (salt-tolerant) and CSG 9505 (salt-sensitive). Plants subjected to different NaCl concentrations (0-100 mM) recorded a substantial increase in the rate of superoxide radical (O2 (·-)), H2O2, lipoxygenase (LOX) activity and malondialdehyde (MDA) content, which induced leakage of ions and disturbed Ca(2+)/Na(+) ratio in roots and leaves. Individually, Si and AM reduced oxidative burst by strengthening antioxidant enzymatic activities (superoxide dismutase (SOD), catalase (CAT) and guaiacol peroxidase (GPOX)). Si was relatively more efficient in reducing accumulation of stress metabolites, while mycorrhization significantly up-regulated antioxidant machinery and modulated ascorbate-glutathione (ASA-GSH) cycle. Combined applications of Si and AM complemented each other in reducing reactive oxygen species (ROS) build-up by further enhancing the antioxidant defence responses. Magnitude of ROS-mediated oxidative burden was lower in HC 3 which correlated strongly with more effective AM symbiosis, better capacity to accumulate Si and stronger defence response when compared with CSG 9505. Study indicated that Si and/or AM fungal amendments upgraded salt tolerance through a dynamic shift from oxidative destruction towards favourable antioxidant defence system in stressed chickpea plants.
Collapse
Affiliation(s)
- Neera Garg
- Department of Botany, Panjab University, Chandigarh, 160014, India.
| | - Purnima Bhandari
- Department of Botany, Panjab University, Chandigarh, 160014, India
| |
Collapse
|
29
|
AbdElgawad H, Zinta G, Hegab MM, Pandey R, Asard H, Abuelsoud W. High Salinity Induces Different Oxidative Stress and Antioxidant Responses in Maize Seedlings Organs. FRONTIERS IN PLANT SCIENCE 2016; 7:276. [PMID: 27014300 PMCID: PMC4781871 DOI: 10.3389/fpls.2016.00276] [Citation(s) in RCA: 204] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 02/21/2016] [Indexed: 05/18/2023]
Abstract
Salinity negatively affects plant growth and causes significant crop yield losses world-wide. Maize is an economically important cereal crop affected by high salinity. In this study, maize seedlings were subjected to 75 mM and 150 mM NaCl, to emulate high soil salinity. Roots, mature leaves (basal leaf-pair 1,2) and young leaves (distal leaf-pair 3,4) were harvested after 3 weeks of sowing. Roots showed the highest reduction in biomass, followed by mature and young leaves in the salt-stressed plants. Concomitant with the pattern of growth reduction, roots accumulated the highest levels of Na(+) followed by mature and young leaves. High salinity induced oxidative stress in the roots and mature leaves, but to a lesser extent in younger leaves. The younger leaves showed increased electrolyte leakage (EL), malondialdehyde (MDA), and hydrogen peroxide (H2O2) concentrations only at 150 mM NaCl. Total antioxidant capacity (TAC) and polyphenol content increased with the increase in salinity levels in roots and mature leaves, but showed no changes in the young leaves. Under salinity stress, reduced ascorbate (ASC) and glutathione (GSH) content increased in roots, while total tocopherol levels increased specifically in the shoot tissues. Similarly, redox changes estimated by the ratio of redox couples (ASC/total ascorbate and GSH/total glutathione) showed significant decreases in the roots. Activities of enzymatic antioxidants, catalase (CAT, EC 1.11.1.6) and dehydroascorbate reductase (DHAR, EC 1.8.5.1), increased in all organs of salt-treated plants, while superoxide dismutase (SOD, EC 1.15.1.1), ascorbate peroxidase (APX, EC 1.11.1.11), glutathione-s-transferase (GST, EC 2.5.1.18) and glutathione reductase (GR, EC 1.6.4.2) increased specifically in the roots. Overall, these results suggest that Na(+) is retained and detoxified mainly in roots, and less stress impact is observed in mature and younger leaves. This study also indicates a possible role of ROS in the systemic signaling from roots to leaves, allowing leaves to activate their defense mechanisms for better protection against salt stress.
Collapse
Affiliation(s)
- Hamada AbdElgawad
- Integrated Molecular Plant Physiology Research, Department of Biology, University of AntwerpAntwerp, Belgium
- Department of Botany, Faculty of Science, University of Beni-SuefBeni-Suef, Egypt
| | - Gaurav Zinta
- Integrated Molecular Plant Physiology Research, Department of Biology, University of AntwerpAntwerp, Belgium
- Centre of Excellence Plant and Vegetation Ecology, Department of Biology, University of AntwerpAntwerp, Belgium
| | - Momtaz M. Hegab
- Department of Botany, Faculty of Science, University of Beni-SuefBeni-Suef, Egypt
| | - Renu Pandey
- Division of Plant Physiology, Indian Agricultural Research InstituteNew Delhi, India
| | - Han Asard
- Integrated Molecular Plant Physiology Research, Department of Biology, University of AntwerpAntwerp, Belgium
| | - Walid Abuelsoud
- Department of Botany and Microbiology, Faculty of Science, Cairo UniversityGiza, Egypt
| |
Collapse
|
30
|
Shriram V, Kumar V, Devarumath RM, Khare TS, Wani SH. MicroRNAs As Potential Targets for Abiotic Stress Tolerance in Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:817. [PMID: 27379117 PMCID: PMC4906921 DOI: 10.3389/fpls.2016.00817] [Citation(s) in RCA: 184] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/25/2016] [Indexed: 05/19/2023]
Abstract
The microRNAs (miRNAs) are small (20-24 nt) sized, non-coding, single stranded riboregulator RNAs abundant in higher organisms. Recent findings have established that plants assign miRNAs as critical post-transcriptional regulators of gene expression in sequence-specific manner to respond to numerous abiotic stresses they face during their growth cycle. These small RNAs regulate gene expression via translational inhibition. Usually, stress induced miRNAs downregulate their target mRNAs, whereas, their downregulation leads to accumulation and function of positive regulators. In the past decade, investigations were mainly aimed to identify plant miRNAs, responsive to individual or multiple environmental factors, profiling their expression patterns and recognizing their roles in stress responses and tolerance. Altered expressions of miRNAs implicated in plant growth and development have been reported in several plant species subjected to abiotic stress conditions such as drought, salinity, extreme temperatures, nutrient deprivation, and heavy metals. These findings indicate that miRNAs may hold the key as potential targets for genetic manipulations to engineer abiotic stress tolerance in crop plants. This review is aimed to provide recent updates on plant miRNAs, their biogenesis and functions, target prediction and identification, computational tools and databases available for plant miRNAs, and their roles in abiotic stress-responses and adaptive mechanisms in major crop plants. Besides, the recent case studies for overexpressing the selected miRNAs for miRNA-mediated enhanced abiotic stress tolerance of transgenic plants have been discussed.
Collapse
Affiliation(s)
- Varsha Shriram
- Department of Botany, Prof. Ramkrishna More Arts, Commerce and Science College, Savitribai Phule Pune UniversityPune, India
| | - Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune UniversityPune, India
- *Correspondence: Vinay Kumar
| | - Rachayya M. Devarumath
- Molecular Biology and Genetic Engineering Section, Vasantdada Sugar InstitutePune, India
| | - Tushar S. Khare
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune UniversityPune, India
| | - Shabir H. Wani
- Division of Genetics and Plant Breeding, Faculty of Agriculture WADURA, Sher-e-Kashmir University of Agricultural Sciences and TechnologyKashmir, India
| |
Collapse
|
31
|
Yang T, Zhang L, Hao H, Zhang P, Zhu H, Cheng W, Wang Y, Wang X, Wang C. Nuclear-localized AtHSPR links abscisic acid-dependent salt tolerance and antioxidant defense in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:1274-94. [PMID: 26603028 DOI: 10.1111/tpj.13080] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 11/09/2015] [Accepted: 11/10/2015] [Indexed: 05/25/2023]
Abstract
Salt stress from soil or irrigation water limits plant growth. A T-DNA insertion mutant in C24, named athspr (Arabidopsis thaliana heat shock protein-related), showed several phenotypes, including reduced organ size and enhanced sensitivity to environmental cues. The athspr mutant is severely impaired under salinity levels at which wild-type (WT) plants grow normally. AtHSPR encodes a nuclear-localized protein with ATPase activity, and its expression was enhanced by high salinity and abscisic acid (ABA). Overexpression (OE) of AtHSPR significantly enhanced tolerance to salt stress by increasing the activities of the antioxidant system and by maintaining K(+) /Na(+) homeostasis. Quantitative RT-PCR analyses showed that OE of AtHSPR increased the expression of ABA/stress-responsive, salt overly sensitive (SOS)-related and antioxidant-related genes. In addition, ABA content was reduced in athspr plants with or without salt stress, and exogenous ABA restored WT-like salt tolerance to athspr plants. athspr exhibited increased leaf stomatal density and stomatal index, slower ABA-induced stomatal closure and reduced drought tolerance relative to the WT. AtHSPR OE enhanced drought tolerance by reducing leaf water loss and stomatal aperture. Transcript profiling in athspr showed a differential salt-stress response for genes involved in accumulation of reactive oxygen species (ROS), ABA signaling, cell death, stress response and photosynthesis. Taken together, our results suggested that AtHSPR is involved in salt tolerance in Arabidopsis through modulation of ROS levels, ABA-dependent stomatal closure, photosynthesis and K(+) /Na(+) homeostasis.
Collapse
Affiliation(s)
- Tao Yang
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 73000, China
| | - Liang Zhang
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 73000, China
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Medical College, Shihezi University, Shihezi, 832002, China
| | - Hongyan Hao
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 73000, China
| | - Peng Zhang
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 73000, China
| | - Haowei Zhu
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 73000, China
| | - Wei Cheng
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 73000, China
| | - Yongli Wang
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 73000, China
| | - Xinyu Wang
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 73000, China
| | - Chongying Wang
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 73000, China
| |
Collapse
|
32
|
Glutathione Peroxidase of Pennisetum glaucum (PgGPx) Is a Functional Cd2+ Dependent Peroxiredoxin that Enhances Tolerance against Salinity and Drought Stress. PLoS One 2015; 10:e0143344. [PMID: 26600014 PMCID: PMC4658160 DOI: 10.1371/journal.pone.0143344] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/03/2015] [Indexed: 01/14/2023] Open
Abstract
Reactive oxygen species (ROS) arise in the plant system due to inevitable influence of various environmental stimuli. Glutathione peroxidases are one of the important ROS scavengers inside the cell. A glutathione peroxidase (PgGPx) gene was previously found from Pennisetum glauccum abiotic stressed cDNA library. Enzyme kinetics data revealed that PgGPx possessed preference towards thioredoxin rather than glutathione as electron donor and thus belongs to the functional peroxiredoxin group. Moreover, its activity was found to be dependent on divalent cations, especially Cd2+ and homology model showed the presence of Cd2+ binding site in the protein. Site directed mutagenesis study of PgGPx protein revealed the vital role of two conserved Cysteine residues for its enzymatic activity and structural folding. Expression analysis suggested that PgGPx transcript is highly up-regulated in response to salinity and drought stresses. When expressed ectopically, PgGPx showed enhanced tolerance against multiple abiotic stresses in prokaryotic E. coli and model plant, rice. Transgenic rice plants showed lesser accumulation of MDA and H2O2; and higher accumulation of proline as compared to wild type (WT) plants in response to both salinity and drought stresses that clearly indicates suppression of lipid peroxidation and ROS generation in transgenic lines. Moreover, transgenic plants maintained better photosynthesis efficiency and higher level of antioxidant enzyme activity as compared to WT plants under stress conditions. These results clearly indicate the imperative role of PgGPx in cellular redox homeostasis under stress conditions, leading to the maintenance of membrane integrity and increased tolerance towards oxidative stress.
Collapse
|
33
|
Khare T, Kumar V, Kishor PBK. Na+ and Cl(-) ions show additive effects under NaCl stress on induction of oxidative stress and the responsive antioxidative defense in rice. PROTOPLASMA 2015; 252:1149-65. [PMID: 25547963 DOI: 10.1007/s00709-014-0749-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 12/12/2014] [Indexed: 05/08/2023]
Abstract
Despite the fact that when subjected to salinity stress most plants accumulate high concentrations of sodium (Na(+)) and chloride (Cl(-)) ions in their tissues, major research has however been focused on the toxic effects of Na(+). Consequently, Cl(-) toxicity mechanisms in annual plants, particularly in inducing oxidative stress, are poorly understood. Here, the extent to which Na(+) and/or Cl(-) ions contribute in inducing oxidative stress and regulating the adaptive antioxidant defense is shown in two Indica rice genotypes differing in their salt tolerance. Equimolar (100 mM) concentrations of Na(+), Cl(-), and NaCl (EC ≈ 10 dS m(-1)) generated free-radical (O2 (•-), (•)OH) and non-radical (H2O2) forms of reactive oxygen species (ROS) and triggered cell death in leaves of 21-day-old hydroponically grown rice seedlings as evident by spectrophotometric quantifications and histochemical visualizations. The magnitude of ROS-mediated oxidative damage was higher in sensitive cultivar, whereas NaCl proved to be most toxic among the treatments. Salt treatments significantly increased activities of antioxidant enzymes and their isozymes including superoxide dismutase, catalase, peroxidase, ascorbate peroxidase, and glutathione reductase. Na(+) and Cl(-) ions showed additive effects under NaCl in activating the antioxidant enzyme machinery, and responses were more pronounced in tolerant cultivar. The expression levels of SodCc2, CatA, and OsPRX1 genes were largely consistent with the activities of their corresponding enzymes. Salt treatments caused an imbalance in non-enzymatic antioxidants ascorbic acid, α-tocopherol, and polyphenols, with greater impacts under NaCl than Na(+) and Cl(-) separately. Results revealed that though Cl(-) was relatively less toxic than its counter-cation, its effects cannot be totally ignored. Both the cultivars responded in the same manner, but the tolerant cultivar maintained lower Na(+)/K(+) and ROS levels coupled with better antioxidant defense under all three salt treatments.
Collapse
Affiliation(s)
- Tushar Khare
- Department of Biotechnology, Modern College of Arts, Science and Commerce, University of Pune, Ganeshkhind, Pune, 411 016, India
| | | | | |
Collapse
|
34
|
Mostofa MG, Hossain MA, Fujita M. Trehalose pretreatment induces salt tolerance in rice (Oryza sativa L.) seedlings: oxidative damage and co-induction of antioxidant defense and glyoxalase systems. PROTOPLASMA 2015; 252:461-75. [PMID: 25164029 DOI: 10.1007/s00709-014-0691-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 08/15/2014] [Indexed: 05/20/2023]
Abstract
Salinity in the form of abiotic stress adversely effects plant growth, development, and productivity. Various osmoprotectants are involved in regulating plant responses to salinity; however, the precise role of trehalose (Tre) in this process remains to be further elucidated. The present study investigated the regulatory role of Tre in alleviating salt-induced oxidative stress in hydroponically grown rice seedlings. Salt stress (150 and 250 mM NaCl) for 72 h resulted in toxicity symptoms such as stunted growth, severe yellowing, and leaf rolling, particularly at 250 mM NaCl. Histochemical observation of reactive oxygen species (ROS; O2 (∙-) and H2O2) indicated evident oxidative stress in salt-stressed seedlings. In these seedlings, the levels of lipoxygenase (LOX) activity, malondialdehyde (MDA), H2O2, and proline (Pro) increased significantly whereas total chlorophyll (Chl) and relative water content (RWC) decreased. Salt stress caused an imbalance in non-enzymatic antioxidants, i.e., ascorbic acid (AsA) content, AsA/DHA ratio, and GSH/GSSG ratio decreased but glutathione (GSH) content increased significantly. In contrast, Tre pretreatment (10 mM, 48 h) significantly addressed salt-induced toxicity symptoms and dramatically depressed LOX activity, ROS, MDA, and Pro accumulation whereas AsA, GSH, RWC, Chl contents, and redox status improved considerably. Salt stress stimulated the activities of SOD, GPX, APX, MDHAR, DHAR, and GR but decreased the activities of CAT and GST. However, Tre-pretreated salt-stressed seedlings counteracted SOD and MDHAR activities, elevated CAT and GST activities, further enhanced APX and DHAR activities, and maintained GPX and GR activities similar to the seedlings stressed with salt alone. In addition, Tre pretreatment enhanced the activities of methylglyoxal detoxifying enzymes (Gly I and Gly II) more efficiently in salt-stressed seedlings. Our results suggest a role for Tre in protecting against salt-induced oxidative damage attributed to reduced ROS accumulation, elevation of non-enzymatic antioxidants, and co-activation of the antioxidative and glyoxalase systems.
Collapse
Affiliation(s)
- Mohammad Golam Mostofa
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki, Kagawa, 761-0795, Japan,
| | | | | |
Collapse
|
35
|
Turan S, Tripathy BC. Salt-stress induced modulation of chlorophyll biosynthesis during de-etiolation of rice seedlings. PHYSIOLOGIA PLANTARUM 2015; 153:477-91. [PMID: 25132047 DOI: 10.1111/ppl.12250] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 05/19/2014] [Indexed: 05/08/2023]
Abstract
Chlorophyll biosynthesis in plants is subjected to modulation by various environmental factors. To understand the modulation of the chlorophyll (Chl) biosynthesis during greening process by salt, 100-200 mM NaCl was applied to the roots of etiolated rice seedlings 12 h prior to the transfer to light. Application of 200 mM NaCl to rice seedlings that were grown in light for further 72 h resulted in reduced dry matter production (-58%) and Chl accumulation (-66%). Ionic imbalance due to salinity stress resulted in additional downregulation (41-45%) of seedling dry weight, Chl and carotenoid contents over and above that of similar osmotic stress induced by polyethylene glycol. Downregulation of Chl biosynthesis may be attributed to decreased activities of Chl biosynthetic pathway enzymes, i.e. 5-aminolevulinic acid (ALA) dehydratase (EC-2.4.1.24), porphobilinogen deaminase (EC-4.3.1.8), coproporphyrinogen III oxidase (EC-1.3.3.3), protoporphyrinogen IX oxidase (EC-1.3.3.4), Mg-protoporphyrin IX chelatase (EC-6.6.1.1) and protochlorophyllide oxidoreductase (EC-1.3.33.1). Reduced enzymatic activities were due to downregulation of their protein abundance and/or gene expression in salt-stressed seedlings. The extent of downregulation of ALA biosynthesis nearly matched with that of protochlorophyllide and Chl to prevent the accumulation of highly photosensitive photodynamic tetrapyrroles that generates singlet oxygen under stress conditions. Although, ALA synthesis decreased, the gene/protein expression of glutamyl-tRNA reductase (EC-1.2.1.70) increased suggesting it may play a role in acclimation to salt stress. The similar downregulation of both early and late Chl biosynthesis intermediates in salt-stressed seedlings suggests a regulatory network of genes involved in tetrapyrrole biosynthesis.
Collapse
Affiliation(s)
- Satpal Turan
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | | |
Collapse
|
36
|
Physiochemical studies of sodium chloride on mungbean (Vigna radiata L. Wilczek) and its possible recovery with spermine and gibberellic acid. ScientificWorldJournal 2015; 2015:858016. [PMID: 25734186 PMCID: PMC4334978 DOI: 10.1155/2015/858016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/24/2014] [Accepted: 10/31/2014] [Indexed: 01/05/2023] Open
Abstract
The physiological and biochemical responses to increasing NaCl concentrations, along with low concentrations of gibberellic acid or spermine, either alone or in their combination, were studied in mungbean seedlings. In the test seedlings, the root-shoot elongation, biomass production, and the chlorophyll content were significantly decreased with increasing NaCl concentrations. Salt toxicity severely affected activities of different antioxidant enzymes and oxidative stress markers. Activities of antioxidant enzymes, superoxide dismutase (SOD), and catalase (CAT) increased significantly over water control. Similarly, oxidative stress markers such as proline, malondialdehyde (MDA), and hydrogen peroxide (H2O2) contents also increased as a result of progressive increase in salt stress. Combined application of NaCl along with low concentrations of either gibberellic acid (5 µM) or spermine (50 µM) in the test seedlings showed significant alterations, that is, drastic increase in seedling elongation, increased biomass production, increased chlorophyll content, and significant lowering in all the antioxidant enzyme activities as well as oxidative stress marker contents in comparison to salt treated test seedlings, leading to better growth and metabolism. Our study shows that low concentrations of either gibberellic acid or spermine will be able to overcome the toxic effects of NaCl stress in mungbean seedlings.
Collapse
|
37
|
Nazar R, Umar S, Khan NA. Exogenous salicylic acid improves photosynthesis and growth through increase in ascorbate-glutathione metabolism and S assimilation in mustard under salt stress. PLANT SIGNALING & BEHAVIOR 2015; 10:e1003751. [PMID: 25730495 PMCID: PMC4622964 DOI: 10.1080/15592324.2014.1003751] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 12/19/2014] [Accepted: 12/22/2014] [Indexed: 05/18/2023]
Abstract
Ascorbate (AsA)-glutathione (GSH) cycle metabolism has been regarded as the most important defense mechanism for the resistance of plants under stress. In this study the influence of salicylic acid (SA) was studied on ascorbate-glutathione pathway, S-assimilation, photosynthesis and growth of mustard (Brassica juncea L.) plants subjected to 100 mM NaCl. Treatment of SA (0.5 mM) alleviated the negative effects of salt stress and improved photosynthesis and growth through increase in enzymes of ascorbate-glutathione pathway which suggest that SA may participate in the redox balance under salt stress. The increase in leaf sulfur content through higher activity of ATP sulfurylase (ATPS) and serine acetyl transferase (SAT) by SA application was associated with the increased accumulation of glutathione (GSH) and lower levels of oxidative stress. These effects of SA were substantiated by the findings that application of SA-analog, 2,6, dichloro-isonicotinic acid (INA) and 1 mM GSH treatment produced similar results on rubisco, photosynthesis and growth of plants establishing that SA application alleviates the salt-induced decrease in photosynthesis mainly through inducing the enzyme activity of ascorbate-glutathione pathway and increased GSH production. Thus, SA/GSH could be a promising tool for alleviation of salt stress in mustard plants.
Collapse
Key Words
- APX, Ascorbate peroxidase
- ATP-sulfurylase
- ATPS, ATP-sulfurylase
- AsA-GSH, Ascorbate-glutathione
- CAT, Catalase
- Cys, Cysteine
- DAS, Days after sowing
- DHA, Dehydroascorbate
- DHAR, Dehydroascorbate reductase
- Fv/Fm, maximal PS II photochemical efficiency
- GR, Glutathione reductase
- GSH, Reduced glutathione
- GSSG, Oxidized glutathione
- ROS, Reactive oxygen species
- RuBP, ribulose 1, 5-bisphosphate
- S, sulfur
- SAT, Serine acetyl transferase
- TBARS, Thiobarbituric acid reactive substances
- WUE, water use efficiency.
- ascorbate
- glutathione
- gs, stomatal conductance
- oxidative stress
- photosynthesis
- salicylic acid
- salt stress
Collapse
Affiliation(s)
- Rahat Nazar
- Department of Botany; Jamia Hamdard University; New Delhi, India
| | - Shahid Umar
- Department of Botany; Jamia Hamdard University; New Delhi, India
| | - Nafees A. Khan
- Plant Physiology and Biochemistry Section; Department of Botany; Aligarh Muslim University; Aligarh, India
| |
Collapse
|
38
|
Effect of cultivars, Fusarium strains and storage temperature on trichothecenes production in inoculated potato tubers. Food Chem 2014; 151:236-42. [DOI: 10.1016/j.foodchem.2013.11.060] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 11/06/2013] [Accepted: 11/11/2013] [Indexed: 11/19/2022]
|