1
|
Szczepankiewicz A, Simiczyjew B. Structure of the trophic chamber and follicular epithelium in ovaries of the model heteropteran species Pyrrhocoris apterus. Micron 2025; 191:103787. [PMID: 39954512 DOI: 10.1016/j.micron.2025.103787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/28/2025] [Accepted: 01/30/2025] [Indexed: 02/17/2025]
Abstract
The studies concern organization of the female gonads and the course of oogenesis in the model species of Heteroptera, Pyrrhocoris apterus. Morphological, cytochemical and ultrastructural analyses were carried out. Each of the paired ovaries of the studied bug comprises seven telotrophic ovarioles. An individual ovariole is composed of the terminal filament, tropharium, vitellarium, and ovariole pedicle. The tropharium houses morphologically diversified trophocytes. In the apical part small individual nurse cells are located, some of them are mitotically active. Below this zone nuclei of the trophocytes divide amitotically. The main part of the trophic chamber is composed of cytoplasmic lobes containing several trophocyte nuclei. Each lobe connects with the trophic core by cytoplasmic extension. In the basal part of the tropharium early previtellogenic oocytes and somatic prefollicular cells occur. The vitellarium houses oocytes at different developmental stages, surrounded by follicular cells, with younger oocytes positioned apically and older ones basally. The contact between oocytes and trophocytes is maintained by nutritive cords filled with densely packed microtubules. Numerous ribosomes and mitochondria occur within the cords. The follicular epithelium undergoes a series of changes and diversifies into three subpopulations. The general organization of P. apterus ovarioles is similar to that described in other representatives of Heteroptera. The differences concern the structure of the tropharium, the number and growth rate of ovarian follicles and the course of differentiation of the follicular epithelium.
Collapse
Affiliation(s)
- Anna Szczepankiewicz
- Department of Animal Developmental Biology, Faculty of Biological Sciences, University of Wrocław, Wrocław, Poland.
| | - Bożena Simiczyjew
- Department of Animal Developmental Biology, Faculty of Biological Sciences, University of Wrocław, Wrocław, Poland.
| |
Collapse
|
2
|
Kang K, Wang L, Gong J, Tang Y, Wei K. Diversity analyses of bacterial symbionts in four Sclerodermus (Hymenoptera: Bethylidae) parasitic wasps, the dominant biological control agents of wood-boring beetles in China. Front Cell Infect Microbiol 2024; 14:1439476. [PMID: 39119296 PMCID: PMC11306144 DOI: 10.3389/fcimb.2024.1439476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/01/2024] [Indexed: 08/10/2024] Open
Abstract
Objective Sclerodermus wasps are important biocontrol agents of a class of wood borers. Bacterial symbionts influence the ecology and biology of their hosts in a variety of ways, including the formation of life-long beneficial or detrimental parasitic infections. However, only a few studies have explored the species and content of the symbionts in the Sclerodermus species. Methods Here, a high-throughput sequencing study of the V3-V4 region of the 16S ribosomal RNA gene revealed a high level of microbial variety in four Sclerodermus waps, and their diversities and functions were also predicted. Results The three most prevalent phyla of microorganisms in the sample were Firmicutes, Bacteroides, and Proteus. The KEEG pathways prediction results indicated that the three pathways with the highest relative abundances in the S. sichuanensis species were translation, membrane transport, and nucleotide metabolism. These pathways differed from those observed in S. guani, S. pupariae, and S. alternatusi, which exhibited carbohydrate metabolism, membrane transport, and amino acid metabolism, respectively. Bacteroides were found to be abundant in several species, whereas Wolbachia was the most abundant among S. sichuanensis, with a significant negative correlation between temperature and carriage rate. Conclusions These results offer insights into the microbial communities associated with the bethylid wasps, which is crucial for understanding how to increase the reproductive capacity of wasps, enhance their parasitic effects, and lower cost in biocontrol.
Collapse
Affiliation(s)
- Kui Kang
- College of Biological and Agricultural Science and Technology, Zunyi Normal University, Zunyi, China
| | - Lina Wang
- College of Biological and Agricultural Science and Technology, Zunyi Normal University, Zunyi, China
| | - Jun Gong
- College of Biological and Agricultural Science and Technology, Zunyi Normal University, Zunyi, China
| | - Yanlong Tang
- College of Biological and Agricultural Science and Technology, Zunyi Normal University, Zunyi, China
| | - Ke Wei
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
3
|
Guo Y, Shao J, Wu Y, Li Y. Using Wolbachia to control rice planthopper populations: progress and challenges. Front Microbiol 2023; 14:1244239. [PMID: 37779725 PMCID: PMC10537216 DOI: 10.3389/fmicb.2023.1244239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/24/2023] [Indexed: 10/03/2023] Open
Abstract
Wolbachia have been developed as a tool for protecting humans from mosquito populations and mosquito-borne diseases. The success of using Wolbachia relies on the facts that Wolbachia are maternally transmitted and that Wolbachia-induced cytoplasmic incompatibility provides a selective advantage to infected over uninfected females, ensuring that Wolbachia rapidly spread through the target pest population. Most transinfected Wolbachia exhibit a strong antiviral response in novel hosts, thus making it an extremely efficient technique. Although Wolbachia has only been used to control mosquitoes so far, great progress has been made in developing Wolbachia-based approaches to protect plants from rice pests and their associated diseases. Here, we synthesize the current knowledge about the important phenotypic effects of Wolbachia used to control mosquito populations and the literature on the interactions between Wolbachia and rice pest planthoppers. Our aim is to link findings from Wolbachia-mediated mosquito control programs to possible applications in planthoppers.
Collapse
Affiliation(s)
| | | | | | - Yifeng Li
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangzhou, China
| |
Collapse
|
4
|
Xiao Q, Wang L, Chen SQ, Zheng CY, Lu YY, Xu YJ. Gut Microbiome Composition of the Fire Ant Solenopsis invicta: an Integrated Analysis of Host Genotype and Geographical Distribution. Microbiol Spectr 2023; 11:e0358522. [PMID: 36602316 PMCID: PMC9927370 DOI: 10.1128/spectrum.03585-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/01/2022] [Indexed: 01/06/2023] Open
Abstract
Gut symbiotic bacteria are known to be closely related to insect development, nutrient metabolism, and disease resistance traits, but the most important factors leading to changes in these communities have not been well clarified. To address this, we examined the associations between the gut symbiotic bacteria and the host genotype and geographical distribution of Solenopsis invicta in China, where it is invasive and has spread primarily by human-mediated dispersal. Thirty-two phyla were detected in the gut symbiotic bacteria of S. invicta. Proteobacteria were the most dominant group among the gut symbiotic bacteria. Furthermore, the Bray-Curtis dissimilarity matrices of the gut symbiotic bacteria were significantly positively correlated with the geographical distance between the host ant colonies, but this relationship was affected by the social form. The distance between monogyne colonies had a significant effect on the Bray-Curtis dissimilarity matrices of gut symbiotic bacteria, but the distance between polygyne colonies did not. Moreover, the Bray-Curtis dissimilarity matrices were positively correlated with Nei's genetic distance of the host but were not correlated with the COI-based genetic distance. This study provides a scientific basis for further understanding the ecological adaptability of red imported fire ants during invasion and dispersal. IMPORTANCE We demonstrated that gut microbiota composition and diversity varied among populations. These among-population differences were associated with host genotype and geographical distribution. Our results suggested that population-level differences in S. invicta gut microbiota may depend more on environmental factors than on host genotype.
Collapse
Affiliation(s)
- Qian Xiao
- Red Imported Fire Ant Research Center, South China Agricultural University, Guangzhou, China
| | - Lei Wang
- Red Imported Fire Ant Research Center, South China Agricultural University, Guangzhou, China
| | - Si-Qi Chen
- Red Imported Fire Ant Research Center, South China Agricultural University, Guangzhou, China
| | - Chun-Yan Zheng
- Red Imported Fire Ant Research Center, South China Agricultural University, Guangzhou, China
| | - Yong-Yue Lu
- Red Imported Fire Ant Research Center, South China Agricultural University, Guangzhou, China
| | - Yi-Juan Xu
- Red Imported Fire Ant Research Center, South China Agricultural University, Guangzhou, China
| |
Collapse
|
5
|
Cirino LA, Moore PJ, Miller CW. High-quality host plant diets partially rescue female fecundity from a poor early start. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211748. [PMID: 35223064 PMCID: PMC8864338 DOI: 10.1098/rsos.211748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/31/2022] [Indexed: 05/03/2023]
Abstract
Nutrition is a dynamic environmental factor and compensatory growth may help animals handle seasonal fluctuations in their diets. Yet, how the dynamic changes in nutrition affect female reproduction is understudied. We took advantage of a specialist insect herbivore, Narnia femorata Stål (Hemiptera: Coreidae), that feeds and reproduces on cactus across three seasons. We first examined how cactus quality can affect female reproductive success. Then, we investigated the extent to which reproductive success can be improved by a switch in diet quality at adulthood. We placed N. femorata juveniles onto prickly pear cactus pads with early-season (low-quality) or late-season (high-quality) fruit and tracked survivorship and development time. A subset of the females raised on low-quality diets were provided with an improved adult diet to simulate a seasonal change in diet. Adult female survival and egg production were tracked over time. All fitness-related traits were lower for females fed low-quality diets compared with females fed high-quality diets. However, when females had access to an improved adult diet, egg production was partially rescued. These findings show that a seasonal improvement in diet can enhance reproduction, but juvenile nutrition still has lasting effects that females cannot overcome.
Collapse
Affiliation(s)
- Lauren A. Cirino
- Entomology and Nematology Department, University of Florida, Gainesville, FL 32611, US
| | - Patricia J. Moore
- Department of Entomology, University of Georgia, Athens, GA 30602, US
| | - Christine W. Miller
- Entomology and Nematology Department, University of Florida, Gainesville, FL 32611, US
| |
Collapse
|
6
|
Michalik A, Castillo Franco D, Kobiałka M, Szklarzewicz T, Stroiński A, Łukasik P. Alternative Transmission Patterns in Independently Acquired Nutritional Cosymbionts of Dictyopharidae Planthoppers. mBio 2021; 12:e0122821. [PMID: 34465022 PMCID: PMC8406288 DOI: 10.1128/mbio.01228-21] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/20/2021] [Indexed: 11/20/2022] Open
Abstract
Sap-sucking hemipterans host specialized, heritable microorganisms that supplement their diet with essential nutrients. These microbes show unusual features that provide a unique perspective on the coevolution of host-symbiont systems but are still poorly understood. Here, we combine microscopy with high-throughput sequencing to revisit 80-year-old reports on the diversity of symbiont transmission modes in a broadly distributed planthopper family, Dictyopharidae. We show that in seven species examined, the ancestral nutritional symbionts Sulcia and Vidania producing essential amino acids are complemented by co-primary symbionts, either Arsenophonus or Sodalis, acquired several times independently by different host lineages and contributing to the biosynthesis of B vitamins. These symbionts reside within separate bacteriomes within the abdominal cavity, although in females Vidania also occupies bacteriocytes in the rectal organ. Notably, the symbionts are transovarially transmitted from mothers to offspring in two alternative ways. In most examined species, all nutritional symbionts simultaneously infect the posterior end of the full-grown oocytes and next gather in their perivitelline space. In contrast, in other species, Sodalis colonizes the cytoplasm of the anterior pole of young oocytes, forming a cluster separate from the "symbiont ball" formed by late-invading Sulcia and Vidania. Our results show how newly arriving microbes may utilize different strategies to establish long-term heritable symbiosis. IMPORTANCE Sup-sucking hemipterans host ancient heritable microorganisms that supplement their unbalanced diet with essential nutrients and have repeatedly been complemented or replaced by other microorganisms. These symbionts need to be reliably transmitted to subsequent generations through the reproductive system, and often they end up using the same route as the most ancient ones. We show for the first time that in a single family of planthoppers, the complementing symbionts that have established infections independently utilize different transmission strategies, one of them novel, with the transmission of different microbes separated spatially and temporally. These data show how newly arriving microbes may utilize different strategies to establish long-term heritable symbioses.
Collapse
Affiliation(s)
- Anna Michalik
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Diego Castillo Franco
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Michał Kobiałka
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Teresa Szklarzewicz
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Adam Stroiński
- Museum and Institute of Zoology, Polish Academy of Sciences, Warsaw, Poland
| | - Piotr Łukasik
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
7
|
Yang F, Yang X, Wu K. A novel circular Rep-encoding single-stranded DNA virus detected in Agrotis ipsilon (Lepidoptera: Noctuidae) in China. Arch Virol 2020; 165:771-774. [PMID: 31960157 DOI: 10.1007/s00705-019-04521-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/06/2019] [Indexed: 11/28/2022]
Abstract
Long-distance migratory insects carry microorganisms that can potentially play a crucial role in the life cycles of their hosts. Here, we used Illumina and Sanger sequencing to determine the complete genome sequence of a novel circular Rep-encoding single-stranded (ss) DNA virus from an important migratory pest, Agrotis ipsilon (Hufnagel). The full genome of this new virus is about 2, 242 nt in length and shares 55-75% genome-wide pairwise sequence identity with members of the family Genomoviridae but 91% nucleotide sequence identity with finch-associated genomovirus 3 isolate S30P_D, which is tentatively abbreviated "FaGmV-3". Viral infection rates in A. ipsilon from Yantai, Langfang and Xinxiang were 4.5% (n = 88), 11.8% (n = 85) and 0% (n = 35), respectively. Phylogenetic analysis based on the deduced amino acid sequence of Rep indicated that the Agrotis ipsilon-associated virus is closely related to members of the genus Gemykibivirus, and we propose it to be a new member of this genus. Hence, it is tentatively named "Agrotis ipsilon-associated genomovirus" (AiGmV).
Collapse
Affiliation(s)
- Fan Yang
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.,Fuzhou University Zhicheng College, Fuzhou, 350002, People's Republic of China
| | - Xianming Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Kongming Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China.
| |
Collapse
|
8
|
Kuechler SM, Fukatsu T, Matsuura Y. Repeated evolution of bacteriocytes in lygaeoid stinkbugs. Environ Microbiol 2019; 21:4378-4394. [PMID: 31573127 DOI: 10.1111/1462-2920.14804] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 09/13/2019] [Indexed: 02/06/2023]
Abstract
Host-microbe symbioses often evolved highly complex developmental processes and colonization mechanisms for establishment of stable associations. It has long been recognized that many insects harbour beneficial bacteria inside specific symbiotic cells (bacteriocytes) or organs (bacteriomes). However, the evolutionary origin and mechanisms underlying bacterial colonization in bacteriocyte/bacteriome formation have been poorly understood. In order to uncover the origin of such evolutionary novelties, we studied the development of symbiotic organs in five stinkbug species representing the superfamily Lygaeoidea in which diverse bacteriocyte/bacteriome systems have evolved. We tracked the symbiont movement within the eggs during the embryonic development and determined crucial stages at which symbiont infection and bacteriocyte formation occur, using whole-mount fluorescence in situ hybridization. In summary, three distinct developmental patterns were observed: two different modes of symbiont transfer from initial symbiont cluster (symbiont ball) to presumptive bacteriocytes in the embryonic abdomen, and direct incorporation of the symbiont ball without translocation of bacterial cells. Across the host taxa, only closely related species seemed to have evolved relatively conserved types of bacteriome development, suggesting repeated evolution of host symbiotic cells and organs from multiple independent origins.
Collapse
Affiliation(s)
- Stefan Martin Kuechler
- Department of Animal Ecology II, University of Bayreuth, Bayreuth, Germany.,Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| | - Takema Fukatsu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Yu Matsuura
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|
9
|
Abstract
Microbial symbioses exhibit astounding adaptations, yet all symbionts face the problem of how to reliably associate with host offspring every generation. A common strategy is vertical transmission, in which symbionts are directly transmitted from the female to her offspring. The diversity of symbionts and vertical transmission mechanisms is as expansive as the diversity of eukaryotic host taxa that house them. However, there are several common themes among these mechanisms based on the degree to which symbionts associate with the host germline during transmission. In this review, we detail three distinct vertical transmission strategies, starting with associations that are transmitted from host somatic cells to offspring somatic cells, either due to lacking a germline or avoiding it. A second strategy involves somatically-localized symbionts that migrate into the germline during host development. The third strategy we discuss is one in which the symbiont maintains continuous association with the germline throughout development. Unexpectedly, the vast majority of documented vertically inherited symbionts rely on the second strategy: soma-to-germline migration. Given that not all eukaryotes contain a sequestered germline and instead produce offspring from somatic stem cell lineages, this soma-to-germline migration is discussed in the context of multicellular evolution. Lastly, as recent genomics data have revealed an abundance of horizontal gene transfer events from symbiotic and non-symbiotic bacteria to host genomes, we discuss their impact on eukaryotic host evolution.
Collapse
Affiliation(s)
- Shelbi L Russell
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, United States.
| | - Laura Chappell
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, United States
| | - William Sullivan
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, United States
| |
Collapse
|
10
|
Guo Y, Hoffmann AA, Xu XQ, Mo PW, Huang HJ, Gong JT, Ju JF, Hong XY. Vertical Transmission of Wolbachia Is Associated With Host Vitellogenin in Laodelphax striatellus. Front Microbiol 2018; 9:2016. [PMID: 30233514 PMCID: PMC6127624 DOI: 10.3389/fmicb.2018.02016] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 08/09/2018] [Indexed: 11/22/2022] Open
Abstract
Wolbachia in host germ lines are essential for their vertical transmission to the next generation. It is unclear how the regulation of host oocyte development influences Wolbachia location and the mechanistic basis of transmission. Here, we investigated whether vitellogenin influences Wolbachia transmission in Laodelphax striatellus. Wolbachia increased in density and spread from the anterior tropharium to developing oocytes as ovaries developed. Microscopic observations indicated that Wolbachia invaded ovarioles from the tropharium of its anterior side rather than the pedicel side. Wolbachia utilized the host Vg transovarial transportation system to enter the ovaries and were transmitted from the tropharium into the developing oocytes through nutritive cords. These observations were supported by knocking down the Vg transcript, in which low Wolbachia titers were detected in ovaries and fewer Wolbachia were transmitted into oocytes. Our findings establish a link between the Vg-related mode of transovarial transmission and efficient maternal transmission of Wolbachia.
Collapse
Affiliation(s)
- Yan Guo
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Ary A Hoffmann
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Xiao-Qin Xu
- School of BioSciences, Bio21 Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Pei-Wen Mo
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Hai-Jian Huang
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Jun-Tao Gong
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Jia-Fei Ju
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Xiao-Yue Hong
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
11
|
Szklarzewicz T, Michalik A. Transovarial Transmission of Symbionts in Insects. Results Probl Cell Differ 2017; 63:43-67. [PMID: 28779313 DOI: 10.1007/978-3-319-60855-6_3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Many insects, on account of their unbalanced diet, live in obligate symbiotic associations with microorganisms (bacteria or yeast-like symbionts), which provide them with substances missing in the food they consume. In the body of host insect, symbiotic microorganisms may occur intracellularly (e.g., in specialized cells of mesodermal origin termed bacteriocytes, in fat body cells, in midgut epithelium) or extracellularly (e.g., in hemolymph, in midgut lumen). As a rule, symbionts are vertically transmitted to the next generation. In most insects, symbiotic microorganisms are transferred from mother to offspring transovarially within female germ cells. The results of numerous ultrastructural and molecular studies on symbiotic systems in different groups of insects have shown that they have a large diversity of symbiotic microorganisms and different strategies of their transmission from one generation to the next. This chapter reviews the modes of transovarial transmission of symbionts between generations in insects.
Collapse
Affiliation(s)
- Teresa Szklarzewicz
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Kraków, Poland.
| | - Anna Michalik
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Kraków, Poland
| |
Collapse
|
12
|
Kupper M, Stigloher C, Feldhaar H, Gross R. Distribution of the obligate endosymbiont Blochmannia floridanus and expression analysis of putative immune genes in ovaries of the carpenter ant Camponotus floridanus. ARTHROPOD STRUCTURE & DEVELOPMENT 2016; 45:475-487. [PMID: 27664781 DOI: 10.1016/j.asd.2016.09.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 09/15/2016] [Accepted: 09/19/2016] [Indexed: 06/06/2023]
Abstract
The bacterial endosymbiont Blochmannia floridanus of the carpenter ant Camponotus floridanus contributes to its hosts' ontogeny via nutritional upgrading during metamorphosis. This primary endosymbiosis is essential for both partners and vertical transmission of the endosymbionts is guaranteed by bacterial infestation of oocytes. Here we present a detailed analysis of the presence and localisation of B. floridanus in the ants' ovaries obtained by FISH and TEM analyses. The most apical part of the germarium harbouring germ-line stem cells (GSCs) is not infected by the bacteria. The bacteria are detectable for the first time in lower parts of the germarium when cystocytes undergo the 4th and 5th division and B. floridanus infects somatic cells lying under the basal lamina surrounding the ovarioles. With the beginning of cystocyte differentiation, the endosymbionts are exclusively transported from follicle cells into the growing oocytes. This infestation of the oocytes by bacteria very likely involves exocytosis-endocytosis processes between follicle cells and the oocytes. Nurse cells were never found to harbour the endosymbionts. Furthermore we present first gene expression data in C. floridanus ovaries. These data indicate a modulation of immune gene expression which may facilitate tolerance towards the endosymbionts and thus may contribute to their transovarial transmission.
Collapse
Affiliation(s)
- Maria Kupper
- Department of Microbiology, Biocentre, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany.
| | - Christian Stigloher
- Division of Electron Microscopy, Biocentre, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany.
| | - Heike Feldhaar
- Department of Animal Ecology I, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, D-95440 Bayreuth, Germany.
| | - Roy Gross
- Department of Microbiology, Biocentre, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany.
| |
Collapse
|
13
|
Szklarzewicz T, Grzywacz B, Szwedo J, Michalik A. Bacterial symbionts of the leafhopper Evacanthus interruptus (Linnaeus, 1758) (Insecta, Hemiptera, Cicadellidae: Evacanthinae). PROTOPLASMA 2016; 253:379-91. [PMID: 25900723 PMCID: PMC4783452 DOI: 10.1007/s00709-015-0817-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 04/06/2015] [Indexed: 05/15/2023]
Abstract
Plant sap-feeding hemipterans harbor obligate symbiotic microorganisms which are responsible for the synthesis of amino acids missing in their diet. In this study, we characterized the obligate symbionts hosted in the body of the xylem-feeding leafhopper Evacanthus interruptus (Cicadellidae: Evacanthinae: Evacanthini) by means of histological, ultrastructural and molecular methods. We observed that E. interruptus is associated with two types of symbiotic microorganisms: bacterium 'Candidatus Sulcia muelleri' (Bacteroidetes) and betaproteobacterium that is closely related to symbionts which reside in two other Cicadellidae representatives: Pagaronia tredecimpunctata (Evacanthinae: Pagaronini) and Hylaius oregonensis (Bathysmatophorinae: Bathysmatophorini). Both symbionts are harbored in their own bacteriocytes which are localized between the body wall and ovaries. In E. interruptus, both Sulcia and betaproteobacterial symbionts are transovarially transmitted from one generation to the next. In the mature female, symbionts leave the bacteriocytes and gather around the posterior pole of the terminal oocytes. Then, they gradually pass through the cytoplasm of follicular cells surrounding the posterior pole of the oocyte and enter the space between them and the oocyte. The bacteria accumulate in the deep depression of the oolemma and form a characteristic 'symbiont ball'. In the light of the results obtained, the phylogenetic relationships within modern Cicadomorpha and some Cicadellidae subfamilies are discussed.
Collapse
Affiliation(s)
- Teresa Szklarzewicz
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387, Kraków, Poland.
| | - Beata Grzywacz
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Sławkowska 17, 31-016, Kraków, Poland.
| | - Jacek Szwedo
- Department of Invertebrate Zoology and Parasitology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland.
| | - Anna Michalik
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387, Kraków, Poland.
| |
Collapse
|
14
|
Michalik A, Jankowska W, Kot M, Gołas A, Szklarzewicz T. Symbiosis in the green leafhopper, Cicadella viridis (Hemiptera, Cicadellidae). Association in statu nascendi? ARTHROPOD STRUCTURE & DEVELOPMENT 2014; 43:579-87. [PMID: 25102427 DOI: 10.1016/j.asd.2014.07.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 07/14/2014] [Accepted: 07/27/2014] [Indexed: 05/15/2023]
Abstract
The green leafhopper, Cicadella viridis lives in symbiotic association with microorganisms. The ultrastructural and molecular analyses have shown that in the body of the C. viridis two types of bacteriocyte endosymbionts are present. An amplification and sequencing of 16S rRNA genes revealed that large, pleomorphic bacteria display a high similarity (94-100%) to the endosymbiont 'Candidatus Sulcia muelleri' (phylum Bacteroidetes), whereas long, rod-shaped microorganisms are closely related to the γ-proteobacterial symbiont Sodalis (97-99% similarity). Both endosymbionts may be harbored in their own bacteriocytes as well as may co-reside in the same bacteriocytes. The ultrastructural observations have revealed that the Sodalis-like bacteria harboring the same bacteriocytes as bacterium Sulcia may invade the cells of the latter. Bacteria Sulcia and Sodalis-like endosymbionts are transovarially transmitted from one generation to the next. However, Sodalis-like endosymbionts do not invade the ovaries individually, but only inside Sulcia cells. Apart from bacteriocyte endosymbionts, in the body of C. viridis small, rod-shaped bacteria have been detected, and have been identified as being closely related to γ-proteobacterial microorganism Pectobacterium (98-99% similarity). The latter are present in the sheath cells of the bacteriomes containing bacterium Sulcia as well as in fat body cells.
Collapse
Affiliation(s)
- Anna Michalik
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| | - Władysława Jankowska
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| | - Marta Kot
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| | - Aniela Gołas
- Department of Genetics and Evolution, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| | - Teresa Szklarzewicz
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland.
| |
Collapse
|
15
|
Huo Y, Liu W, Zhang F, Chen X, Li L, Liu Q, Zhou Y, Wei T, Fang R, Wang X. Transovarial transmission of a plant virus is mediated by vitellogenin of its insect vector. PLoS Pathog 2014; 10:e1003949. [PMID: 24603905 PMCID: PMC3946389 DOI: 10.1371/journal.ppat.1003949] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 01/09/2014] [Indexed: 11/19/2022] Open
Abstract
Most plant viruses are transmitted by hemipteroid insects. Some viruses can be transmitted from female parent to offspring usually through eggs, but the mechanism of this transovarial transmission remains unclear. Rice stripe virus (RSV), a Tenuivirus, transmitted mainly by the small brown planthopper (Laodelphax striatellus), is also spread to the offspring through the eggs. Here, we used the RSV–planthopper system as a model to investigate the mechanism of transovarial transmission and demonstrated the central role of vitellogenin (Vg) of L. striatellus in the process of virus transmission into the eggs. Our data showed Vg can bind to pc3 in vivo and in vitro and colocalize in the germarium. RSV filamentous ribonucleoprotein particles (RNPs) only accumulated in the terminal filaments and pedicel areas prior to Vg expression and was not present in the germarium until Vg was expressed, where RSV RNPs and Vg had colocalized. Observations by immunoelectron microscopy (IEM) also indicated that these two proteins colocalized in nurse cells. Knockdown of Vg expression due to RNA interference resulted in inhibition of the invasion of ovarioles by RSV. Together, the data obtained indicated that RSV RNPs may enter the nurse cell of the germarium via endocytosis through binding with Vg. Finally, the virus enters the oocytes through nutritive cords, using the same route as for Vg transport. Our results show that the Vg of L. striatellus played a critical role in transovarial transmission of RSV and shows how viruses can use existing transovarial transportation systems in insect vectors for their own purposes. Numerous parasites including viruses, bacteria, and microsporidia can be maternally transmitted, with the parasite passing from mother to offspring, usually through eggs. However, the process of the parasites spreading into eggs from primarily infected tissues and the factors that mediate this process in live hosts or vectors are unknown due to the lack of useful tools. Here, we used several techniques to investigate the molecular mechanisms of transovarial transmission of Rice stripe virus (RSV), a plant virus belonging to the genus Tenuivirus, by its insect vector (Laodelphax striatellus). We found that the nucleocapsid protein of RSV bound to insect's vitellogenin (Vg) in vitro and in vivo. We also found that RSV invaded the egg tubes of the ovariole until Vg is highly expressed, then colocalized with Vg in the germarium. When Vg expression was knocked down due to RNA interference, the invasion of ovarioles by RSV decreased largely. Our study provides new insights into the transovarial transmission of an important viral pathogen that uses existing transovarial transportation systems in insect vectors to invade eggs.
Collapse
Affiliation(s)
- Yan Huo
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- National Plant Gene Research Center, Beijing, China
- Graduate School of the Chinese Academy of Sciences, Beijing, China
| | - Wenwen Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fujie Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- National Plant Gene Research Center, Beijing, China
- Graduate School of the Chinese Academy of Sciences, Beijing, China
| | - Xiaoying Chen
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- National Plant Gene Research Center, Beijing, China
| | - Li Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qifei Liu
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yijun Zhou
- Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Taiyun Wei
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- * E-mail: (TW); (RF); (XW)
| | - Rongxiang Fang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- National Plant Gene Research Center, Beijing, China
- * E-mail: (TW); (RF); (XW)
| | - Xifeng Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail: (TW); (RF); (XW)
| |
Collapse
|